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We analyze the Zeeman fine structure of mercury vapor by high-resolution spectroscopy us-
ing a Fabry-Perot interferometer. We use the 5460.7 Å green line and the 5769.6 Å yellow line
of mercury, in fields up to approximately 11.7 kG and 6.3 kG, respectively. By comparing our
measurements against the vector model of the Zeeman effect, we determine the ratio e/m =
(1.813± 0.130rand. ± 0.076syst.) × 1011 C/kg. Polarization of the fine structure lines is observed,
and hyperfine structure can also be resolved on the green line. We include a detailed discussion on
the calibration of the Fabry-Perot cavity length.

I. INTRODUCTION AND THEORY

The broadening of atomic spectral lines in the presence
of a magnetic field was first observed by Pieter Zeeman in
1897, indicating the presence of a charged, massive parti-
cle in the atom. Soon after, the effect was shown to arise
from the interaction of the electron with the magnetic
field, causing its excitation levels to split in energy.[1]

This so-called fine structure involves splittings on the
order of 0.1 Å for fields around 10 kG. To perform such
high resolution spectroscopy, we use in this experiment a
scanning Fabry-Perot (FP) interferometer, pioneered by
by Charles Fabry and Alfred Pérot, also in 1897.

I.1. The Zeeman Effect

In the context of modern quantum mechanics, the Zee-
man splittings of an atomic spectral line arises from lift-
ing the degeneracy within the two energy levels of that
transition, by introducing an integral magnetic quantum
number mj associated with Jz, the component of the
electron’s angular momentum in the direction of the field.

Because the electron has both orbital and spin angular
momentum, we simplify our analysis by appealing to the
vector model of angular momentum. For an electron with
angular momenta numbers l (orbital), s = 1/2 (spin),
and j (total), we define the Landé g-factor

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

In the vector model, j and therefore g are determined by
l, while mj ∈ [−j, j]. The energy of an electron with a
given mj and g is E = µ0gBmj , where µ0 = e~/2m is
the Bohr magneton and B is the applied field. A diagram
of the green line of mercury is shown in Figure 1.[2]

From the energy level diagram, we can calculate the
energy difference δε between any two lines in units of
µ0B. For the green line, the splitting within each selec-
tion group is 1/2, while the splitting between middle-π
and middle-σ is 3/2.
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FIG. 1. An energy level diagram of the 5460.7 Å green line
of mercury, corresponding to the transition 3S1 → 3P2. The
energies on the bottom spectrum are in units of µ0B.

We can draw a similar energy level diagram for the
yellow doublet lines. For the transition at 5769.6 Å
(3D2 → 1P1), these splittings are 1/6 and 7/6, while
for the transition at 5790.7 Å (1D2 → 1P1), they are 0
and 1 (hence its spectrum only has three lines).

I.2. The Fabry-Perot Interferometer

The Fabry-Perot interferometer consists of two paral-
lel partially-transmitting mirrors separated by a cavity
length L. When light of wavelength λ enters through
one mirror, interference occurs within the cavity. Since
the path separation depends on the angle θ at which the
light leaves, relative to the axis of the beam, the inter-
ference equation for the FP is 2L cos θ = mλ for m an
integer. When correctly aligned, the output of the FP
are concentric rings, with m increasing by radius.

The angular separation ∆θ between two modes is the
free spectral range (FSR) of the cavity; it determines the
range of wavelengths that fits into one mode. If we send
in light of wavelengths λ and λ+δλ (for example, two fine
structure lines), we see a corresponding angular splitting
δθ. It can be shown[1] that

δλ =
λ2

2L

(
δθ

∆θ

)
(1)

where cos θ = 1 near the axis of the beam.
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We now relate the energy of a splitting to the out-
put of the FP. Let R = δθ/∆θ be the ratio of the optical
splitting against the FSR. The energy separation between
wavelengths λ and δλ is δE = (hc/λ2)δλ. Setting this
equal to µ0Bδε (from Zeeman theory) and using Equa-
tion 1 to eliminate λ (from FP theory), we find

R

δε
=

e

m

(
L

2πc

)
B (2)

This is the governing equation for this experiment. We
vary B and measure R/δε for the corresponding split-
tings; the resulting linear relation yields e/m.

II. EXPERIMENTAL SETUP

The setup of the experiment is shown schematically in
Figure 2. All apparatus except for the magnet and lamp
are fixed to an optical table.

