
MECA: an Extensible, Expressive System and Language
for Statically Checking Security Properties

Junfeng Yang, Ted Kremenek, Yichen Xie and Dawson Engler
Computer Systems Laboratory

Stanford University
Stanford, CA 94305, U.S.A.

ABSTRACT
This paper describes a system and annotation language,
MECA, for checking security rules. MECA is expressive
and designed for checking real systems. It provides a variety
of practical constructs to effectively annotate large bodies of
code. For example, it allows programmers to write program-
matic annotators that automatically annotate large bodies
of source code. As another example, it lets programmers use
general predicates to determine if an annotation is applied;
we have used this ability to easily handle kernel backdoors
and other false-positive inducing constructs. Once code is
annotated, MECA propagates annotations aggressively, al-
lowing a single manual annotation to derive many additional
annotations (e.g., over one hundred in our experiments) free-
ing programmers from the heavy manual effort required by
most past systems.

MECA is effective. Our most thorough case study was
a user-pointer checker that used 75 annotations to check
thousands of declarations in millions of lines of code in the
Linux system. It found over forty errors, many of which
were serious, while only having eight false positives.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Languages Constructs
and Features; D.2.4 [Software Engineering]: Software/
Program Verification—Statistical methods; D.4.6 [Operating
System]: Security and Protection

General Terms
Reliability, Security, Measurement.

Keywords
annotation language, static analysis

1. INTRODUCTION
Static analysis can find many security holes. Bishop and

Dilger [2] describe how to statically find “time-of-check-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–31, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

to-time-of-use” (TOCTTOU) race conditions in privileged
Unix applications. More recently, there has been work on
finding information leaks [17], intrusion detection [21], and
checking uses of unsanitized user input [1]. And, of course,
significant attention has been paid to finding buffer over-
flows [6, 15, 18, 20, 22].

While checking analyses have made progress, the features
needed to apply these analyses to a given system have not
enjoyed similar advances. First, programmers are given rela-
tively limited means of expressing what program constructs
to check. Some systems require programmers to specify
properties using external text files [1]. Others use source an-
notations that are largely limited to inserting textual names
in front of variables [9, 12]. Their focus on unary type
qualifiers makes expressing even simple properties such as
“check X before Y” either impossible or painful [7, 23]. Fur-
thermore, past systems provide a fixed, one-size-fits-all set
of rules for how annotations propagate. When these hard-
wired decisions are too aggressive, they cause a significant
number of false positives [12]. When they are too weak, they
require programmers to compensate by manually inserting
an (often impractical) large amount of annotations. For ex-
ample, systems such as Splint do not propagate annotations
across function boundaries, programmers must annotate ev-
ery function interface that needs to be checked [9]. Even
advanced systems such as the race detector in Flanagan and
Freund [10] have overheads of roughly one annotation per
50 lines of code at a cost of one programmer hour per thou-
sand lines of code [10]. Finally, past systems do not give
programmers a way to exploit the significant amount of la-
tent specifications [8] (such as naming conventions) already
present in most programs. Instead they must redundantly
re-annotate them, rather than simply mapping these pre-
existing specifications to those needed by the checker.

This paper describes an annotation system, MECA, that
attempts to counter these problems. MECA is an extensible
annotation language coupled to a flexible, powerful anno-
tation propagation framework. We have combined MECA
with the MC checking system [1, 8, 4], which allows pro-
grammers to write custom extensions that can check a rich
set of security properties [1] such as “check capability X
before doing operation Y” and “sanitize untrusted variables
before using them.” MECA allows implementors to (1) write
a custom checker and (2) define a set of annotations that are
relevant to that checker. The annotations are then used by
the programmer to annotate checker-relevant parts of their
source code. MECA then propagates these annotations au-
tomatically through the source code, possibly in a checker-

specific way. Simple propagation examples would be across
function calls and from the right-hand side of an assignment
to the left. More aggressive examples include propagating
annotations across all functions assigned to the same func-
tion pointer and using statistical inference to annotate func-
tion formal parameters based on the (possibly conflicting)
annotation information of the function’s callers (§ 5).

MECA was designed with the following goals in mind:

1. Expressiveness. Extension writers should be able to ex-
press all program information relevant for their security
checkers. We currently focus on the requirements of the
most common security properties: attaching annotations
to program objects (e.g., functions, variables, field types)
and allowing these to be bound together. These allow
checking common rules such as: variables must be vetted
before use and and certain operations (e.g., permission
checks) must precede others (e.g., mutations).

2. Low annotation overhead. We want to minimize user la-
bor, since this also minimizes the amount of programmer
mistakes and maximizes the chance that they will use the
tool. Programmers should get as much effect as possible
from each annotation they add.

3. Intuitive syntax and semantics. Programmers should be
able to define annotations that express their properties
in a direct, intuitive way.

4. Low false positive rates. We favor effectiveness over sound-
ness and want to find as many bugs as possible while
minimizing false positives.

We have explicitly designed MECA to work well with al-
ready written source code bases (or, equivalently, new code
bases that were initially built without checking in mind).
In practice, even a few annotations can be sufficient for the
checker to check hundreds of different locations.

MECA combines existing techniques with several novel
ones. Its main technical contributions are:

1. A simple but powerful set of annotation primitives. These
include data-dependent annotations (§ 3.2), programmatic
annotations (§ 3.3), and general n-ary annotation predi-
cates.

2. Annotation inference (§ 5), which uses statistical analysis
to detect missing annotations.

3. Measurements of the effectiveness of our propagation meth-
ods. These show that MECA can derive hundreds of
checks for each manual annotation, which to the best of
our knowledge significantly exceeds the ratio of current
approaches.

The next section gives a quick overview of the system.
Section 3 describes the annotation language in more detail,
Section 4 describes the propagation algorithms and Section 5
discusses annotation inference. Section 6 gives a toy exam-
ple of how to use MECA to find missing permission checks.
Section 7-8 presents our main case study, which uses MECA
to detect illegal uses of tainted pointers in operating system
code. Its experiments show that the system finds many er-
rors with few false positives and derives many checks from
a single annotation. Section 9 discusses related work and
finally we conclude.

Source

Files

Annotated Trees

Error

Report

gcc parser

annotation

 parser

Emitter

Annotation

Propagator
Retriever

Control Flow Graph

MC Extension

Call Graph

f

g h

p

q

f

Fn Pointers

g

h
...

Figure 1: An Overview of the Analysis

2. OVERVIEW
Figure 1 gives an overview of the MECA system. It con-

sists of an emitter, a retriever, an annotation propagator,
and one or more checking extensions. The emitter uses
a modified version of the GNU C Compiler (GCC 3.1) to
parse the checked system’s source code and its associated
annotations into abstract syntax trees (ASTs). The ASTs
are serialized and dumped onto the disk for further process-
ing, along with the call graph and a file containing all the
function pointer assignments. The retriever retrieves these
emitted trees and constructs a control-flow graph for each
function with sets of AST trees as basic blocks and branch-
ing statements as edges [4]. The CFGs are linked into a
global call graph, which is then processed by the propa-
gator. The propagator propagates annotations throughout
this global call graph and then runs the given checking ex-
tensions over it. (Section 4 describes propagation in more
detail.)

Checking extensions are written in a system based on the
MC checking framework [1, 8]. Our variant is written in
the ML programming language rather than C, but much of
the features are the same: extensions match on program
features they care about, potentially associating these fea-
tures with states (such as “tainted”), and are applied in a
flow-sensitive, inter-procedural manner down all control flow
paths [4]. Because of the close similarities and the fact that
the prior system has been amply documented this paper
takes the checking system as a given and instead focuses on
the annotation language and the propagation algorithm.

