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In this proposal, we outline an MIT Junior Lab exploratory experiment on NMR quantum infor-
mation processing, to be performed in Spring 2012, under the guidance of Prof. Paolo Zuccon.

I. INTRODUCTION

The implementation of simple quantum logic gates and
algorithms are explored in Junior Lab Experiment 49,
which introduces basic techniques in the field of NMR
quantum information processing. Using just these tech-
niques, it is already possible to observe many of the sub-
tleties in harnessing the power of quantum information.
Liquid-state NMR, however, exhibits several drawbacks
stemming from the thermal nature of the system, and its
feasibility for large-scale quantum computing is unlikely.
Nevertheless, NMR remains a highly accessible model on
which to test a wide variety of quantum algorithms and
protocols, and the development of techniques in manip-
ulating NMR systems remains central to understanding
quantum information processing in general.[1]

In this spirit, we propose the following exploratory
experiment on NMR quantum information processing.
Building on the basic techniques in Experiemnt 49, we
aim to develop the ubiquitous NMR technique of quan-
tum state tomography, which can be used to obtain the
full state of the system at the end of a computation.
We will then apply this technique to examine a quantum
protocol called superdense coding, which utilizes quan-
tum mechanics to encode two bits of classical information
by manipulating only one qubit. It turns out an almost
identical experiment has already been performed in 1999
by Fang et al.,[2] and so our experimental procedures,
results, and interpretations will be in close parallel to
their work. Also of note is the closely related protocol of
quantum teleportation, which involves three qubits and
was implemented on NMR by Neilsen et al. in 1998.[3] A
useful source for NMR techniques is an early article by
Chuang et al.[4]

One subtlety present in Experiment 49 was the use
of temporal labeling to create effective pure states from
thermally mixed states. As explained below, however,
the theory behind superdense coding also requires the ex-
plicit use of quantum entanglement. Interestingly, there
has been significant controversy about the lack of entan-
glement in liquid-state NMR as late as 2001,[5][6] due to
the ensemble nature of the experimental setup and the
use of temporal labeling schemes. We have not been able

∗ ngedwin@mit.edu
† polnops@mit.edu

to find any clear consensus on what kinds of algorithms
and protocols are possible or impossible on an NMR com-
puter given this lack.

In light of these subtleties, our objective will be to
observe what happens when we attempt to adapt an
entanglement-dependent protocol to the NMR model of
computation. Although we do not expect the experi-
ment to demonstrate true entanglement, it seems inter-
esting to ask what would happen if we were to use the
NMR model of computation to simulate not just simple
algorithms like DJ or Grover, but protocols which ex-
plicitly use entanglement. Would they fail? Would they
work, but require a different physical explanation of why
they still work (e.g., effects of using an ensemble)?[7] We
hope this experiment will, by partially answering these
questions, yield some insight into the subtleties of ex-
perimental quantum information processing, both in the
theoretical framework and in experimental techniques.

II. THEORY AND HYPOTHESIS

II.1. The Bell States

An entangled state of a two-qubit system AB is a state
that cannot be written as the tensor product of a state
of A with a state of B. In this experiment, we will be
concerned with the ”maximally entangled” Bell states (or
EPR states), which we denote by

|Ψ−〉 =
|01〉 − |10〉√

2
|Φ+〉 =

|00〉+ |11〉√
2

|Ψ+〉 =
|01〉+ |10〉√

2
|Φ−〉 =

|00〉 − |11〉√
2

where we will let the first slot be qubit A and the sec-
ond slot be qubit B. Clearly, these four states form a
complete orthonormal basis for the Hilbert space of the
two-qubit system AB. Note that their density matrices,
however, are not diagonal in the computational basis.

II.2. Superdense Coding

Superdense coding is a quantum protocol that allows
the transmission of two classical bits of information by
applying operations to only one qubit.[1] Two qubits A
and B are prepared in the Bell state |Φ+〉. The goal is
to be able to encode four bits of classical information by
performing only one-qubit operations on qubit A.
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The key to this protocol is that we can find four unitary
operators acting on the state |Φ+〉 to produce the four
mutually orthogonal Bell states. These operators are the
identity IA and variations of the Pauli matrices XA, YA,
and ZA. The actions of these operators on qubit A on
the initial state are:

IA|Φ+〉 = |Φ+〉 XA|Φ+〉 = |Ψ+〉
iYA|Φ+〉 = |Ψ−〉 ZA|Φ+〉 = |Φ−〉

Measurement in the Bell basis then allows us to deduce
which operation had been performed. Hence, if we adopt
the protocol of applying these gates onto qubit A when
sending 00, 01, 10, or 11, respectively, we can encode two
bits of information by interacting with only one qubit.