FIG. 2. A schematic of the experimental setup. Visual mon-
itoring of signal occurs at the output of the FP and the eye-
piece of the telescope. Adapted from [1].

The source is an Oriel mercury vapor lamp powered
by a 20 mA DC power source and covered by a cap with
an aperture of about 1 cm2. The lamp is placed between
two moveable pole pieces of an electromagnet, powered
by a Sorenson SRL supply delivering a maximum of 35 A
and cooled by chilled water to prevent overheating.

The light passes through a collimating lens, with a fo-
cal length of 400 mm. A narrow-band interference filter
at 5470 Å or 5700 Å (for green and yellow, respectively)
is located approximately 10.5 cm from the lens, and a
removable polarizer is placed in between to differentiate
between σ and π lines.

The Fabry-Perot interferometer (by Burleigh) is lo-
cated 12 cm behind the filter, and the base of the FP is
about 40.5 cm (with optical axis 102 mm). The left mir-
ror is fixed and its position is indicated by a vernier, while
the right mirror is controlled three micrometers (with
precision 5 µm, for coarse control of the cavity length and
to adjust for parallelism. We use the micrometer closest
to the edge of the optical table to set the length and ad-
just the other two to align. For our measurements, the
left mirror is fixed at (23.7± 0.1)mm, while the microm-
eters are set as needed to optimize the FSR.

The telescope, focused at infinity, is located about
39 cm from the output of the FP, to allow enough space

for visual monitoring of the FP. The telescope contains
a mirror with a laser-drilled hole, which allows a fixed
point in the optical field to pass to a photomultiplier for
signal detection. The interference spectrum is obtained
by sweeping the length of the FP in the hundredths of
nm range and monitoring the signal detected by the pho-
tomultiplier. We find it is useful to place the pinhole onto
the bright image of the lamp, to amplify the signal.

The photomultiplier is biased at 950 V by a Bertan
313B HV power supply, and its output is fed into a
Princeton 113 pre-amplifier, set to 2K gain with a high-
pass filter at 3Hz. We then send the signal into an Agilent
54621A oscilloscope to obtain the interferogram.

The scanning is performed by a Burleigh RC-44 pro-
grammable ramp generator, which controls three piezo-
electric crystals to sweep the FP cavity length. The avail-
able controls are the individual biases on the three crys-
tals, an overall ramp bias (to adjust starting position),
a ramp amplitude (to adjust modes per sweep), and a
ramp duration switch (to control speed of ramping). We
use a ramp duration of 200 ms × 100 for alignment, 1 s ×
100 for measurements, and 500 ms × 100 for calibration.
Trim controls are also available on each crystal, but we
do not use them and set them to the zero position.

III. OBSERVATIONS AND MEASUREMENTS

III.1. Hyperfine Structure (B = 0)

Even in the absence of a magnetic field, the high reso-
lution of the Fabry-Perot should allow us to observe some
hyperfine structure in the 5460.7 Å line, due to isotope
effects.[2] An interferogram showing possible hyperfine
lines is shown in Figure 3.

FIG. 3. An interferogram showing a hyperfine line of the Hg
green line, with the isotope-201 line indicated by an arrow.
The micrometer setting is (11.240± 0.005) mm.

One possible indication of hyperfine structure is the
broadness of the main peak, beyond noises such as
Doppler broadening and optical imperfections, which
could be due to the effects of reduced mass in the even
isotopes. However, clear evidence of this effect is impos-
sible with the resolution we have here.
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More unequivocal, however, is the faint line directly
to the left of the main peak, which we have identified
to be the isotope-201 line of mercury.[3] The energy of
the transition in this odd isotope has been shifted due
to magnetic dipole effects, where the field of the nonzero
nuclear spin couples to the electron’s motion. From a fit-
ting procedure similar to that described in Section V, we
find R = 0.2347 ± 0.0003. However, we do not calculate
δλ because we are assuming the value in [3] and using
this measurement for calibration (see Section IV).

III.2. Measurements with Applied B

Once the magnetic field is turned on, we visually ob-
serve clear indications of Zeeman splitting. To perform
measurements, we use the rolling mode of the oscilloscope
to record the signal through the pinhole for one ramp du-
ration (100 s). At the end of the ramp, we stop the run
and save the scope trace to disk for later analysis.

