Static analysis versus software model checking for bug finding

Dawson Engler and Madanlal Musuvathi
Computer Systems Laboratory
Stanford University

Stanford, CA 94305, U.S.A.
{engler,madan}@cs.stanford.edu

1 Introduction

This paper describes experiences with software model check-
ing after several years of using static analysis to find errors.
We initially thought that the trade-off between the two was
clear: static analysis was easy but would mainly find shallow
bugs, while model checking would require more work but
would be strictly better — it would find more errors, the
errors would be deeper, and the approach would be more
powerful. These expectations were often wrong.

This paper documents some of the lessons learned over
the course of using software model checking for three years
and three projects. The first two projects used both static
analysis and model checking, while the third used only model
checking, but sharply re-enforced the trade-offs we had pre-
viously observed.

The first project, described in Section 3, checked FLASH
cache coherence protocol implementation code [20]. We
first used static analysis to find violations of FLASH-specific
rules (e.g., that messages are sent in such a way as to prevent
deadlock) [6] and then, in follow-on work, applied model
checking [21]. A startling result (for us) was that despite
model checking’s power, it found far fewer errors than rela-
tively shallow static analysis: eight bugs versus 34.

The second project, described in Section 4, checked three
AODV network protocol [8] implementations. Here we first
checked them with CMC [24], a model checker that di-
rectly checks C implementations. We then statically ana-
lyzed them. Model checking worked well, finding 42 errors
(roughly 1 per 300 lines of code), about half of which involve
protocol properties difficult to check statically. However, in
the class of properties both methods could handle, static
analysis found more errors than model checking. Also, it
took much less effort: a couple of hours, while our model
checking effort took approximately three weeks.

The final project, described in Section 5, used CMC on
the Linux TCP network stack implementation. The most
startling result here was just how difficult it is to model
check real code that was not designed for it. It turned out
to be easier to run the entire Linux Kernel along with the
TCP implementation in CMC rather than cut TCP out of
Linux and make a working test harness. We found 4 bugs
in the Linux TCP implementation.

The main goal of this paper is to compare the merits
of the two approaches for finding bugs in system software.
In the properties that could be checked by both methods,
static analysis is clearly more successful: it took less time
to do the analysis and found more errors. The static analy-
sis simply requires that the code be compiled, while model
checking a system requires a carefully crafted environment
model. Also, static analysis can cover all paths in the code
in a straightforward manner. On the other hand, a model

checker executes only those paths that are explicitly trig-
gered by the environment model. A common misconception
is that model checking does not suffer from false errors, while
these errors typically inundate a static analysis result. In our
experience, we found this not to be true. False execution
paths in the model checker can be triggered by erroneous
environments, leading to false errors. These errors can be
difficult to trace and debug. Meanwhile, false errors in static
analysis typically arise out of infeasible paths, which can be
eliminated by simple analysis or even unsubstantial manual
inspection.

The advantage of model checking is in its ability to check
for a richer set of properties. Properties that require reason-
ing about the system execution are not amenable to static
checking. Many protocol specific properties such as routing
loops and protocol deadlocks fall in this category. A model
checker excels in exploring intricate behaviors of the system
and finding errors in corner cases that have not been ac-
counted for by the designers and the implementors of the
system. However, the importance of checking these prop-
erties should significantly over-weigh the additional effort
required to model check a system.

While this paper describes drawbacks of software model
checking compared to static analysis, it should not be taken
as a jeremiad against the approach. We are very much in
the “model checking camp” and intend to continue research
in the area. One of the goals of this paper is to recount what
surprised us when applying model checking to large real code
bases. While more seasoned minds might not have made the
same misjudgments, our discussions with other researchers
have shown that our naivete was not entirely unreasonable.

2 The Methodologies

This paper is a set of case studies, rather than a broad study
of static analysis and model checking. While this limits the
universality of our conclusions, we believe the general trends
we observe will hold, though the actual coefficients observed
in practice will differ.

2.1 The model checking approach

All of our case studies use traditional explicit state model
checkers [10, 18]. We do no innovation in terms of the ac-
tual model checking engine, and so the challenges we face
should roughly mirror those faced by others. We do believe
our conclusions optimistically estimates the effort needed
to model check code. A major drawback of most current
model checking approaches is the need to manually write a
specification of the checked system. Both of our approaches
dispense with this step. The first automatically extracts a
slice of functionality that is translated to the model check-

ing language, similar to the automatic extraction work done
by prior work, notably Bandera [7] and Feaver [17]. Our
second approach eliminates extraction entirely by directly
model checking the implementation code. It is similar to
Verisoft [15], which executes C programs and has been suc-
cessfully used to check communication protocols [4] and Java
PathFinder [2], which uses a modified Java virtual machine
that can check concurrent Java programs.

2.2 The static analysis approach

The general area of using static analysis for bug finding
has become extremely active. Some of the more well-known
static tools include include PREfix [3], ESP [9], ESC [14],
MOPS [5] and SLAM [1], which combines aspects of both
static analysis and model checking.

The static tool approach discussed in this paper is based
on compiler extensions (“checkers”) that are dynamically
linked into the compiler and applied flow-sensitively down a
control-flow graph representation of source code [11]. Exten-
sions can perform either intra- or inter-procedural analysis
at the discretion of the checker writer. In practice, this ap-
proach has been effective, finding hundreds to thousands of
errors in Linux, BSD, and various commercial systems.