To illustrate how the pieces fit together, consider a checker
that enforces the property “operating system code should
not dereference user (i.e., tainted) pointers.” (For concrete-
ness, we will refer to this example repeatedly in the sub-
sequent sections.) Instead operating system programmers
must access the pointed-to data using special “paranoid”
routines (e.g. copyin and copyout on BSD-derived sys-
tems). A single unsafe dereference can crash the system
or, worse, give a malicious party control of it. A checker

annot def ::= ’annot’ annotation ’prop’ proptype
’annotates’ binding;

proptype ::= ’FNPTR’ | ’CALLCHAIN’
| ’(’ proptype ’)’
| ’(’ proptype ’|’ proptype ’)’
;

binding ::=
’$variable’ | ’$parameter’ | ’$ret’ | ’$function’
| ’(’ binding ’)’
| ’(’ binding ’,’ binding ’)’
;

Figure 2: Annotation declaration grammar.

for this rule would define a set of annotations for specify-
ing: (1) which variables, parameters and fields are tainted,
(2) which functions produce tainted values and (3) which
variables or fields indicate kernel “back-doors” (where an
ostensibly “tainted” pointer is actually safe and can be ex-
plicitly dereferenced). Programmers would then apply these
annotations to their source code, both manually and possi-
bly also using a programmatic-annotation, such as one that
automatically marks all pointers passed in through system
calls as tainted. MECA would then propagate these anno-
tations throughout the source code, statistically infer addi-
tional ones, and run the checker.

3. ANNOTATION LANGUAGE
This section gives an overview of our annotation language.

3.1 Syntax and grammar
Annotation keywords are defined by the extension writer.

They must be declared before use; typically they reside in a
header file that is included by the checked code. Undefined
annotations are flagged as errors to catch misspellings and
mismatches between annotations and extensions. Annota-
tions appear in comments. Programmers place these where
appropriate. Our system applies an extension to each pro-
gram point (e.g., statement, expression) down every path in
the source code and the extension searches for annotations
and constructs it cares about.

A simple declaration of a “tainted” annotation would be
as follows:

annot tainted annotates ($variable)

This declaration specifies that the tainted annotation can
be used to bind to any variable (“$variable”), where vari-
able includes the actual value returned by a function, as
well as the more obvious parameters and global and local
variables. Figure 3 shows some sample uses.

Figure 2 gives the general annotation declaration. The
specifier “binding” specifies how the annotation should bind
in a use, and is used to resolve ambiguities. In the example
above, we could have simply used the C language default
bindings of type-qualifier to declarations, but this causes
difficulties when annotations are more than just simple type
qualifiers. Programmers can specify that annotations bind
to variables in general (as above), to functions ($function),
to parameters ($parameter) or to return values ($ret). To
specify that an annotation binds to more than one type,
the programmer gives a comma-delimited list. However,
some combinations are either redundant or conflict and will

/*@ tainted */ int *p; // p is a tainted variable.
struct foo {

/*@ tainted */ int *p; // the field p is tainted
};

// foo takes a tainted parameter p and returns
// a tainted pointer.
/*@ tainted */ int *foo(/*@ tainted */int *p);

// neither dst nor src can be tainted.
void memcpy(/*@ !tainted */void *dst,

/*@ !tainted */ void *src, unsigned nbytes);

// the data copied into dst is tainted, and the
// pointer src is tainted. Label POST tells the
// system that the content of dst is tainted only
// the call to copyin
void copyin(/*@ POST:tainted (*dst) */ void *dst,

/*@ tainted */ void *src, unsigned len);

Figure 3: Sample Annotations for the tainted
checker in Section 7.

// implied: p is tainted
void *f root(/*@ tainted */ void *p);

// p becomes tainted because of f root
void g root(void *p) {

*p; // error: "deref of tainted pointer"
}

struct ops { void (*fptr)(void *p); };
struct ops f = { f root };
struct ops g = { g root };

Figure 4: A contrived example to illustrate FNPTR

annotation propagation. The implied annotation of
f root propagates across the function pointer that
f root is assigned to, tainting the parameter p passed
to g root.

be flagged. Since $variable includes $ret, “($variable,
$ret)” would be a redundant combination. Since annota-
tions can only bind to the return type or the function def-
inition itself, “($function, $ret)” would be an error. In
general, $variable and $function make up the majority of
all declarations.

The prop part of the declaration allows the extension
writer to specify two built-in propagation methods: LOCAL

and FNPTR. LOCAL indicates that the analysis is solely intra-
procedural; by default our analysis is inter-procedural and
formal parameter annotations are propagated to callers. FNPTR
propagates annotations across function pointer assignments:
if one function has an annotation, and it is assigned to a
function pointer fp, then the annotation is propagated to
all other functions assigned to the same function pointer.
Figure 4 gives a contrived example of how such propagation
works.

3.1.1 Binding annotations together
Often a checker needs to express relationships between

multiple program objects or between different annotations.
The stylized way to do this is for the checker to define an
annotation that takes multiple arguments, where the objects
to be bound together are placed in the argument slots. For

gen annotation := label annotation args;
args ::= /* empty */

| ’(’ arg list ’)’
;

arg list ::= arg
| arg ’,’ arg
;

arg ::= gen annotation | C−expr
;

label := /* empty */
| ’PRE:’ | ’POST:’
;

Figure 5: Grammar for the fully-general annotation.

example, a buffer overflow checker could define a
“set length” annotation that specifies that an integer binds
to a pointed-to object. The programmer could then define a
“check access” annotation to specify that the length field
to memcpy binds both the dst and src parameters:

/*@ check access(src, len) check access(dst, len) */
void memcpy(void *dst, void *src, unsigned len);

Another possibility is that the returned value of malloc
is bound by its size parameter:

/*@ set length($ret, sz) */
void *malloc(unsigned sz);

The check access annotation will be matched by the buffer-
overflow checker, which extracts the two arguments and uses
the given bound to check them.

Figure 5 gives the more general grammar for these anno-
tations. The annotation is a comma-separated list contain-
ing zero or more elements. Each element can be a checker-
defined annotation or a C expression (C-expr). There are
two restrictions on the C-expression. First it cannot be a
compound expression such as “(x, y).” Second, the expres-
sion must be able to be parsed by the C compiler at this
point. Besides these restrictions, the annotations can refer
to arbitrary program values: function addresses, variables,
general arithmetic expressions, and macros. Additionally,
the expression can refer to field names and parameters be-
fore they are defined, though they cannot refer to undefined
variables. Annotations for functions or parameters can be
labeled with “PRE” or “POST,” which means the annotations
are bound to the targets before or after the function call. By
default annotations are bound to the targets before calls.

Allowing the binding of n-ary expressions provides a nice
increase in expressiveness over constructs such as unary type
qualifiers.

3.2 Support for data-dependencies
Our checking system is path-sensitive, and will suppress

many common infeasible paths [4].1 However, in general
pruning all false paths and resolving all data dependencies
are undecidable problems. Thus, we allow programmers to
provide help when calculation fails using a built-in predicate
to express data dependencies:

expr ==> annot

Here expr can be any valid C expression and annot any

1This implicit pruning obviates much of the need for explicit
data-flow flags introduced in the Vault language [5].

struct foo {
/* Non-zero value implies struct data comes from the user. */
int user;

/* If user is unknown mark the field
as tainted, otherwise mark as untainted. */

/*@ user != 0 | | unknown ==> tainted*/ void *conservative;

/* If user is non-zero mark field as tainted,
otherwise do not annot. */

/*@ user != 0 ==> tainted */ void *non conservative;
};

Figure 6: Example of structure field annotation cou-
pled with the use of the unknown keyword.

checker-defined annotation. If expr is true, the annotation
is bound to the associated object. If the expression is false,
then the negation of the expression is bound (e.g., “not
tainted”). We call such annotations imply annotations, and
the predicate expression expr is an imply-condition.

A possible use with the tainted checker would be to specify
parameter-dependencies that control whether an argument
is actually tainted or not. For example, the following decla-
ration states that foo’s argument p is tainted only when the
bitwise-or of flag and the constant USER FLAG is non-zero:

void foo(/*@ flag&USER FLAG ==> tainted*/ char* p,
int flag);

We use similar declarations to specify when a structure field
indicates that a pointer in the structure is tainted.

Because we evaluate implication expressions at compile
time, their value may be unknown. Programmers can con-
trol the implication in this case by using the special keyword
unknown, which evaluates to true if the expression cannot be
resolved at compile time. They can thus make the annota-
tion conservative (e.g., unknown implies tainted) or non-
conservative (e.g., unknown implies not tainted). This is
illustrated in Figure 6.