Since the ramping is linear and the oscilloscope sam-
ples at regular intervals (2000 points per trace), we will
assume in our analysis that the distances on the interfer-
ograms are linearly related to the angular distance θ on
the output of the FP. Thus, we measure R by measuring
δn/∆n, where n is the scope trace sample index (labelled
in our interferograms as “channel number”).

The magnetic field is measured with a Hall effect gauss-
meter probe, zeroed and calibrated against a standard
5 kG calibration magnet. We measure the field around
the aperture of the lamp by rotating the probe until we
obtain a maximum (so that the probe is perpendicular
to the field lines), and we include the spatial variations
in B into our uncertainties.

For the green line, we perform eight sets of mea-
surements, with field strengths of (11.70 ± 0.03)kG,
(11.20 ± 0.02)kG, (11.12 ± 0.05)kG, (10.90 ± 0.02)kG,
(10.03± 0.02)kG, (8.21± 0.03)kG, (5.85± 0.05)kG, and
(3.24 ± 0.02)kG. For the first six measurements, we ob-
tain two interferograms with no polarizer applied, one
with the polarizer at 0◦ (for σ lines) and one with the
polarizer at 90◦ (for π lines). For the last two, we take
only σ. A sample interferogram is shown in Figure 4.

FIG. 4. A sample interferogram of Zeeman splitting of the
mercury green line, at B = (11.70±0.03)kG with no polarizer.
The arrows indicate the nine predicted lines of the spectrum.

For the yellow lines, we perform five sets of measure-
ments, with field strengths of (6.32 ± 0.02)kG, (5.60 ±
0.03)kG, (5.04 ± 0.03)kG, (4.36 ± 0.01)kG, and (3.74 ±
0.02)kG. We use all three polarization settings for the
first measurement, but because of time constraints, we
take only full and σ for the rest.

The micrometer setting we use to obtain an opti-
mal FSR are (10.660 ± 0.005)mm for the green line and
(10.680 ± 0.005)mm for the yellow lines. In general, the
other two micrometers are changed as necessary to align
the mirrors; typically the one opposite the reference mi-
crometer reads about 0.01 mm higher and the bottom one
reads about 1 mm lower.

IV. CALIBRATION OF FP CAVITY LENGTH

As is evident from Equation 2, determination of the
FP cavity length is crucial to the analysis of this exper-
iment. Although the micrometers are precise to 5µm,
visual inspection of the FP cavity length is restricted by
the precision of the vernier for the left mirror, which is
precise to only 0.1 mm.

If the left mirror is fixed, the reading L′ on the refer-
ence micrometer is related to the true length of the cavity
by L = L′ − L0, where L0 is the reading of the reference
micrometer at zero cavity length. Rearranging Equation
1, the governing equation for calibration is

L′ =
λ2

2δλ
R+ L0 (3)

We use the doublet lines of mercury for this
calibration procedure. For the lengths L′, we
pick 10.610 mm, 10.620 mm, 10.630 mm, 10.640 mm,
10.660 mm, 10.690 mm, 10.700 mm, and 10.720 mm (with
uncertainty 2.5 µm). To obtain R, we fit the intefero-
grams as described in Section V.

We do not, however, obtain a linear relation at first
glance. The 20 Å separation of the two doublet lines are
in fact much larger than the FSR can accomodate. Thus,
between 10.690 mm and 10.700 mm, we observe that the
two peaks “hop” past each other, and the value of R shifts
by one multiple of the FSR. Taking this into account
yields a very linear relationship.

However, because of this effect of “mode-hopping”, we
need to take R 7→ R + k in Equation 3 since the two
lines do not come from the same mode. With k = 0,
we get L0 = (10.603 ± 0.002)mm. However this is not
true, since we can in fact turn the reference micrometer
to this value and observe a nonzero cavity length. With
this procedure, we are able to conclude 15 < k < 25.

To further nail down the value of k, we turn to the
hyperfine line. Since we know the value of δλ0 from [3],
we compute Lk for every k in this range by doing a linear
fit for each one, and we use Equation 1 to compute the
resulting δλk of the hyperfine splitting. We then take
the value of k that yields a minimum for |δλk − δλ0|. We
find, using this procedure, that k = 19 gives the correct
number of mode hops between the two doublets, which
yields L0 = (9.13± 0.04)mm.