While we make claims about “static analysis” in gen-
eral, this paper focuses on our own static analysis approach
(“metacompilation” or MC), since it is the one we have per-
sonal experience. The approach has several idiosyncratic
features compared to other static approaches that should
be kept in mind. In particular, these features generally re-
duce the work needed to find bugs as compared to other
static analysis techniques.

First, our approach is unsound. Code with errors can
pass silently through a checker. Our goal has been to find
the maximum number of bugs with the minimum number of
false positives. In particular, when checkers cannot deter-
mine a needed fact they do not emit a warning. In contrast,
a sound approach must conservatively emit error reports
whenever it cannot prove an error cannot occur. Thus,
unsoundness lets us check effectively properties that done
soundly would overwhelm the user with false positives.

Second, we use relatively shallow analysis as compared
to a simulation-based approach such as in PREfix [3]. ! Ex-
cept for a mild amount of path-sensitive analysis to prune
infeasible paths [16], we do not: model the heap, track most
variable values, or do sophisticated alias analysis. A heav-
ier reliance on simulation would increase the work of using
the tool, since these often require having to build accurate,
working models of the environment and of missing code.
In a sense simulation pushes static analysis closer to model
checking, and hence shares some of its weaknesses as well as
strengths.

Third, our approach tries to avoid the need for annota-
tions, in part by using statistical analysis to infer checkable
properties [12]. The need for annotations would dramati-
cally increase the effort necessary to use the tool.

3 Case study: FLASH

This section describes our experience checking FLASH cache
coherence protocol code using both static analysis and model
checking [20]. The FLASH multiprocessor implements cache
coherence in software. While this gives flexibility it places a
serious burden on the programmer. The code runs on each

1Our approach has found errors in code checked by PREfix for the
same properties, so the depth of checking is not entirely one-sided.

cache miss, so it must be egregiously optimized. At the same
time a single bug in the controller can deadlock or livelock
the entire machine.

We checked five FLASH protocols with static analysis
and four with model checking. Protocols ranged from 10K
to 18K lines and have long control flow paths. The aver-
age path was 73 to 183 lines of code, with a maximum of
roughly 400 lines. Intra-procedural paths that span 10-20
conditionals are not uncommon. For our purposes, this code
is representative of the low-level code used on a variety of
embedded systems: highly optimized, difficult to read, and
difficult to get correct. For the purpose of finding errors,
FLASH was a hard test: by the time we checked it had al-
ready undergone over five years of testing under simulation,
on a real machine, and one protocol had even been model
checked using a manually constructed model [25].

3.1 Checking FLASH with static analysis

While FLASH code was difficult to reason about, it had
the nice property that many of the rules it had to obey
mapped clearly to source code and thus were readily checked
with static analysis. The following rule is a representative
example. In the FLASH code, incoming message buffers
are read using the macro MISCBUS_READ DB. All reads must
be preceded by a call to the macro WAIT_FOR_DB_FULL to
synchronize the buffer contents. To increase parallelism,
WAIT_FOR_DB_FULL is only called along paths that require ac-
cess to the buffer contents, and it is called as late as possible
along these paths. This rule can be checked statically by
traversing all program paths until we either (1) hit a call
to WAIT_FOR_DB_FULL (at which point we stop following that
path) or (2) hit a call to MISCBUS_READ_DB (at which point we
emit an error). In general the static checkers roughly follow
a similar pattern: they match on specific source constructs
and use a extensible state machine framework to ensure that
the matched constructs occur (or do not occur) in specific
orders or contexts.

Table 1 gives a representative listing of the FLASH rules
we checked. Since the primary job of a FLASH node is to re-
ceive and respond to cache requests, most rules involve cor-
rect message handling. The most common errors were not
deallocating message buffers (9 errors) and mis-specifying
the length of a message (18 errors). The other rules were
not easier, but generally had less locations where they had
to be obeyed. There were 33 errors in total and 28 false
positives. We obtained these numbers three years ago. Us-
ing our current system would have reduced the false positive
rate, since most were due to simple infeasible paths that it
can eliminate. (The severity of the errors made the given
rate perfectly acceptable.)

3.2 Model checking FLASH

While static analysis worked well on code-visible rules, it
has difficulty with properties that were not visible in the
source code, but rather implied by it, such as invariants
over data structures or values produced by code operations.
For example, that the sharing list for a dirty cache line is
empty or that the count of sharing nodes equaled the number
of caches a line was in. On the other hand, these sort of
properties and FLASH structure in general are well-suited
to model checking.

Unfortunately, the known hard problem with using model
checking on real code is the need to write a specification (a
“model”) that describes what the software does. For ex-
ample, it took a graduate student several months to build

Rule

| LOC | Bugs | False

WAIT_FOR_DB_FULL must come before MISCBUS_READ_DB 12 4 1
The has_data parameter for message sends must match the 29 18 2

specified message length (be one of LEN_NODATA, LEN_WORD, or

LEN_CACHELINE).

Message buffers must be: allocated before use, deallocated after, 94 9 25
and not used after deallocation.

Message handlers can only send on pre-specified “lanes.” 220 2 0
Total 3556 | 33 | 28

Table 1: Representative FLASH rules the number of lines of code for a MC rule checker (LOC), the number of bugs the
checker found (Bugs) as well as the number of false positives (FP). We have elided other less useful checkers; in total, they

found one more bug at a cost of about 30 false positives.

hand-written, heavily-simplified model of a single FLASH
protocol [25]. Our model checking approach finessed this
problem by using static analysis to automatically extract
models from source code. We started the project after notic-
ing the close correspondence between a hand-written speci-
fication of FLASH [25]) with the implementation code itself.
FLASH code made heavy use of stylized macros and naming
conventions. These “latent specifications” [12] made it rel-
atively easy to pick out the code relevant to various impor-
tant operations (message sends, interactions with the I/O
subsystem, etc) and then automatically translate them to a
checkable model.