Our system implements imply annotations by keeping track
of a set of known predicates along each path. When it en-
counters a program object with one or more imply annota-
tions, it evaluates these against the set of known predicates.

3.3 Programmatic annotations
Traditionally, annotating source code is brute force: pro-

grammers insert them in every place the checker will need
them at. This reliance on manual labor is both tedious and
error-prone, since a single missed annotation can mean that
a check does not occur, or that the process is so strenu-
ous that the programmer quits after only annotating a few
hundred thousand lines of code.

MECA lets programmers automate this process using pro-
grammatic annotations, which conceptually are applied to
all points in the program and, when their conditions are
satisfied, mark the program point with their annotation.

For example, to specify that all system call parameters
should be tainted we would write:

/*@ global
$param: ${!strncmp (current fn, “sys ”, 4)}
==> tainted */

This programmatic annotation specifies that it should be
applied globally over the entire checked system (global) and

prog annot ::=
scope objs ’:’ ’${’ C−expr ’}’
’==>’ annotation ;

scope ::= ’global’ | ’file_global’;
objs ::= obj;
obj ::= ’$variable’ | ’$parameter’ | ’$ret’ | ’$function’

| obj
| obj OR obj
;

Figure 7: General syntax for programmatic annota-
tion declarations.

that it cares only about parameters ($param). It will be
applied over each parameter in each function. The part in
curly braces checks if the current function name is prefixed
by “sys ” which is the Linux kernel naming convention for
system calls. If so, it returns true, and each parameter will
be marked as tainted.

The general form of the rule is depicted in Figure 7. “Scope”
controls whether the annotation is applied over the entire
system (global) or just within one file (file global). (Note
that these annotations can be overridden by local annota-
tions.) The “object” specification controls what it is applied
to: functions, return values, parameters or variables. The
C-expr can be a normal C-expr described in Section 3.1.1
or a callout to helper functions the system provides. It can
refer to program objects using special variable names such
as current fn (the current function), current file (the
current file), current param (the current parameter), and
current var (the current variable). Programmers can also
checks the typename of a program object by type is(typename).

In practice, a major use of programmatic annotations is to
translate system-specific naming conventions (which can be
viewed as ad hoc pre-existing annotations) into checkable
annotations. The example above falls into this category.
Another example would be exploiting a naming convention
where a pointer parameter has an associated length that
contains its name as a prefix (e.g., the length for parameter
foo is specified by foo len).

Programmatic annotations are useful even when program-
mers are supposed to manually annotate all relevant pro-
gram objects. In this case they can be used as “annotation
assertions” that prevent false negatives by detecting missing
annotations.

4. ANNOTATION PROPAGATION
This section describes MECA’s flow-sensitive, bottom-up,

inter-procedural analysis for propagating annotations from
callees to their callers.

The analysis is initialized by retrieving the base annota-
tions from annotated code. These annotations consist of an-
notations for functions, their parameters and return values.
The annotations are used to build summaries, which are
a set of 〈guard, pre-condition, post-condition〉 triples.
Here guard is a truth assignment to the set of imply con-
ditions (if any), and pre-condition and post-condition

describe the annotation bindings before and after the call-
site. For example, the code

/*@ tainted */ int * foo(/*@ tainted */int *p,
/*@ POST: tainted(*q) */ void *q);

will generate the following summary for foo:

〈<>, {tainted($1)}, {tainted($ret), tainted($1), tainted(∗$2)}〉

The guard here is empty. The pre-condition states that
first argument is tainted before the call. The post-condition
states that after the call (1) the return value is tainted,
(2) the first argument remains tainted and (3) the storage
pointed to by the second argument is tainted. There will
be one tuple for each different guard expression. Usually
there is only one (empty) guard, and thus one tuple for each
function. The set of summaries for each function is stored
in a summary map, indexed by function name.

After constructing these base summaries, the analysis then
places all annotated functions and their (transitive) callers
into a worklist in topological order (based on the function
call graph). Recursive call chains are broken arbitrarily.
Each function is dequeued from the worklist and analyzed
until its summary converges to a fixed point or a maximum
simulation time is hit. Since callees of a function will be
analyzed before it, each function only needs to be added to
the worklist once.

The analysis analyzes each path in a function (i.e., is flow-
sensitive) and uses caching for speed [4]. It tracks the values
of variables using a symbolic store to record assignments.
Currently we only keep track of all the parameter values and
their one-level dereferences (e.g. *parm, parm->field). 2

Similarly, the analysis uses a predicate store pred store

to evaluate conditions and prune false paths. The predicate
store records simple conditional expressions encountered on
the current path (currently expressions composed from nega-
tion, equality, inequality, and simple bit-wise masks). It
evaluates each conditional expression it encounters against
these recorded value and, if it is false, skips the true (or
false) branch.

Extensions can control annotations propagation across ex-
pressions in an extension provided method called extension visit
that is called by the analysis on every visited expression. For
example, the tainted checker would specify that performing
arithmetic on a tainted expression results in another tainted
expression.

During intra-procedural analysis (local within a function)
we record the annotations associated with each expression
on the current analyzed path in an annotation store. This
annotation store serves two purposes. First, it allows the
analysis to track annotations as the values they correspond
to flow through assignments and expressions. Second, it al-
lows it to update pre- and postconditions in the function
summaries. When an expression is added to the annota-
tion store, the analysis checks the symbolic store to see if
this expression is a parameter or a one-level dereference of
a parameter. If it is, then it updates the function’s pre-
condition. When the analysis reaches the end of a path in
a function, the annotation store is used to update the func-
tion’s post-conditions. Later, when a call to this function is
encountered, these post-conditions will be applied.

Figure 8 depicts a contrived example to illustrate how
bottom-up propagation works. Here bar’s pointer argument

2We experimented with deeper value flow analysis (i.e., more
than one level of indirection) but the results thus far were
not worth it: it dramatically slowed down the analysis,
rarely gave useful information, and as the level of indirec-
tions increased it became more likely that an approximation
error occurred, giving false positives.

void bar(/*@ tainted */void *p);
struct S {char* buf;};

void foo (char **p, struct S* s, char* q) {
char *r, *u, *v;
struct S* ss;

r = *p; // r has sym value *p
bar(r); // taints r and *p
ss = s; // ss has sym value s
bar(ss−>buf); // taints ss and s−>buf
q = v; // q becomes unknown
// will not taint formal parameter q
bar(q);

}

// After the bottom−up propogation algorithm
// finishes, function foo will be summarized as:
foo (/*@ tainted (*p) */ char **p,

/*@ tainted(s->buf) */ struct S* s,
char* q);

Figure 8: Bottom-up propagation example. Formal
parameter q is not tainted because it is redefined
before the final call to bar.

is annotated as tainted and the annotation propagates us-
ing the bottom-up propagation analysis. At the end of the
analysis foo’s formal parameters are annotated.

We have found that in practice flow-sensitivity is the sin-
gle most important feature to ensure accurate annotation
information. Without it we falsely propagate annotations
beyond where they should go, giving many false positives.

5. STATISTICAL ANNOTATION INFERENCE
This section describes how we statistically infer formal pa-

rameter annotations. This technique is useful for preventing
false negatives caused when a portion of the callgraph (1)
contains no annotations or (2) calls a leaf function whose
source code is unavailable. It automatically infers the most
plausible annotation for unannotated functions, uses a util-
ity metric to order procedures from most to least worthwhile
to annotate, and presents this ranking to the user for inspec-
tion. They typically inspect the top 10-20 and then annotate
them directly. This approach allows users to quickly anno-
tate the parameters whose type values we are most confident
about. Once these functions are annotated more code can
be annotated (and checked) by re-applying the bottom-up
analysis with these new annotations.