II.3. Quantum State Tomography

In Experiment 49, the output of a computation was
obtained from the FID by applying the readout operator
Rx = Rx(π/2) to the qubit being measured. Suppose
we wish to measure qubit A, and the state of the system
after the computation is ρ; then the FID is the function

VA(t) = −V0tr
[
e−iHtRxA ρR

†
xAe

iHt(iXA + YA)
]

From this FID, we can then obtain the state of qubit A.
In a similar fashion, it is evident that we can also measure
qubit B. More generally, it can be seen that this readout
operator in fact gives information about the diagonal en-
tries in ρ from the real part of the peak integrals of the
FID.

However, in order to distinguish between the various
Bell states involved in superdense encoding, we will also
want to probe the off-diagonal terms in the density ma-
trix. The reconstruction of the full density matrix in such
a manner is called quantum state tomography.

The technique for quantum state tomography is de-
scribed in Nielsen & Chuang.[1] By choosing a set of ap-
propriate readout operators and measuring the FID for
each one (keeping ρ the same), we arrive at a set of lin-
ear equations from which we can solve for the sixteen
elements of the density matrix.

Thus, we want a set of readout operators {Mk}, which
allows us to measure a set of associated FIDs

Vk(t) = −V0tr
[
e−iHtMk ρM

†
ke

iHt(iXA + YA)
]

According to Exercise 7.45 in Neilsen & Chuang,[1] the
following set of readout operators give sufficient informa-
tion to reconstruct ρ:

{Mk} = {I ⊗ I ,Rx ⊗ I ,Ry ⊗ I , I ⊗Rx , I ⊗Ry ,

Rx ⊗Rx , Rx ⊗Ry , Ry ⊗Rx , Ry ⊗Ry}

These readout operators move off-diagonal elements into
the diagonal, so we can use the peak integrals of their
associated FID to obtain information about the density

matrix. Since it can be shown that FIDs from these read-
out pulses are sufficient to reconstruct the density matrix
elements, we can reconstruct the initial density matrix by
combining all the results.

Although the nine readout operators shown above are
sufficient to reconstruct the density matrix, they may not
be necessary. For example, measuring both the real and
imaginary parts of the FID spectrum under the readout
pulse Rx on both qubits yields eight elements instead
of four. It has been shown that the number of readout
pulses (i.e., experiments) we need to perform can in prin-
ciple be reduced from nine to four.[8]

III. SETUP AND APPARATUS

This experiment will be performed on the same appa-
ratus as the Junior Lab Experiment 49, in the MW ses-
sion. Programming of pulse sequences can be done out-
side of lab hours, and, depending on the demand for the
equipment, we may be able to run more time-consuming,
repetitive measurements (such as the ones for state to-
mography) overnight.

The details of the experimental setup can be found
in the labguide for Experiment 49, which is currently
scheduled as the third one in our experimental line. Since
this exploratory experiment is scheduled to be our fourth,
we expect to be familiar with the equipment by the time
we begin.

IV. EXPERIMENTAL PROCEDURES

IV.1. Calibration and Simple Gates

From performing Experiment 49, we expect to have a
good determination on the values of the π/2-pulse widths
as well as the J-coupling constant. This calibration data
should then allow us to readily perform the various ro-
tation gates Rx and Ry on both the carbon and proton.
Furthermore, the controlled-NOT gate Ucnot was intro-
duced as part of Experiment 49, which we will have oc-
casion to use in this experiment.

We can also write the familiar single-qubit Pauli op-
erators (up to an overall phase) in terms of the rotation
gates in a simple manner:

iX = Rx(−π/2)

iY = Ry(−π/2)

iZ = Ry(−π/2)Rx(−π/2)

Finally, another gate we will be using is the single-qubit
Hadamard operator. Up to an overall phase, this is given
by[2]

iH =
i√
2

(
1 1
1 −1

)
= Ry(π/2)Rx(π)

We will assume that we have access to these gates in
this experiment and will furthermore drop the unimpor-
tant overall phase when referencing these gates.
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IV.2. State Tomography on an Effective Pure State

The first step is to ensure that the set of readout op-
erators are indeed sufficient to perform quantum state
tomography. To do this, we begin by analyzing the effec-
tive pure state |00〉, prepared via temporal labeling as in
Experiment 49. We will then perform the nine readout
experiments and attempt to reconstruct the density ma-
trix. We expect the resulting entries to be zero except in
the |00〉〈00| component, as shown in V.1 below.

If the nine experiments do not yield a correct or in-
terpretable result, or if it becomes evident that time be-
comes a constraint, we will try other schemes of state
tomography, such as utilizing the imaginary components
of the FID spectrum, which may reduce the set of readout
experiments we need to perform.

IV.3. Preparation of the Precoding State

We prepare the precoding state |Φ+〉 using the gates
H and Ucnot, as shown in the figure below. To perform
superdense coding, we can then send this state directly to
the encoding operation, as is done in the following part.