Model checking with our system involves the following
four steps. First, the user provides a metal extension that
when run by our extensible compiler marks specific source
constructs, such as all message buffer manipulations or sends.
These extensions are essentially abstraction functions. Sec-
ond, the system then automatically extracts a backward slice
of the marked code, as well as its dependencies. Third, the
system translates the sliced code to a Mury model. Fourth,
the Murp model checker checks the generated model along
with a hand-written environment model.

Table 2 lists a representative subset of the rules we checked
that static analysis would have had difficulty with. Surpris-
ingly, there were relatively few errors in these properties as
compared to the more shallow properties checked with static
analysis.

3.3 Myth: model checking will find more bugs

The general perception within the bug-finding community
is that since model checking is “deeper” than static analysis
then if you take the time to model check code, you will find
more errors. We have not found this to be true, either in this
case study or in the next one. For FLASH, static analysis
found roughly four times as many bugs as model checking,
despite the fact that we spent more time on the model check-
ing effort. Further, this differential was after we aggressively
tried to increase bug counts. We were highly motivated to
do so since we had already published a paper that found 34
bugs [6]; publishing a follow-on paper for a technique that
required more work and found fewer was worrisome. In the
end, only two of the eight bugs found with model checking
had been missed by static analysis. Both were counter over-
flows that were deeper in the sense that it required a deep
execution trace to find them. While they could potentially
have been found with static analysis, doing so would have
required a special-case checker.

The main underlying reason for the lower bug counts is

simple: model checking requires running code, static analy-
sis just requires you compile it. Model checking requires a
working model of the environment. Environments are often
messy and hard to specify. The formal model will simplify it.
There were five main simplifications that caused the model
checker to miss FLASH bugs found with static analysis:

1. We did not model cache line data, though we did model
the state that cache lines were in, and the actual mes-
sages that were sent. This omission both simplified
the model and shrank the state space. The main im-
plication in terms of finding errors was that there was
nothing in the model to ensure that the data buffers
used to send and receive cache lines were allocated,
deleted or synchronized correctly. As a result, model
checking missed 13 errors: all nine buffer allocation
errors and all four buffer race conditions.

2. We did not model the FLASH I/O subsystem, pri-
marily because it was so intricate. This caused the
model checker to miss some of the message-length er-
rors found by the static checker.

3. We did not model uncached reads or writes. The node
controllers support reads and writes that explicitly by-
pass the cache, going directly to memory. These were
used by rare paths in the operating system. Because
these paths were rare it appears that testing left a rel-
atively larger number of errors on them as compared
to more common paths. These errors were found with
static analysis but missed by the model checker be-
cause of this model simplification.

4. We did not model message “lanes.” To prevent dead-

lock, the real FLASH machine divides the network into
a number of virtual networks (“lanes”). Each different
message type has an associated lane it should use. For
simplicity, our model assumed no such restrictions. As
a result, we missed the two deadlock errors found with
static analysis.

5. FLASH code has many dual code paths — one used
to support simulation, the other used when running on
the actual FLASH hardware. Errors in the simulation
code were not detected since we only checked code that
would actually run on the hardware.

Taking a broader view, the main source of false negatives
is not incomplete models, but the need to create a model at
all. This cost must be paid for each new checked system and,
given finite resources, it can preclude checking new code or

Invariants

The RealPtrs counter does not overflow (RealPtrs maintains the number of sharers).
Only a single master copy of each cache line exists (basic coherence).

A node can never put itself on the sharing list (sharing list is only for remote nodes).
No outstanding requests on cache lines that are already in Exclusive state.

Nodes do not send network messages to themselves.

Nodes never overflow their network queues.

Nodes never overflow their software queues (queue used to suspend handlers).
The protocol never tries to invalidate an exclusive line.
Protocol can only put data into the processor’s cache in response to a request.

Table 2: Description of a representative subset of invariants checked in four FLASH protocols using model checking. Checking

these with static analysis would be difficult.

limit checking to just code or properties whose environment
can be specified with a minimum of fuss. A good example for
FLASH is that time limitations caused us to skip checking
the “sci” protocol, thereby missing five buffer management
errors (three serious, two minor) found with static analysis.

3.4 Summary

Static analysis works well at checking properties that clearly
map to source code constructs. Model checking can similarly
leverage this feature to automatically extract models from
source code.

As this case study shows, many abstract rules can be
checked by small, simple static checkers. Further, the ap-
proach was effective enough to find errors in code that was
(1) not written for verification and (2) had been heavily-
tested for over five years.

After using both approaches, static analysis had two im-
portant advantages over model checking. First, in sharp
contrast to the thorough, working code understanding de-
manded by model checking, static analysis allowed us to un-
derstand little of FLASH before we could check it, mainly
how to compile it and a few sentences describing rules. Sec-
ond, static analysis checks all paths in all code that you can
compile. Model checking only checks code you can run; and
of this code, only of paths you execute. This fact hurt its
bug counts in the next case study as well.

4 Case study: AODV

This section describes our experiences finding bugs in the
AODV routing protocol implementation using both model
checking and static analysis. We first describe CMC, the
custom model checker we built, give an overview of AODV,
and then compare the bugs found (and not found) by both
approaches.