More precisely, our goal is to infer an annotation for the
for the ith formal parameter of function f (denoted f :i) that
agrees with its callers and then order all inferred annotations
from most to least likely. We do this in two steps: (1) pick
the annotation A and (2) compute how likely A is the correct
annotation. The first step is trivial: set the annotation for
f :i) to be the annotation A passed most often as the ith
argument to f . If all the annotation for the ith argument at
all callsites to f are known and are the same, the annotation
type for f :i is considered unambiguous and we set f :i to this
annotation and stop. In practice about half of the functions
we analyze are consistent in this way. For the other half
we need to do the second step, and compute the probability
that the annotation A is correct (i.e., that Pr(f :i = A)).
We need to do this step exactly when (1) there exists at

least two actual parameters corresponding to f :i that are
annotated but with conflicting types and/or (2) some of the
actual parameters are unknown. We briefly defer the problem
of unknowns until Section 5.1, and for now assume that all
actual parameters are annotated (either directly or through
annotation propagation).

A näıve way to compute Pr(f :i = A) would be as a per-
centage. Unfortunately this ignores population size. For
example, suppose we have two functions foo and baz whose
first parameter was passed a tainted pointer 3 out of 4 times
and 18 out of 24 times respectively. While both have a ratio
of 0.75, we have much more confidence this is the true ratio
for bar. In contrast, the ratio for foo could be coinciden-
tal and could easily change dramatically with more obser-
vations. Thus, instead of percentages we use z-ranking [8,
14], a ranking scheme based on statistical hypothesis test-
ing [13]. It incorporates the intuitions outlined above to
institute ranking, and it utilizes the population size in a
statistically sound way.

For type inference it works as follows. We have two binary
types A and ¬A. We wish to compute a value that tells
us how likely a formal parameter f :i has type A; this will
be done however by examining the behavior we get if we
instead assign the type ¬A to f :i. Let n be the number of
callsites to function f , k the number of actual parameters
corresponding to f :i that have type A, and n−k the number
that have type ¬A. Note if f :i is annotated as type ¬A we
will have X = k type errors. We quantify the reliability of
the type assignment to f :i by computing P (X ≥ k), or the
likelihood we would observe k or more type errors. This
done by assuming that errors have a fixed, a priori error
rate p0. We then model type errors as independent binary
trials, or tosses of a biased coin that has a probability of p0

of turning up as “type error.” By modeling type errors as
binary trials, P (X ≥ k) is computed using the cumulative
Binomial distribution [19]:

P (X ≥ k) =

n�
j=k

�
n

j�p0

j(1 − p0)
n−j (1)

The value computed by Equation 1 is called the p-value.
If k represents the number of type errors we get if we as-
sign type A to f :i, we denote the corresponding p-value as
p(A). The value p(¬A) is defined analogously. A low p(¬A)
implies that f :i is unlikely to have type ¬A. Because we
are using binary types, however, this means that we have
strong confidence in the alternative explanation, namely f :i
has type A. Thus a low p(¬A) implies strong confidence in
the type assignment A to f :i. Because of this implication,
we let s(A) = p(¬A) to represent the confidence “score” for
an assignment of type A to a formal parameter f :i.

The value computed by Equation 1 is called the p-value.
Because we sum from k to n, smaller values are better, since
they correspond to more successes than we expected. For
type inference we typically set p0 = 0.1 since generally the
expected error rate is low. Our experiments were not that
sensitive to the exact value chosen for p0.

5.1 Unknowns as meta-annotations
Of course, we often cannot determine the annotation of all

arguments at a given callsite. The presence of such unknowns
indicates a (possibly checker-specific) analysis failure. We
have only limited experience with unknowns in the context of

annotation inference. However, initial results indicate that
they are either (1) innocuous and can be safely ignored or
(2) that they instead indicate a construct or code that the
checker cannot handle. In this latter case, the higher the
proportion of unknowns the less confidence we should have
in our inferred annotations. Section 7.3 gives an example
of how to incorporate this information into our annotation
inference.

5.2 Next-best annotation
So far we have discussed ranking formal parameters by

type confidence. Although this is useful, it does not reflect
the impact of an annotation. The impact or “utility” of an
annotation is the increased annotation coverage when the
bottom-up analysis is re-applied. This may be cumbersome
to compute; an approximate measure of the impact of an-
notating a formal parameter is the number of actual param-
eters it will annotate (i.e., the number of unknowns). Our
estimate of the impact of an annotation is also based on our
confidence of a type assignment; formal parameters whose
type we are very confident about but have many unknown

actual parameters will be the annotations we expect to have
the highest impact.

Consequently, if we wish to rank formal parameters by
the utility of annotating them with a type A, we use the
following metric:

utility = [1 − s(A)] × u (2)

Here u is the number of actual parameters marked unknown.
We use the complement 1 − s(A) so that larger values of
utility are better. In practice utility ranking is effective; in
the tainted checker we use it rank formal parameters that
are most likely to be tainted and cause the greatest impact
by being annotated.

6. A TOY CAPABILITY CHECKER
Operating systems such as Linux use capabilities to en-

force access control to certain sensitive data in the kernel.
Missed capability checks allow user processes to bypass se-
curity policies and potentially gain unauthorized access to
sensitive data. In this section, we use a toy example to illus-
trate how MECA can be used by a checker that flags missed
capability checks.

The checker defines two predicates, guard and noguard.
The guard predicate specifies that an annotated type or vari-
able is protected by a given capability. Conversely, noguard
exempts certain structure fields from being protected by an
enclosing annotation.

These two predicates are defined on lines 1-2 in Figure 9.
The $variable flag in the definitions denotes that they de-
scribe properties of program variables.

The annotation guard(cap, SYS ADMIN) on line 5 indi-
cates that the data field defined on that line is protected by
the field cap, which must contain the SYS ADMIN capability.
Line 15 gives a more exuberant use of the annotation, which
uses it to protect the entire structure S2 rather than just a
single field. To make things more interesting, suppose the
useless field on line 10 does not need any protection. In
this case, we use the noguard predicate to exempt useless

from the enclosing protection.
Linux uses the function capable to do capabilities checks.

We wrote a simple checker that tracks all successful capa-
bility checks on each path and records these in a “capability

1 : /*@ annot guard annotates ($variable);
2 : annot noguard annotates ($variable); */
3 :
4 : struct S{
5 : /*@ guard(cap, SYS RAWIO) */ int data;
6 : int cap;
7 : };
8 :
9 : struct S2{
10: /*@ noguard */ int useless;
11: /* local annotation noguard overwrites guard */
12: int data;
13: int data2;
14: int cap;
15: }/*@ guard(cap, SYS ADMIN) */;
16:
17: void foo (struct S2* s2) {
18: if (capable(s2−>cap, SYS ADMIN))
19: s2−>data = 0; /* OKAY */
20: else

21: s2−>data2 = 1; /* ERROR : no permission */
22: if (capable(s2−>cap, SYS RAWIO))
23: s2−>data2 = 0; /* ERROR : wrong permission */
24: s2−>useless = 1; /* OKAY */
25: }

Figure 9: An example for the capability checker.

set.” It emits an error if a protected object is accessed with-
out its required capability being held. For example, on the
true branch of the capability check on line 18, the ex-
tension records that the structure field s2->cap holds the
capability SYS ADMIN. The checker uses this information to
determine that the access to s2->data on line 19 is safe.
However, it reports an error on the false branch at line 21,
since s2 does not have the right capability. It will similarly
report one error on line 23. No error will be reported on line
24 since useless is not protected.

7. CHECKING USER-POINTER ERRORS
This section is an in-depth case study of of how to use

MECA annotations to find uses of tainted pointers. We
apply these ideas to Linux and measure their efficacy and
annotation overhead.

7.1 The annotations
At a high level the checker mirrors the description in Sec-

tion 3. It defines a single tainted annotation. The program-
mer then manually inserts these annotations, writes global
annotators, and suppresses false positives from kernel back-
doors. The system then uses the flow-sensitive worklist al-
gorithm described in Section 3 to propagate the annotations
along call chains and across function pointers.

Figure 10 depicts representative examples of annotations
inserted by the programmer for Linux code. These come
in two categories: (1) programmatic annotations that mark
chunks of code tainted or untainted and (2) more specific an-
notations that suppress false positives by selectively mark-
ing code as untainted or expressing data dependencies. We
discuss each below.