FIG. 1. A circuit which prepares the precoding state for use
in superdense coding, starting from an initial effective pure
state. (Illustration by P. Samutpraphoot)

However, before doing superdense coding, it is crucial
that we first perform several instances of quantum state
tomography on the precoding state, in order to obtain a
quantitative understanding of the error associated with
preparing the precoding state. Imperfections and errors
in carrying out the preparation circuit inevitably leads to
failure in the superdense coding protocol, and so an esti-
mate of this contribution needs to be taken into account
in order to interpret the results and error rates of the
protocol. A theoretical prediction of the density matrix
for the precoding state is shown in V.1 below.

Furthermore, we may also want to ask how long a Bell
state such as |Φ+〉 lasts, as compared to the J-coupling
time constant. To do this, we can add a delay between
preparing the state and performing state tomography,
and then later reconstruct the evolution of the density
matrix as a function of time. This additional investi-
gation may also lend some insight into the behavior of
the pseudo-entangled states that we are working with in
liquid-state NMR.

IV.4. Superdense Encoding

The next step is to test the superdense encoding pro-
tocol. We will adopt the following encoding scheme:

00 : IA 01 : XA

10 : YA 11 : ZA

where these operations apply only to qubit A (say, the
proton) in the precoding state |Φ+〉〉. Depending on time
constraints, we expect to repeat the encoding scheme sev-
eral times for each classical message.

In this part, we will perform state tomography directly
after the encoding, in order to assess the error associated
with the encoding process. We expect, of course, to find
density matrices corresponding to the Bell states, consis-
tent with the encoding scheme. An example of such a
density matrix, corresponding to |Φ−〉〉for the bit string
11, is shown in V.1 below.

IV.5. Superdense Decoding

After confirming that we can encode two classical bits,
we continue on the decoding step of the protocol. One
way to decode, as described in the theory for superdense
coding, is to measure in the Bell basis. Another way
to decode, however, is to apply the inverse of the circuit
for preparing the precoding state |Φ+〉〉; more specifically,
this is just the unitary circuit HAUcnot. Thus, the decod-
ing circuit will take the Bell states (ignoring an overall
phase) to the computational basis states:

|Φ+〉 7→ |00〉 |Φ−〉 7→ |10〉
|Ψ+〉 7→ |01〉 |Ψ−〉 7→ |11〉

Since we expect the states after decoding to be in the
computational basis, it is not strictly necessary to recon-
struct the full density matrices in order to distinguish
them. Nevertheless, we plan to perform state tomogra-
phy, as a matter of consistency and to ensure that the
states are in fact what we think they are. We expect the
density matrices exhibit a single component along the
diagonal (much like the effective pure state).

After obtaining enough repeated measurements to
quantify the errors, we can also take more statistics by
skipping the state tomography and simply encode and de-
code a source of classical bit strings. The observed error
rates can then be explained using the detailed informa-
tion about the reliability of each stage in the protocol.

V. EXPECTED RESULTS

Although this experiment is substantially more diffi-
cult than Experimet 49, we have reason to believe that it
is nevertheless feasible. As mentioned before, Fang et al.
performed an almost identical experiment in 1999 using
almost the same equipment and obtained correct density
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matrices with only small deviations.[2] We therefore be-
lieve the protocol is possible to implement and that it is
reasonable to hope for similar results. At a minimum,
we want to attempt the preparation of the Bell states
(in particular the precoding state |Φ+〉, and to at least
develop a working procedure for state tomography.

Again, because of the controversy over entanglement in
liquid-state NMR, we do not expect to be able to consider
this an example of authentic superdense coding.[7] Some
points worth considering in this respect:

• We do not create entangled state, nor pure states,
in our NMR system. Even if the resulting averaged
density matrices are correct, they do not represent
the true states of the system at any time. The
density matrices are constructed through temporal
averaging and should rather be regarded as simu-
lations of pure quantum states.

• In its most colorful form, superdense coding is in-
tended to be employed in communication between
two entangled qubit holders, say Alice with qubit A
and Bob with qubit B, where Alice sends informa-
tion by encoding onto her qubit and sending it over
to Bob. In this experiment, however, we have full
control over both qubits, and there is no explicit
transfer of information between two parties.

Nevertheless, as stated Section I, our objective is not
to verify entanglement in NMR but to develop relevant
techniques in NMR spectroscopy in order to obtain in-

sights into quantum information through studying the
behavior of protocols like superdense coding in the NMR
model of computation.

V.1. Theoretical Results of State Tomography

FIG. 2. State tomography on (left) an effective pure state,
(right) precoding state and (bottom) an encoded state repre-
senting |11〉. (Illustration by E. Ng)
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