4.1 CMC Overview

While automatically slicing out a model for FLASH was
far superior to hand constructing one, the approach had
two problems. First, it required that the user have a inti-
mate knowledge of the system, so that they could effectively
select and automatically mark stand-alone subparts of it.
Second, Muryp, like most modeling languages lacks many C
constructs such as pointers, dynamic allocation, and bit op-
erations. These omissions make general translation difficult.

‘We countered these problems by building CMC, a model
checker that checks programs written in C [24]. CMC was

motivated by the observation that there is no fundamen-
tal reason model checkers must use a weak input language.
As it executes the implementation code directly, it removes
the need to provide an abstract model, tremendously reduc-
ing the effort required to model check a system. As the
implementation captures all the behaviors of the system,
CMC is no longer restricted to behaviors that can be rep-
resented in conventional modeling languages. CMC is an
explicit state model checker that works more or less like
Muryp though it lacks many of Mury’s more advanced op-
timizations. As CMC checks a full implementation rather
than an abstraction of it, it must handle much larger states
and state spaces. It counters the state explosion problem
by using aggressive approximate reduction techniques such
as hashcompaction [27] and various heuristics [24] to slice
unnecessary detail from the state.

4.2 AODV Overview

AODV (Ad-hoc On-demand Distance Vector) protocol [8]
is a loop-free routing protocol for ad-hoc networks. It is
designed to handle mobile nodes and a “best effort” network
that can lose, duplicate and corrupt packets.

AODV guarantees that the network is always free of rout-
ing loops. If an error in the specification or implementation
causes a routing loop to appear in the network, the protocol
has no mechanism to detect or recover from them, allowing
the loop to persist forever, completely breaking the protocol.
Thus, it is crucial to comprehensively test both the AODV
protocol specification and any AODV implementation for
loop freeness as thoroughly as possible.

AODV is relatively easy to model check. Its environmen-
tal model is greatly simplified by the fact that the only input
it deals with are user requests for a route to a destination.
This can be easily modeled as a nondeterministic input that
is enabled in all states. Apart from this, an AODV node
responds to two events, a timer interrupt and a packet re-
ceived from other AODV nodes in the network. Both are
straightforward to model.

4.3 Model Checking AODV with CMC

We used CMC to check three publicly-available AODV im-
plementations: mad-hoc (Version 1.0) [22], Kernel AODV
(Version 1.5) [19], and AODV-UU (Version 0.5) [13]. While
it is not clear how well these implementations are tested,
they have been used in different testbeds and network simu-
lation environments [23]. On average, the implementations
contain 6000 lines of code.

Assertion Type

Examples

Generic

Segmentation violations, memory leaks, dangling pointers.

Routing Loop

The routing tables of all nodes do not form a routing loop.

At most one routing table entry per destination.
No route to self in the AODV-UU implementation.

Routing Table

The hop count of the route to self is 0, if present.

The hop count is either infinity or less than the number of nodes

in the network.

Message Field

All reserved fields are set to 0.

The hop count in the packet can not be infinity.

Table 3: Properties checked in AODV.

Protocol Checked | Correctness Environment State
Code Specification | network | stubs | Canonicalization
mad-hoc 3336 301 400 100 165
Kernel AODV 4508 301 400 266 179
AODV-UU 5286 332 400 128 185

Table 4: Lines of implementation code vs. CMC modeling code.

For each implementation, the model consists of a core
set of unmodified files. This model executes along with an
environment which consists of a network model and sim-
plified implementations (or “stubs”) for the implementation
functions not included in the model. Table 4 describes the
model and environment for these implementations. All three
models reuse the same network model.

As CMC was being developed during this case study, it
is difficult to gauge the time spent in building these models
as opposed to building the model checker itself. As a rough
estimation, it took us two weeks to build the first, mad-hoc
model. Building subsequent models was easier, and it took
us one more week to build both these models.

Table 3 describes the assertions CMC checked in the
AODYV implementations. CMC automatically checks cer-
tain generic assertions such as segmentation violations. Ad-
ditionally, the protocol model checks that routing tables are
loop free at all instants and that each generated message
and route inserted into the table obey various assertions.
Table 4 gives the lines of code required to add these correct-
ness properties.

CMC found a total of 42 errors. Of these, 35 are unique
errors in the implementations and one is an error in the
underlying AODV specification. Table 5 summarizes the
set of bugs found. The Kernel AODV implementation has 5
bugs (shown in parentheses in the table) that are instances
of the same bug in mad-hoc. The AODYV specification bug
causes a routing loop in all three implementations.

4.4 Static AODV checking: more paths + more code =
more bugs

We also did a cursory check of the AODV implementations
using a set of static analysis checkers that looked for generic
errors such as memory leaks and invalid pointer accesses.
The entire process of checking the three implementations
and analyzing the output for errors took two hours. Static
analysis found a total of 34 bugs.