As described in Section 3 the programmer uses a global
annotation to mark all functions prefixed with the substring
“sys ” as tainted. They then do more precise annotations
such as:

1 : /* linux-2.5.63/include/asm-i386/uacess.h */
2 : static inline unsigned long

3 : copy from user(/*@ POST:tainted (*to) */ void *to,
4 : /*@ tainted */ const void *from,
5 : unsigned long n)
6 :
7 : /* linux-2.5.63/include/asm-i386/string.h */
8 :
9 : /*@ file global
10: $param : ${!type is int()} ==> !tainted */
11:
12: /* linux-2.5.63/drivers/base/sys.c */
13: /*@ file global $param: !tainted */
14:
15: int sys register root(struct sys root * root){
16: }
17:
18: /* linux-2.5.63/ipc/shm.c */
19: asmlinkage long

20: sys shmat (int shmid, char *shmaddr,
21: int shmflg, /* !tainted */ ulong *raddr)
22:
23: /* linux-2.5.63/drivers/isdn/i4l/isdn tty.c */
24: isdn tty write(struct tty struct *tty, int from user,
25: /*@ from user ==> tainted */ const u char * buf,
26: int count)
27:
28: /* linux-2.5.63/drivers/char/random.c */
29: static ssize t extract entropy(struct entropy store *r,
30: /*@ flags & EXTRACT ENTROPY USER ==> tainted */
31: void * buf,
32: size t nbytes, int flags);
33:
34: /* linux-2.5.63/include/linux/module.h */
35: struct kernel symbol
36: {
37: unsigned long value;
38: const char *name;
39: }/*@ mc ignore */;

Figure 10: Representative programmer-inserted an-
notations taken from from Linux source files.

1. Lines 1-5: annotate the copy from user routine, which
is one of many “paranoid” functions used by Linux to
move data between user and kernel space. It has similar
annotations as copyin described in Section 3.1.

2. Lines 9-10: a file-scope global annotation that marks
all non-integer function parameters in “string.h” with
“!tainted” (i.e., not tainted), which implies it is an er-
ror to call any of these functions with a tainted pointer.
These functions are string functions (such as strlen,
strcpy) which dereference their arguments but are coded
in assembly, preventing our checker from analyzing them.
The ability to do a single global annotation gives a safe,
easy way to express this constraint.

The following two examples are representative of overriding
tainting annotations:

1. Lines 13: uses a file-scope annotation to untaint all the
parameters in “drivers/base/sys.c.” This file violates the
“sys ” naming convention: none of these functions are
true system calls, despite the prefix. This file annotator
overrides the previously described global annotator that
marks all sys functions as tainted.

2. Lines 19-21: gives a more precise override example, where
we mark the final parameter to sys shmat as not tainted.

The following two annotations suppress kernel backdoors:

1. Lines 24-26: shows an annotation for a “backdoor” func-
tion. Here, if the from user parameter is non-zero, then
the pointer buf is a user pointer. It is a safe, untainted
kernel pointer otherwise.

2. Lines 29-31: gives another more complex example. If
the bitwise-and of the flag parameter and the constant
EXTRACT ENTROPY USER is non-zero then the parameter
buf should be tainted and not otherwise.

As described in Section 4 the system will analyzes functions
with these data-dependent annotations in two passes. In
the first example above, the system will assume from user

is zero (and buf is not tainted) when analyzing the body
of isdn tty write. A crucial feature is that during these
passes it automatically prunes all control paths that as-
sume from user is not zero. In the second, it will assume
from user is not zero (and buf is tainted). Again, the sys-
tem prunes paths that assume from user is zero. When a
call to a backdoor function is encountered, the from user

condition will be evaluated in the current calling context. If
it is true, the corresponding actual argument will be set to
be tainted.

Linux has a small number of backdoor functions. The ma-
jority of them are functions implementing one of three inter-
faces: (1) usb serial device type.write, (2) tty driver.write

and (3) isdn if.readstat. For such grouped functions we
only need to annotate one of them to make the others an-
notated through function pointer propagation. In Linux,
adding 36 annotations is enough to annotate almost all back-
door functions.

By precisely suppressing the tainting caused by kernel
backdoors, we not only eliminate many false positives but
also find more bugs, since they are not hidden in hundreds
of false error messages. In the case of Linux this suppression
allowed us to find five additional errors, four of which would
allow a malicious user to print out arbitrary kernel data.

Finally, lines 35-39 eliminate dangerous imprecision in
function pointer propagation. In Linux all exported func-
tions via EXPORT SYMBOL will be assigned to the structure
field kernel symbols.value. This assignment contains no
checking information whatsoever. Doing function pointer-
based propagation would be disastrous: if one function had
a tainted argument, then they all would, which would lead
to thousands of false positives. The programmer explicitly
annotates struct kernel symbols with the built-in anno-
tation “mc ignore” to suppress its use when propagating
annotations.

Annotations for this checker essentially follow the proce-
dure outlined in Section 4. We describe the checker specific
aspects of both the bottom-up and top-down propagation of
annotations respectively in the next two subsections.

7.2 Bottom-up analysis
We use the bottom-up inter-procedural propagation de-

scribed in Section 4 to propagate annotation up call-chains.
Within an individual function we use an extension to per-
form an intra-procedural analysis, annotating individual point-
ers as tainted or !tainted. The extension deploys a set of
customized rules to propagate annotations among expres-
sions.

Figure 11 shows the propagation rules used in the tainted
checker. The Assign rule means that if p has annotation

p : τ, τ ∈ {tainted, tainted(∗p), tainted(p → f)}

q = p ` q : τ
Assign

p : τ, τ ∈ {tainted, tainted(∗p), tainted(p → f)}

q = (type)p ` q : τ
Cast

p : tainted

q = &p ` q : tainted(∗q)
Addr

p : tainted

q = p� x ` q : tainted
Arith

(p� x) : tainted

q = p ` q : tainted
ArithReverse

s : τ → s : tainted

s.f : τ ′ → s.f : tainted
StructTrans

Figure 11: Tainting Checker propagation rules.

tainted, tainted(*p) or tainted(p->f), when the checker
sees q = p it will give q the same annotation. The Cast

rule shows that the annotations are preserved across casts.
This rule is needed because OS code often casts pointers
to integers and back. The Arith rule specifies that doing
pointer arithmetic on a tainted pointer will not change its
taintedness. The ArithRerverse rule is the reverse of the
Arith rule. The Addr states that assigning the address of a
tainted pointer p to q will annotate q with tainted(*q).
The StructTrans rule is different than the other rules be-
cause it specifies a propagation rule when annotation changes.
Whenever a structure s becomes tainted, all its fields be-
come tainted, too.

7.3 Statistical annotation inference
We apply the techniques discussed in Section 5 to de-

rive annotations for formal parameters from actual param-
eters. For a given formal parameter, we have k number of
actual parameters marked as tainted, and n− k marked as
!tainted. Furthermore, we have u additional parameters
marked as unknown. We wish to rank formal parameters by
(1) how likely they are to be tainted and (2) the impact
they will have if we annotate them (§ 5.2).

The presence of unknowns posses an interesting problem.
For the tainted checker, a large number of unknown actual
parameters indicates that the value passed to a formal pa-
rameter is often not used as a pointer at all. Otherwise, a
single dereference of the actual parameter would have led
to an annotation of !tainted. Consequently, the presence
of unknowns, regardless of whether the function was passed
tainted pointers or not, may indicate that it is a polymor-
phic function that can take any pointer type. For our rank-
ing we want the parameters most likely to be annotated
tainted, so we wish to suppress such functions.

To accomplish this, we introduce the notion of compos-
ite types. For this problem, we have two types; the first is
the type indicating whether or not the formal parameter is
tainted, the second is whether or not the value passed to the
formal parameter is really used as a pointer. We wish then
to rank parameters by their composite type assignment –

we want parameters that are likely to be tainted and whose
values tend to be used as pointers.