4

V. ANALYSIS OF DATA

The relevant information in our interferograms is con-
tained in the channel numbers nj of each peak. From
these channel numbers, we can compute the splitting δn
between any two Zeeman lines, as well as the FSR ∆n
(using two identical lines from different modes).

For the purposes of fitting, we find the σ interfero-
grams (polarizer at 0◦) to be the most convenient to use
for the green line. For the yellow line, we use the full
interferograms (no polarizer) for the lowest two B fields,
and σ again for the higher ones.

Note that we do not use the 5790.7 Å line of the yellow
doublet. This is because it contains only three Zeeman
lines from the coincidence of the Landé g factors for the
transition, and this turns out to be insufficient data for
our analysis technique.

V.1. Fitting Procedure

From Figure 4, one good choice of a fitting function
would be the sum of a number of Gaussians on a constant
offset. This is given by the functional form

y = b+
∑
j

Aj exp

[
− (x− nj)2

2c2j

]

We perform a gradient search to fit the relevant portions
of each interferogram to this general form and extract
the values of nj and its uncertainty from the fits. For
the uncertainties in y, we use a constant 20 mV, which
we find characterizes the local voltage fluctuations in the
scope trace well.

V.2. Analysis with High B

For high values of B, we can observe and fit for all
nine lines of the Zeeman splittings. We therefore use
the following procedure for analyzing the resulting data,
which applies to the green lines down to 5.04 kG.

We know, from Figure 1, that all nine lines are sep-
arated by δε = 1/2 equally. Therefore, to obtain R,
we first compute the splittings δnj between consecutive
lines. This gives us eight numbers, and since we expect
them to be equal, we take δn to be their error-weighted
average 〈δnj〉, with a statistical uncertainty propagated
from the uncertainty on each nj .

Finally, we add to this uncertainty the systematic un-
certainty of the uneven splittings (due possibly to our
fitting procedure, or some physical effect); this is given

by the standard deviation σ[δnj ], divided by
√

8.

V.3. Analysis with Low B

For low values of B, however, we cannot fit for all nine
lines of the Zeeman splittings. Rather, we only see two
peaks, corresponding to σ− and σ+ (π is slightly notice-
able, but it is not prominent enough to accomodate a

fit). We therefore use the following procedure for ana-
lyzing the resulting data, which applies to the two lowest
field interferograms for green, and to all of the yellow.

Since our fit returns nj for only two peaks (and hence
only a single δn), we must make an assumption about
which lines these correspond to. For simplicity, we as-
sociate these with middle-σ− and middle-σ+. We then
compute R directly from δn and ∆n, which takes into
account only the statistical uncertainties in nj .

Because of this representation, however, we introduce
systematic uncertainties in δε. To account for this, we
let the uncertainty in δε be the energy separation within
each selection group. This gives δε = 3 ± 1/2 (for the
green line) and δε = 14/6± 1/6 (for the yellow line).

V.4. Determination of e/m

The values of R/δε that result from the two analy-
sis techniques above, after propagating the uncertainties
correctly, are plotted against B for the green and yellow
lines in Figure 5 below.

FIG. 5. Linear fits of R/δε against B for the 5769.6 Å yel-
low (top) and the green 5464.7 Å (bottom) Zeeman splittings.
Note that the vertical offsets are small, as they should be,
given Equation 2.

We derive e/m from the slope of the line using Equa-
tion 2. The value of e/m estimated from the green
line fit is (1.796 ± 0.138) × 1011C/kg, while the value
of e/m from the yellow line fit is (1.949 ± 0.389) ×
1011C/kg. Taking the average of these two results
and quoting half their difference as a lower bound on
the systematic error, our best determination is e/m =
(1.813± 0.130rand. ± 0.076syst.)× 1011 C/kg.

VI. CONCLUSIONS

Using the high resolution afforded by a Fabry-Perot
interferometer, we are able to observe the Zeeman fine
structure of mercury vapor produced by fields of tens
of kG (and even some hyperfine structure). We verify
many of the qualitative features of the Zeeman spectrum,
including the presence of polarization and the relative
splittings of each line.
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From the interferograms, we arrive at an estimation of
e/m = (1.813± 0.130rand. ± 0.076syst.) × 1011C/kg. We
note that the accepted value of e/m = 1.759× 1011 C/kg;
this is an error of about 3.1%. Compared to previous

attempts at this important physical quantity (c.f., Rel-
ativistic Dynamics), this is our most accurate measure-
ment to date.
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