Table 6 compares the bugs found by static analysis and
CMC. It classifies the bugs found into two broad classes
depending on the properties violated: generic and protocol

specific. For generic errors, our results matched those in the
FLASH case study: static analysis found many more bugs
than model checking. Except for one, static analysis found
all the bugs that CMC could find. As in our previous case
study (§3.3), the fundamental reason for this difference is
that static analysis can check all paths in all code that you
can compile. In contrast, model checking can only check
code triggered by the specific environment model. Of the
13 errors not found by CMC, 6 are in parts of the code
that are either not included in the model or cut out during
environment modeling. For instance, static analysis found
two cases of mishandled malloc failures in multicast routing
code. All our CMC models omitted this code.
Additionally, CMC missed errors because of subtle mis-
takes in its environment model. For example, the mad-hoc
implementation uses the send_datagram function to send a
packet and has a memory leak when the function fails. How-
ever, our environment erroneously modeled the send_datagram
as always succeeding. CMC thus missed this memory leak.
Such environmental errors caused CMC to miss 6 errors in
total. Static analysis found one more more error in dead
code that can never be executed by any CMC model.?

4.5 Where model checking won: more checks = more
bugs

In the class of protocol-specific errors, CMC found 21 errors
while static analysis found none. While this was partly be-
cause we did not check protocol-specific properties, many of
the errors would be difficult to find statically. We categorize
the errors that were found my model checking but missed by
static analysis into three classes and describe them below.
By executing code, a model checker can check for prop-
erties that are not easily visible to static inspection (and
thus static analysis). Many protocol specific properties fall
in this class. Properties such as deadlocks and routing loops
involve invariants of objects across multiple processes. De-
tecting such loops statically would require reasoning about

2Static analysis also found a null pointer violation in one of our
environment models! We do not count this error.

mad-hoc | Kernel AODV | AODV-UU

Mishandling malloc failures 4 6 2
Memory Leaks 5 3 0

Use after free 1 1 0
Invalid Routing Table Entry 0 0 1
Unexpected Message 2 0 0
Generating Invalid Packets 3 2 (2) 2
Program Assertion Failures 1 1 (1) 1
Routing Loops 2 3 (2 2 (1)
Total 18 16 (5) 8 (1)
LOC per bug 185 285 661

Table 5: Number of bugs of each type in the three implementations of AODV. The figures in parenthesis show the number of
bugs that are instances of the same bug in the mad-hoc implementation.

Bugs Found
CMC & MC | CMC alone | MC alone
Generic Mishandling malloc failures 11 1 8
Properties | Memory Leaks 8 - 5
Use after free 2 - -
Invalid Routing Table Entry - 1 -
Protocol Unexpected Message - 2 -
Specific Generating Invalid Packets - 7 -
Program Assertion Failures - 3 -
Routing Loops - 7 -
Total 21 21 13

Table 6: Comparing static analysis (MC) and CMC. Note that for the MC results we only ran a set of generic memory and
pointer checkers rather than writing AODV-specific checkers. Generating the MC results took about two hours, rather than

the weeks required for AODV.

the entire execution of the protocol, a difficult task. Also,
present static analyzers have difficulty analyzing properties
of heap objects. The error in Figure 1 is a good example.
This error requires reasoning about the length of a linked
list, similar to many heap invariants that static analyzers
have difficulty with. Here, the code attempts to allocate
rerrhdr msg.dst_cnt temporary message buffers. It cor-
rectly checks for malloc failure and breaks out of the loop.
However, it then calls rec_rerr which contains a loop that
assumes that rerrhdr msg.dst_cnt list entries were indeed
allocated. Since the list has fewer entries than expected, the
code will attempt to use a null pointer and get a segmenta-
tion fault.

A second advantage model checking has is that it checks
for actual errors, rather than having to reason about all the
different ways the error could be caused. If it catches a
particular error type it will do so no matter the cause of
the error. For example, a model checker such as CMC that
runs code directly will detect all null pointer dereferences,
deadlocks, or any operation that causes a runtime exception
since the code will crash or lock up. Importantly, it will
detect them without having to understand and anticipate
all the ways that these errors could arise. In contrast, static
analysis cannot do such end-to-end-checks, but must instead
look for specific ways of causing a given error. Errors caused
by actions that the checker does not know about or cannot
analyze will not be flagged. and so minimize false positives
by looking for errors only in specific analyzable contexts.

A good example is the error CMC found in the AODV
specification, shown in Figure 2. This error arises because

the specification elides a check on the sequence number of
a received packet. Here, the node receives a packet with a
stale route with an old sequence number. The code (and the
specification) erroneously updates the sequence number of
the current route without checking if the route in the packet
is valid. This results in a routing loop. Once the cause of the
routing loop is known, it is possible (and easy) to statically
ensure that all sequence number updates to the routing table
from any received packets involve a validity check. However,
there are only a few places where such specialized checks can
be applied, making it hard to recoup the cost of writing the
checker. Moreover, exhaustively enumerating all different
causes for a routing loop is not possible. On the other hand,
a model checker can check for actual errors without the need
for reasoning about their causes.

In a more general sense, model checking’s end-to-end
checks mean it can give guarantees much closer to total cor-
rectness than static analysis can. No one would be at all
surprised if code that passed all realistic static checks im-
mediately crashed when actually run. On the other hand,
given a good environment model and input sequences, it is
much more likely that model checked code actually works
when used. Because model checking can verify the code was
actually totally correct on the executions that it tested, then
if state reduction techniques allow these executions to cover
much of the initial portion of the search space, it will be
difficult for an implementation to efficiently get into new,
untested areas. At risk of being too optimistic this suggests
that even with a residual of bugs in the model checked im-
plementation it will be so hard to trigger them that they are

// aodv_deamon.c:aodv_recv_message
for(rerri=0; rerri<rerrhdr_msg.dst_cnt;rerri++) {

// Step 1: break with < dst_cnt elements in rerrhdr_msg list.

if (!(tp = malloc(...)))

break;
tp->next = rerrhdr_msg.unr_dst;
rerrhdr_msg.unr_dst = tp;

}

// Step 2: rec_rerr assumes dst_cnt elements in rerrhdr_msg

rec_rerr(&info_msg, &rerrhdr_msg);

int rec_rerr(struct info *tmp_info, struct rerrhdr *rh) {

// enqueue onto list.