To be general, suppose we have two separate annotations
we can assign to a formal parameter. The first annotation,
denoted A1, can take on types A or ¬A and the second an-
notation A2 can take on types B or ¬B. The set of possible
types for the aggregate annotation A1,2 = 〈 A1, A2 〉 is then
the cross-product of the two sets of types: {〈A,B〉, 〈A,¬B〉,
〈¬A, B〉, 〈¬A,¬B〉}.

Suppose we wish to rank formal parameters by how likely
they have annotation A1,2 = 〈A,B〉. We know how to com-
pute the score of each type s(A) and s(B) in isolation, and
wish to compute s(A ∧ B) for the aggregate annotation. A
score s(·), however, is just the p-value probability p(¬·), and
from DeMorgan’s laws and the basic axioms of probability
we get:

s(A ∧ B) = p(A ∧ B) = s(A) + s(B) − s(A ∨ B) (3)

Furthermore, if we assume the type assignments to the first
and second annotation are uncorrelated (and hence indepen-
dent), we have that:

s(A ∨ B) = p(A ∨ B) = s(A) · s(B) (4)

These rules easily generalize for aggregate types involving
more than two annotations. We can then apply these rules
to rank formal parameters based on the score of their aggre-
gate types.

These axioms allow us to rank formal parameters for the
tainted checker in the desired manner. The composite value
want to rank by is 〈 tainted, isPointer 〉. Using Equa-
tions 3 and 4 we have the following score:

s(tainted ∧ isPointer) = s(tainted) + s(isPointer) −

s(tainted)s(isPointer) (5)

Finally, we wish to rank parameters using our utility met-
ric (§ 5.2); this will cause formal parameters to be ranked
both by how likely they are to be tainted and the expected
impact they will have on increased annotation coverage and
error checking. Using Equations 2 and 5, our final score we
use to rank parameters by is:

S = [1 − s(tainted ∧ isPointer)] × u (6)

8. RESULTS
This section measures the effectiveness of MECA. Several

terms are used throughout this section, so we define them
here.

1. Manual Annotation: The annotation string that must
be added by programmers by hand.

2. Global Annotator: Each programmatic annotation is
called a Global Annotator.

3. Root Annotations: Annotations that either come from
programmers (global annotators excluded) or annotated
by global annotators.

4. Derived Annotations: the number of formal parame-
ters p or their one-level dereference ∗p that were auto-
matically labeled by bottom-up analysis. Each such p or
∗p that went from being labeled unknown to tainted or
!tainted is counted once.

5. Check: we define a check as a program point where the
programmers can potentially make a mistake. For the

1 : void bar (char* p) {
2 : copyin (, p,); /* Not a check. Infers p tainted */
3 : }
4 :
5 : void foo(char* r) {
6 : copyin (, r,); /* Not a check. infers r tainted */
7 : /* A check. Annotations for both r and bar’s first
8 : parm have already been infered*/
9 : bar(r);
10: }
11:
12: void foo2(char* r) {
13: bar(r);
14: }

Figure 12: This figure shows how we count checks
and construct the propagation graph.

user-pointer checker, we consider checks to occur at every
(1) pointer dereference and (2) when a pointer is passed to
an annotated function (the annotation can be inferred).
Note that we underestimate the number of checks be-
cause we only count program points where no inference
happens as checks. For example, the first dereference of
an unknown pointer implies the pointer is not tainted
but performs no check (since the pointer is unknown);
we would only count subsequent dereferences of the same
pointer (if any) as checks. Figure 12 gives an example of
how we count.

6. Propagation Graph: Each node in the propagation
graph represents either (1) a derived annotation or (2) a
callsite argument where the argument a has some annota-
tion (tainted or !tainted) and the function parameter
it is passed to has a derived annotation. Note, this latter
count is done in this way to avoid counting “vacuous”
annotations — i.e., when an annotated variable is passed
to a function that has no annotation and hence leads to
no check. Each edge in the graph represents a possible
flow of annotations from one parameter to another.

We elide local variables and expressions from the graph,
since these counts vastly inflate the graph size and make
it harder to evaluate effectiveness.

For example, the propagation graph for Figure 12 con-
tains two subgraphs: one subgraph rooted from foo:r

consists of foo:r, the callsite bar:r at line 9, and the
callsite copyin(, p,) at line 2. The other consists
of foo2:r, the callsite bar:r at line 13, and the callsite
copyin(, p,) at line 2.

8.1 Annotation overhead
One of our key design goals is to minimize annotation

overhead. This section approximately measures how well
MECA meets this goal by counting the number of manually-
supplied annotations as well as the annotations derived from
these.

Table 1 counts the number of global annotators (4) and
the number of distinct places they automatically annotated
(694). The most effective of these was the global system-call
annotator which tainted 637 system call parameters. There
were three file-scope annotators that marked 57 parameters
as !tainted (i.e., it is illegal to call them with a tainted
pointer). As stated before, the benefit of these annotators

Annotation Type Global Annotator Roots Generated

tainted 1 637
!tainted 3 57

Total: 4 694

Table 1: The number of global annotators for the
tainted and !tainted qualifiers, and the count of the
places they annotated.

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

C
um

ul
at

iv
e

D
er

iv
ed

 A
nn

ot
at

io
ns

C
um

ul
at

iv
e

C
he

ck
s

Cumulative Root Annotations

Cumulative Derived Annotations
Cumulative Checks

Cumulative Errors

Figure 13: A cumulative view of the data presented
in Table 2. There are total 154 errors messages,
uniqued by file, function and line number, which is
scaled up in order to fit in the graph.

is not just the labor saved, but the fact that they eliminate
the opportunity to forget an annotation.

Table 2 gives the number of manual annotations and counts
for formal parameters and expressions. On average one man-
ual annotation derives 147 annotations, marks 1098 expres-
sions and leads to 682 checks. Figure 13 gives a cumulative
view for the same data. It shows that 15% of the root anno-
tations are able to derive 85% of all the derived annotations
and do 85% of the total checks.

8.2 Coverage
The checker validates that every node in a propagation

graph has the same annotation as all the other nodes. Larger
subgraphs are better than small ones since they force more
nodes to be internally consistent. Additionally, larger num-
ber of “inference events” (those that cause a pointer to be
annotated as tainted or !tainted) per graph are better
since they make it more likely that a labeling occurs (and is
cross checked). The ideal would be two subgraphs for a sys-
tem: one labeled as tainted, one as !tainted with many

tainted !tainted

Average Graph Size 31 18
Events per Graph 4 6

Table 3: Average subgraph size (i.e., the number
of related parameters that are checked against each
other) and average number of inference events per
subgraph (e.g., a pointer dereference or passing a
pointer to tainted function).

tainted !tainted imply Total

Manual Annotations 19 9 36 71 (7 ignore)
Derived Parameter Declarations 2498 7881 57 10436
Declarations per Manual Annotation 131 876 1.6 147
Derived Expressions 13495 64470 - 77965
Expressions per Manual Annotation 710 7163 - 1098
Checks 3329 44930 169 48428
Checks per Manual Annotation 175 4992 4.7 682

Table 2: Total number of manual annotations, and the count of derived declarations and expressions. Derived

Parameter Declarations counts the number of unique formal parameters that were annotated as tainted or
!tainted. Derived Expressions counts the total number of expressions that are automatically tainted or un-
tainted. These are uniqued by file name, function name and line number. There are 71 manual annotations
in total (global annotator excluded). Nearly 2/3 of them are for suppressing false positives. On average one
manual annotation derives 147 annotations, 1098 expressions and does 682 checks.

0 100 200 300 400 500 600

50
10

0
20

0
50

0
10

00
20

00
50

00

Tainted Subgraph Size

N
um

be
r

of
 P

ar
am

et
er

s

Figure 14: This graph shows the tainted subgraph
sizes and the total number of pointers in subgraphs
with this size. The rightmost four subgraphs are
formed by function pointer propagation.

inference events in each. Table 3 shows the average sizes
of the tainted and !tainted subgraphs, and the average
number of tainting or untainting events per subgraph.

