The Zeeman Effect:

Mercury Fine Structure and Determination of e/m

Edwin Ng | 14 March 2012

Theory of the Zeeman Effect

Relating FP Spectrum to Energy

Governing equation for Fabry-Perot

$$\delta \lambda = \frac{\lambda^2}{2L} \frac{\delta \theta}{\Delta \theta}$$

Relate this to the energy of a splitting

$$\delta E = \frac{hc}{\lambda^2} \delta \lambda = \frac{hc}{2L} \frac{\delta \theta}{\Delta \theta}$$

Governing Equation for e/m

From theory of the Zeeman effect,

$$\mu_0 B \delta g = \delta E = \frac{hc}{2L} \frac{\delta \theta}{\Delta \theta}$$

Solve for e/m in the Bohr magneton

$$\frac{e}{m} = \frac{2\pi c}{BL\delta g} \frac{\delta\theta}{\Delta\theta}$$

Zeeman Splitting: Pictures

Unpolarized

σ Polarized

 π Polarized

Fitting Procedure: Overview

Fit selected regions of interferogram with a sum of Gaussians on top of a background

$$y = b + \sum_{j} A_{j} \exp\left[-\frac{\left(x - n_{j}\right)^{2}}{2\sigma_{j}^{2}}\right]$$

Interested in n_i which give peak positions

Fitting Procedure: Method I

Fitting Procedure: Method I Summary

- δn is the average of consecutive peaks
- Uncertainties on δn :
 - Statistical uncertainty: Uncertainty of splitting n_i n_{i-1}
 - Systematic uncertainty: S.D. of all such splittings divided by square root of (peaks-1)
- Δn is the FSR (diff. between two reference peaks)
- The ratio R = $\delta n / \Delta n$ propagates all uncertainties
- Finally, extract $R/\delta g$ ($\delta g = \frac{1}{2}$ for green)

Fitting Procedure: Method II

Fitting Procedure: Method II Summary

- δn is splitting of two representative lines
- Uncertainty on δn is just uncertainty of $n_i n_{i-1}$
- Δn is the FSR (diff. between two reference peaks)
- Calculate the ratio $R = \delta n / \Delta n$ (small uncertainty)
- δg is now between the two representative lines
 δg = 3 for σ-σ green; δg = ¹⁴/₆ for σ-σ 5770 yellow
 Uncertainty on δg: neighboring (unresolved) lines
 ±¹/₂ for green line and ±¹/₆ for 5770 yellow

e/*m* From Green Line

e/m From Yellow Line (5770 Å)

Conclusions

- Observed splitting of energy degeneracy by Zeeman effect
- Observed polarization of emitted photons
- Final determination of e/m
 - $(1.813 \pm 0.130_{rand.} \pm 0.076_{syst.}) \times 10^{10} \text{ kG}^{-1}\text{s}^{-1}$
 - Correct value: 1.759 x 10¹⁰ kG⁻¹s⁻¹
 - Result: (1.031 ± 0.074_{rand.} ± 0.043_{syst.}) e/m

Question and Answer

Þ