// Step 3: iterates rh->dst_cnt times even if not that many elements
for(i = 0, t = rh->unr_dst; i < rh->dst_cnt; i++, tp = tp->next) {

// ERROR: tp can be null!
tmp_rtentry = getentry(tp->unr_dst_ip);

Figure 1: The one memory error missed by static analysis: requires reasoning about values, and is a good example of where

model checking can beat static analysis.

// madhoc:rerr.c:rec_rerr
// recv_rt: route we just received from network.

// cur_rt: current route entry for same IP address.

cur_rt = getentry(recv_rt->dst_ip);
if(cur_rt != NULL && ...) {

// Bug: updates sequence number without checking that

// received packet newer than route table entry!

cur_rt->dst_seq = recv_rt->dst_seq;

Figure 2: The AODV specification error. A common pattern: this bug could have been caught with static analysis, but there
were so few places to check that it would be difficult to recover the overhead of building checker.

effectively not there.

A final model checking advantage was that there were
true bugs that both methods would catch, but because they
“could not happen” would be labeled as false positives when
found with static analysis. In contrast, because model check-
ing produces an execution trace to the bug, they would be
correctly labeled. The best example was a case where an
AODYV node receives a “route response” packet in reply to
a “route request” message it has sent. The code first looked
up the route for the reply packet’s IP address and then used
this route table entry without checking for null. While a
route table lookup can return null in general, this particu-
lar lookup “cannot be null,” since a node only sends route
requests for valid route table entries. If this unchecked deref-
erence was flagged with static analysis it would be labeled a
false positive. However, if the node (1) sends this message,
(2) reboots, and (3) receives the response the entry can be
null. Because model checking gave the exact sequence of
unlikely events the error was relatively clear.

4.6 Summary

The high bit for AODV: model checking hit more proper-
ties, but static hit more code; when they checked the same
property static won. The latter was surprising since it im-
plies that most bugs were shallow, requiring little analysis,
perhaps because code difficult for the analysis to understand
is similarly hard for programmers to understand. As with
FLASH, the difference in time was significant: hours for
static versus weeks for model checking.

One view of the trade-off between the approaches is that
static analysis checks code well, but checks the implications

of code relatively poorly. On the other hand, model checking
checks implications relatively better, but because of its its
problems with abstraction and coverage, can be less effective
checking the actual code itself.

These results suggest that while model checking can get
good results on real systems code, in order to justify their
significant additional effort they must target properties not
checkable statically.

5 Case study: TCP

This section describes our efforts in model checking the Linux
TCP implementation. We decided to check TCP after the
relative success of AODYV since it was the hardest code we
could think of in terms of finding bugs. There were several
sources of difficulty. First, the version we checked (from
Linux 2.4.19) is roughly ten times larger than AODV code
(50K lines versus 6K). Second, it is mature, often frequently
audited code. Third, since almost all Linux sites constantly
use TCP, it is one of the the heaviest-tested pieces of open
source code around.

We had expected TCP would require only modest more
effort than AODV. As Section 5.1 describes below, this ex-
pectation was wildly naive. Further, as Section 5.2 shows,
it is a very different matter to get code to run at all and
getting it to run so that you can comprehensively test it.

5.1 The environment problem: lots of time, lots of false
positives

The system to be model checked is typically present in a
larger execution context. For instance, the Linux TCP im-

plementation is present in the Linux kernel, and closely in-
teracts with other kernel modules. Before model checking,
it is necessary to extract the relevant portions of the system
to be model checked and create an appropriate environment
that allows the extracted system to run stand alone. This
environment should contain stubs for all external functions
that the system depends on. With an implementation-level
model checker like CMC, this process is very similar to build-
ing a harness for unit testing. However, building a compre-
hensive environment model for a large and complex system
can be difficult. This difficulty is known to an extent in the
model checking literature, but is typically underplayed.

Extracting code amounts to deciding for each external
function that the system calls, whether the function should
be included in the checked code base, or to instead create
a stub for the function and include the stub in the envi-
ronment model. The advantages of including the function
in the checked code are (1) the model checker executes the
function and thus can potentially find errors in it (2) there
is no need to create the stub or to maintain the stub as the
code evolves. However, including an external function in
the system has two downsides: (1) this function can poten-
tially increase the state space and (2) it can call additional
functions for which stubs need to be provided.

Conventional wisdom dictates that one cut along the nar-
rowest possible interface. The idea is that this requires em-
ulating the fewest possible number of functions, while min-
imizing the state space. However, while on the surface this
makes sense, it was an utter failure for TCP. And, as we dis-
cuss below, we expect it to cause similar problems for any
complex system.