Figure 14 shows the tainted subgraph size and the total
number of pointer parameters in subgraphs with this size.
There are four enormous graphs on the right that cross-check
359, 437, 537, and 629 parameters against each other.

Figure 15 orders subgraphs labeled as tainted or !tainted
by size and shows how many subgraphs are needed to cover
a given percentage of pointers. For example, that 25% of
the subgraphs are sufficient to label 75% of all pointers that
were annotated.

8.3 Robustness
Annotation propagation must be stable and robust. Oth-

erwise noise in the inputs such as missing manual annota-
tions or program errors are likely to pollute the propagation
graph and generate thousands of false positives or false neg-
atives. MECA achieves robustness by massive redundancies
and statistics. For example, one annotation for a function is
sufficient to annotate all other functions which are assigned
to the same function pointer. Statistical inference of formal
parameters annotations can infer other missing annotations.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 20000 40000 60000 80000 100000 120000 140000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
 0 20 40 60 80 100

C
um

ul
at

iv
e

N
um

be
r

of
 P

ar
am

et
er

s

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 P

ar
am

et
er

s

Cumulative Number of Subgraphs

Cumulative Percentage of Subgraphs

Figure 15: This graph shows the cumulative number
of subgraphs and the cumulative number of pointer
parameters. Subgraphs are ordered by decreasing
order of the their sizes. 25% of the subgraphs con-
tains about 75% of the total pointers annotated.

We believe this is the key difference between MECA and
traditional type inference.

We measure the effectiveness of function pointer propaga-
tion by computing the average node degree E/N , where E
is the number of edges in the propagation graph and N is
the number of nodes. This can be viewed as an approxima-
tion for how many paths can lead to a specific annotation. If
this number is high, breaking one path will unlikely stop the
propagation since there are many redundant paths that keep
the propagation graph connected. Table 4 shows that func-
tion pointer propagation increases the average node degree
by a factor of 7.

To measure the effectiveness of statistical inference of for-
mal parameter annotations, we first run MECA with only
one tainted annotation for function copy from user, then
annotates all the missing roots inferred and run MECA
again. Table 5 shows the top eleven parameters statistically
inferred as described in Section 5. Bottom ranked parame-
ters are not shown. We inspected a few of them and they
are either !tainted parameters or non-pointers. We also
use the number of distinct sources for a derived annotation
as a metric for robustness. Not surprisingly, statistical in-

without FNPTR with FNPTR

tainted nodes 12662 14503
tainted edges 16331 250214

Average Degree 1.29 17.3

!tainted nodes 480783 542778
!tainted edges 613497 5212683

Average Degree 1.28 9.60

Total nodes 493445 557281
Total edges 629828 5462897

Average Degree 1.28 9.80

Table 4: Propagation results with and without func-
tion pointer propagation.

ference increased the average number of distinct sources by
a factor of 12.

8.4 Security holes and false positives
We found 44 bugs in Linux; 19 of them allowed a malicious

user to take control of the machine. Error messages are
uniqued by file and functions since once a user pointer is
dereferenced it tends to be dereferenced many times in one
function. Table 6 shows the bugs we found, broken down by
the ease and severity of exploit:

1. Arbitrary write: there were eleven cases where a user
could write to arbitrary kernel memory.

2. Arbitrary read: there were eight cases where the user
could read out arbitrary kernel memory (usually by pass-
ing a user-chosen pointer to a kernel print function).

3. Fault at will: there were nineteen places where a user
could cause the kernel to crash in a straightforward way.

4. Always fail: these were six cases where a kernel pointer
was passed to a routine that expected user pointers. These
calls would always fail with an error code. Two of such er-
rors are intentional where the return values of the “para-
noid” functions are not checked intentionally.

After the annotations described at the beginning of Sec-
tion 7, there were eight false positives that remained. Two
of them are because in Linux “paranoid” functions some-
times can take kernel pointers when the global data segment
is set to be in the kernel. Two are due to wrong pointer
arithmetic propagation, where user base - kernel base +

kernel pointer which computes user base + offset is con-
sidered as a kernel pointer. Two are caused by false paths.
The other two are because our predicate analysis is not so-
phisticated enough.

To measure the effectiveness of suppressing false posi-
tives, we rerun the analysis without the imply annotations
and the ignore annotations. We left the one for struct

kernel symbols unremoved because removing it will cause
too many false positives to inspect. Not surprisingly, 98
more false positives (uniqued by file name and function name)
were generated in that run.

Figure 16 gives a rare security hole in the base kernel that
was found in fs/quota.c, which is well-tested, well audited
code. Function sys quotactl is a system call. The global
annotator taints all of its parameters, including special.
This tainted pointer is passed into lookup dev, which deref-
erences it. A malicious user can trivially cause the kernel

Type Warnings Fixed

Arbitrary Write 11 11
Arbitrary Read 8 8
Fault at Will 19 17
Always Fail 6 3

Total 44 39
False Positives 8

Table 6: User-pointer bugs we found in Linux 2.5.63,
broken down by severity and ease of exploit.

/* linux-2.5.63/fs/quota.c */
asmlinkage long sys quotactl(unsigned int cmd,

const char *special, qid t id, caddr t addr) {
bdev = lookup bdev(special);

}

/* linux-2.5.63/fs/block dev.c */
struct block device *lookup bdev(const char *path) {

if (!path | | !*path)
return ERR PTR(−EINVAL);

}

Figure 16: A security hole in fs/quota.c. Only rele-
vant code is shown

to crash or read unfortunate device memory addresses by
passing in a value for special of their choosing.

Cross-checking. Cross checking by propagating anno-
tations across function pointers was extremely effective. Se-
curity errors seem to cluster: if a programmer is unaware of
an interface rule (e.g., that a parameter should be tainted)
they stay unaware, blithely violating the rule. For Linux,
all eleven of the write bugs and four of the read bugs were
found by propagating annotations across functions assigned
to the same function pointer. For most of these bugs, there
was not a single check in the functions (or even the files)
that contain the bugs.

Figure 17 gives a representative example. The function
sg read taints its second argument buf using a call to func-
tion verify area. The function sg read is also statically as-
signed to the field read in a structure of type file operations.
This will cause the system to taint the second argument in
all other functions assigned to a structure of this type. In
our example, this happens when the function do read is as-
signed to the variable Divas fops. This taints do reads

second argument; this annotation is then propagated to the
variable ClientLogBuffer, which causes an error when it is
passed to memcpy. Interestingly, even the user pointer itself
has the name pClientLogBuffer and pUserBuffer.

9. RELATED WORK
There have been numerous annotation languages designed

for program checkers. Systems that are most related to
MECA are Splint [9], CQual [12], and ESC/Java [16].

Splint is an annotation based tool for detecting a vari-
ety of programming errors such as null-pointer dereferences
and potential buffer overrun vulnerabilities. It employs a
simple flow-sensitive analysis assisted by user provided an-
notations that is fast and scalable. However, Splint has the
following drawbacks that limits its usefulness in effectively
checking large systems. First, its annotation propagation is

Actual Parameters

Formal Parameter Annotation Rank p-value Rank Utility tainted !tainted unknown

copy to user:1 1 2 496 931 8 496
put user:2 2 1 422 644 1 422
get user:2 3 3 354 347 1 354
put user:2 4 8 125.9 33 0 126

verify area:2 5 5 84 103 0 84
get user:2 6 9 58.9 18 2 59
copy from user:2 7 18 37.6 8 0 44
copy to user:1 8 19 33.1 7 0 43

access ok:2 9 4 26 81 1 26
user walk:1 10 80 11 3 0 27

clear user:1 11 10 6.9 6 0 7

Table 5: Annotation ranking using statistical inference and annotation utility.

more limited than MECA (e.g., it lacks true inter-procedural
propagation). Second, except for a small set of pre-defined
operators, Splint only allows unary predicates for expressing
program properties rather than n-ary predicates (§ 3.1.1).
Finally, other than the “ignore” primitive which essentially
turns off checking for a segment of the target code, Splint
provides few means of systematic suppression of false posi-
tives. MECA, on the other hand, allows extension-specific
suppression using hints from user-provided annotations (e.g.
the from user ==> tainted example in Section 3).