5.1.1 Failure: building a kernel library

Our first attempt to model check TCP did the obvious thing:
we cut out the TCP code proper along with a few tightly
coupled modules such as IP and then tried to make a “kernel
library” that emulated all the functions this code called.
Unfortunately, TCP’s comprehensive interaction with the
rest of the kernel meant that despite repeated attempts and
much agonizing we could only reduce this interface down to
150 functions, each of which we had to write a stub for.
We abandoned this effort after months of trying to get
the stubs to work correctly. We mainly failed because TCP,
like other large complex subsystems, has a large, complex,
messy interface its host system. Writing a harness that per-
fectly replicates the ezact semantics of this (often poorly
documented) interface is difficult. In practice these stubs
have a myriad of subtle corner-case mistakes. Since model
checkers are tuned to find inconsistencies in corner cases,
they will generate a steady stream of bugs, all false. To make
matters worse, these false positives tend to be much harder
to diagnose than those caused by static analysis. The latter
typically require seconds or, rarely, several minutes to diag-
nose. In contrast, TCP’s complexity meant that we could
spend days trying to determine if an error report was true
or false. One such example: an apparent TCP storage leak
of a socket structure was actually caused by an incorrect
stub implementation of the Linux timer model. The TCP
implementation uses a function mod_timer() to modify the
expiration time of a previously queued timer. This func-
tion’s return value depends on whether the timer is pending
when the function is called. Our initial stub always returned
the same value. This mistake confused the reference count-
ing mechanism of the socket structures in an obscure way,
causing a memory leak, which took a lot of manual exami-

nation to unravel.

It is conceivable that with more work we could have even-
tually replicated all 150 functions in the interface to perfec-
tion (at least until their semantics changed). However, we
did not seem to be reaching a fixed point — in fact, each
additional false positive seemed harder to diagnose. In the
end, it was easier to do the next approach.

5.1.2 Surprising success: run Linux in CMC

‘While it seems intuitive that one should cut across the small-
est interface point, it is also intuitive that one cut along
well-defined and documented interfaces. It turns out that
for TCP (and we expect for complex code in general) the
latter is a better bet. It greatly simplifies the environment
modeling. Additionally, it makes it less likely that these in-
terfaces will change in future revisions, allowing the same
environment model to be (re)used as the system implemen-
tation evolves. While the approach may force the model
checker to deal with larger states and state spaces, the ben-
efits of a clean environment model seem to outweigh the
potential disadvantage.

It turns out that for TCP there are only two very well-
defined interfaces: (1) the system call interface that defines
the interaction between user processes and the kernel and (2)
the “hardware abstraction layer” that defines the interaction
between the kernel and the architecture. Cutting the code
at this level means that we wind up pulling the entire kernel
into the model! While initially this sounded daunting, in
practice it turned out to not be that difficult to “port” the
kernel to CMC by providing a suitable hardware abstraction
layer. This ease was in part because we could reuse a lot of
work from the User Mode Linux (UML) [28]) project, which
had to solve many of the same problems in its aim to run a
working kernel as a user process.

In order to check the TCP implementation for protocol
compliance, we wrote a TCP reference model based on the
TCP RFC. CMC runs this alongside the implementation,
providing it with the same inputs as to the implementation,
and reports if their states are inconsistent as a protocol vi-
olation error.

5.2 The coverage problem: no execute, no bug

As with dynamic checking tools, model checking can only
find errors on executed code paths. In practice it is actually
quite difficult to exercise large amounts of code. This section
measures how comprehensively we could check TCP.

We used two metrics to measure coverage. The first is
line coverage of the implementation achieved during model
checking. While the crudeness of this measure means it may
not correspond to how well the system has been checked, it
does effectively detect the parts that have not been tested.
The second is “protocol coverage,” which corresponds to the
abstract protocol behaviors tested by the model checker. We
calculate protocol coverage as the line coverage achieved in
the TCP reference model mentioned above. This roughly
represents the degree to which the abstract protocol transi-
tions have been explored.

We used the two metrics to detect where we should make
model checking more comprehensive. Low coverage often
helped in pointing out errors in our environment model. Ta-
ble 7 gives the coverage achieved with each step in the model
refinement process. We measured coverage cumulatively us-
ing three search techniques: breadth-first, depth-first, and
random. In random search, each generated state is given a

Description Line Protocol Branching | Bugs
Coverage | Coverage Factor

Standard server and client | 47.4 % 64.7 % 2.91 2

+ simultaneous connect 51.0 % 66.7 % 3.67 0

+ partial close 52.7 % 79.5 % 3.89 2

+ message corruption 50.6 % 84.3 % 7.01 0

Combined Coverage [55.4 % [921 % | |

Table 7: Coverage achieved during model refinement. The branching factor is a measure of the state space size.

random priority. Table 7 also reports the branching factor
of the state space as a measure of its size — lower branching
factors are good, since they mean the state increases expo-
nentially less each step in. For the first three models the
branching factor is calculated from the number of states in
the queue at depth 10 during a breadth first search. For the
fourth model, CMC ran out of resources at depth 8, and the
branching factor is calculated at this depth.

The first model consists of a single TCP client commu-
nicating with a single TCP server. Once the connection is
established, the client and server exchange data in both di-
rections before closing the connection. This standard model
discovered two protocol compliance bugs in the TCP imple-
mentation. The second model adds multiple simultaneous
connections, which are initiated nondeterministically. The
third model lets either end of the connection nondetermin-
istically decide to close it during data transfer. This im-
proved coverage and resulted in the discovery of two more
errors. Finally, much of the remaining untested functional-
ity was code to handle bad packets, so we corrupted packets
by nondeterministically toggling selected key control flags in
the TCP packet. While these corrupted packets triggered a
lot of recovery code they also resulted in an enormous in-
crease in the state space. Tweaking the environment the
right way to achieve a more effective search still remains an
interesting but unsolved problem.