CQual is a type-based analysis tool for defining, inferring,
and checking flow-sensitive type qualifiers in C programs.
It employs an efficient constraint-based type inference al-
gorithm to propagate user provided information to mini-
mize manual annotation. It is more ambitious than MECA
in that it is sound by design. However, because it forces
soundness, it must always use conservative alias analysis,
which can give many false positives. Extra user-provided
alias specifications are needed in order to suppress a large
portion of those false positives. The large amount of work
required limits the applicability of CQual on large exist-
ing systems [23]. Furthermore, it only supports unary type
qualifiers, which limits the properties it can express.

ESC/Java descends from the intellectual tradition of pro-
gram verification. It allows users to write arbitrary first-
order logic formulas for annotations, which it checks using
an automatic theorem prover. Its annotation language can
express a significantly richer set of concepts than MECA.
However, it appears that in practice MECA can match much
of this power because it lets checkers define their own builtin
predicates (§ 3.2). ESC/Java lacks extensibility in terms of
defining new checks and it appears that MECA applies much
more easily to large code bases than ESC/Java does. While
ESC/Java has a high annotation burden, recent work on
Houdini [11] has shown how to use annotation templates to
automatically derive ESC annotations. One difference be-
tween our approach and theirs is that our use of statistical
inference allows us to handle noisier samples when deriving
our annotations.

The GCC attribute extension allows users to annotate
declarations in C programs. The main objective of the GCC
attributes is to provide the GCC compiler with hints for
error reporting (mostly for syntax and type errors detected
in the frontend) and optimization purposes.

Zhang et al [23] modified GCC and used a Perl script

to annotate all the local variables of certain types to be
“unchecked.” This can be viewed as hardwired program-
matic annotation. Compared with their approach, our sys-
tem allows programmers to easily write such programmatic
annotations in the source without any compiler knowledge.

MOPS [3] is another system that checks for security prop-
erties, which is loosely related to MECA. It uses finite state
automatons to represent security rules, slices a program
based on the state transitions specified in these rules, trans-
forms the sliced program into a pushdown automaton and
uses model checking techniques to check for security errors
and verify their absence. Compared with MECA, it pro-
vides no annotation support for programmers to express
general security rules in the source code. The range of
the security rules it can check seems limited since it does
no dataflow analysis except simple syntactical matching on
variable names.

The taintedness problem in Section 7 has been explored
in [1, 12, 9]. Capability checking has been explored in [7].

10. CONCLUSION
This paper has described a system and language for ex-

pressing and checking general security rules.
The annotation language is expressive and direct. It gives

programmers novel powers. One is the ability to write pro-
grammatic annotations that automatically annotate a large
bodies of source code. Another is the ability to use computa-
tionally flexible predicates to control whether an annotation
is applied. We used this ability to handle kernel backdoors
and other false-positive inducing constructs.

The system is tailored for getting results on real systems.
It is designed to make it easy to suppress false positives.
Additionally, its propagation abilities mean that a single
manual annotation leads to many derived annotations (e.g.,
hundreds in our experiments) freeing programmers from the
crushing manual effort of most traditional systems.

The system is effective. Our most through case study was
a user-pointer checker that used 75 annotations to check
thousands of declarations in millions of lines of code in the
Linux system. It found over forty errors, many of which
were serious, while only having eight false positives.

While the system is still a prototype, our initial expe-
riences indicate that it can give significant traction when
checking large bodies of real code.

/* linux-2.5.63/drivers/scsi/sg.c */
static ssize t
sg read(struct file *filp, char *buf, size t count, loff t * ppos) {

// [META]: taints second argument buf
if ((k = verify area(VERIFY WRITE, buf, count)))

return k;
}
static struct file operations sg fops = {

/* Assigns: sg read to the read field in file operations. Since
* the second parameter of sg read is tainted (from the code
* above) this will taint the second parameter of all
* functions assigned to this field. */

.read = sg read,

.write = sg write,

.poll = sg poll,

.ioctl = sg ioctl,

. . .
};
/* linux-2.5.63/drivers/isdn/eicon/lincfg.c */
struct file operations Divas fops;
int DivasCardsDiscover(void) {

/* Assign do read to the read field in file operations: causes
* its parameter to be marked as tainted. */

Divas fops.read = do read;
}
/* linux-2.5.63/drivers/isdn/eicon/linchr.c */
ssize t do read(struct file *pFile, char *pUserBuffer,
size t BufferSize, loff t *pOffset)
{

/* pUserBuffer tainted from function pointer prop. */
klog t *pClientLogBuffer = (klog t *) pUserBuffer;
if (pHeadItem) {

/* ERROR: dereferencing tainted pointer. */
memcpy(pClientLogBuffer, pHeadItem, sizeof(klog t));

}

Figure 17: A security hole found by cross checking
through file operations.read. Only relevant code is
shown

Acknowledgements
This research was supported in part by DARPA contract
MDA904-98-C-A933 and by a grant from the Stanford Net-
working Research Center. Dawson Engler is partially sup-
ported by an NSF Career Award and Ted Kremenek re-
ceived funding from an NSF Graduate Fellowship. We are
also grateful for helpful comments from Xiaowei Yang, Ken
Ashcraft, and the anonymous reviewers.

11. REFERENCES
[1] K. Ashcraft and D. Engler. Using programmer-written

compiler extensions to catch security holes. In IEEE
Symposium on Security and Privacy, Oakland,
California, May 2002.

[2] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Computing systems, pages 131–152,
Spring 1996.

[3] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In
Proceedings of the 9th ACM conference on Computer
and communications security, pages 235 – 244. ACM
Press, 2002.

[4] A. Chou. Static Analysis for Bug Finding in Systems
Software. PhD thesis, Stanford University, 2003.

[5] R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, June 2001.

[6] N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking
of string manipulations in C programs via integer
analysis. In 8th International Symposium on Static
Analysis (SAS), pages 194–212, July 2001.

[7] A. Edwards, T. Jaeger, and X. Zhang. Runtime
verification of authorization hook placement for the
linux security modules framework. In Proceedings of
the 9th ACM conference on Computer and
communications security, pages 225–234. ACM Press,
2002.

[8] D. Engler, D. Yu Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[9] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software,
19(1):42–51, January/February 2002.

[10] C. Flanagan and S. N. Freund. Type-based race
detection for Java. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 219–232, 2000.

[11] C. Flanagan, K. Rustan, and M. Leino. Houdini, an
annotation assistant for ESC/Java. In Symposium of
Formal Methods Europe, pages 500–517, Mar. 2001.

[12] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive
type qualifiers. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design
and Implementation, June 2002.

[13] D. Freedman, R. Pisani, and R. Purves. Statistics.
W.W. Norton, third edition edition, 1998.

[14] T. Kremenek and D. Engler. Z-ranking: Using
statistical analysis to counter the impact of static
analysis approximations. In 10th Annual International
Static Analysis Symposium, 2003.

[15] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In USENIX Security
Symposium, Washington, D. C., Aug. 2001.

[16] K. R. M. Leino, G. Nelson, and J. Saxe. ESC/Java
user’s manual. Technical note 2000-002, Compaq
Systems Research Center, Oct. 2001.

[17] A. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems
Principles, pages 129–142, Oct. 1997.

[18] J. Pincus. Personal communication. Developing a
buffer overflow checker in PREfast (a version of of
PREfix)., Oct. 2001.

[19] S. M. Ross. Probability Models. Academic Press,
London, UK, sixth edition, 1997.

[20] J. Viega, J. Bloch, T. Kohno, and G. McGraw. ITS4:
A static vulnerability scanner for C and C++ code. In
Annual Computer Security Applications Conference,
2000.

[21] D. Wagner and D. Dean. Intrusion detection via static
analysis. In IEEE Symposium on Security and
Privacy, 2001.

[22] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In The 2000 Network and Distributed
Systems Security Conference. San Diego, CA, Feb.
2000.

[23] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL
for static analysis of authorization hook placement. In
Proceedings of the 11th USENIX Security Symposium,
pages 33–48, Aug. 2002.