In the end we detected four errors in the Linux TCP
implementation. All are instances where the implementa-
tion fails to meet the TCP specification. These errors are
fairly complex and require an intricate sequence of events to
trigger the error.

6 Discussion

This section discusses some of the lessons we have learned
after using static analysis on many large, real systems.

Several features of bug finding analysis were unexpected.
First, when we started we thought (like many others) that
it would be difficult to find bugs in a large working system
and that detecting just a few would be a success. (In fact,
we thought it was likely we would have to use historical
data to demonstrate the approach rather than being able
to find bugs in a “live” system.) This view was a dramatic
overestimation of the work needed to find interesting bugs.
If code has to obey a checked property more than a couple
hundred times you will almost certainly find violations of it;
if not the analysis is almost certainly broken. In practice,
anytime we push a million lines of code through the checker
and it does not find anything we immediately assume there
is a bug in our system.

Second, the analysis needed to check a given property
is often easier to write than the code needed to articulate
how the property was violated. The latter requires tracking

each analysis step done to detect the error and searching for
the shortest number of such steps needed to cause the error.
Perhaps unsurprisingly, saying why something happened of-
ten takes more work than saying what happened.

Finally, the analysis needed to check properties in actual
code is often much simpler than one would need in the fully
general case. In part this seems to come the fact that code
dealing with the human-level properties we check (“lock()
must be followed by a call to unlock()”) cannot be arbi-
trarily complex but must be understood by a programmer.
Code hard for analysis to understand is often hard for people
to understand as well.

We look a several other issues in more detail below.

6.1 Ease-of-inspection really matters

A surprise for us from our static analysis work was just how
important ease-of-inspection is: in many cases a hard-to-
inspect error might as well have not been found since users
will simply ignore them (and, for good measure, may ig-
nore other errors on general principle). For example, the
commercial PREfix tool explicitly avoided finding race con-
ditions and deadlocks simply because the errors were too
difficult to inspect [26]. Our initial commercial efforts have
similarly scaled back on analysis sophistication to focus on
errors that were easy to reason about. Given two bugs, one
easy to examine and one hard, then in the absence of addi-
tional discriminatory information (severity, likelihood) the
first is better.

6.2 Myth: more analysis is always better

We, like many others in the field, initially believed that more
analysis was always better then less, whether it came in the
form of model checking, simulation, or deeper static analysis.
This view was simplistic: adding more analysis does not
always improve results and can even make them worse. The
ideal error is easy to diagnosis, is a true error, and is easy to
fix. Generally speaking, the more analysis required to find
an error the worse it is on all three of these metrics:

1. Typically, the more analysis used to find an error, the
harder the error is to reason about. During inspec-
tion, the user must mentally emulate each analysis step
(how aliases were determined, whether an interproce-
dural call path is feasible, etc) to determine how plau-
sible they are and how they can be countered. The
more steps the more work this emulation becomes.

2. As the number of analysis steps increases, so does the
chance that one of them went wrong. If there is no
analysis, then there can be no approximation mistakes.
The more analysis there is, the more widespread the
effects of a mistake.

3. Hard errors to find are often hard errors to fix.

As an example, our initial static checkers were almost syn-
tactic [11]. As a result, the errors they found were almost
certainly errors and were trivial to inspect. As we added
more interprocedural support and simple aliasing errors be-
came more difficult to inspect. In fact, we often deliber-
ately reverted to much weaker analysis to find errors than
our system supports, simply because specializing to these
error classes cherry picks easy-to-diagnose bugs. The most
common case is that we often design checkers explicitly to
use intraprocedural analysis despite the fact that our sys-
tem supports transparent interprocedural analysis: Local
bugs are much easier to diagnose than interprocedural ones.
Even if we do use strong analysis, we almost always rank er-
ror reports based on the number of analysis steps required.
For example, bugs involving aliasing or spanning procedure
calls are demoted below those that do not.

6.3 Myth: all bugs matter

We initially thought that all bugs matter and all bugs will be
fixed. This is not true. If you find a small number of bugs,
people will fix them all. If you find thousands, they will
not. We have observed this both with open source projects
and with commercial systems — many of the bugs we have
detected are still open. Prior to our work, the PREfix group
observed a similar dynamic: giving someone a stack of 1,000
defects is an effective way to elicit a blank stare and then
the question “that’s great, but which ones matter?”

Its not enough to find a lot of bugs. As tools become
more effective, this will become more obvious. What users
really want is to find the 5-10 bugs that “really matter” —
e.g., the ones that will hurt a large number of customers,
absorb the bulk of debugging time, etc. A general, not-
unreasonable belief is that bugs will follow a 90-10 distribu-
tion. Thus, out of 1000 errors, 100 will account for most of
the pain and 900 will be a waste of resources to fix. In fact,
fixing these 900 errors may worsen system quality by in-
troducing additional errors or draining resources from other
efforts (testing, code reviews). Unfortunately, while current
tools can easily segregate errors into different types that can
be inspected by priority (security holes before storage leaks
before null pointer dereferences) they lack effective meth-
ods for identifying the “most important” errors. Identifying
these would be a good area of future research.

7 Conclusion

This paper has described trade-offs between both static anal-
ysis and model checking, as well as some of the surprises we
encountered while applying model checking to large software
systems. Neither static analysis nor model checking are at
the stage where one dominates the other. Model checking
gets more properties, but static analysis hit more code; when
they checked the same property static analysis won.

The main advantages static analysis has over model check-
ing: (1) gets all paths in all code that can compile, rather
than just executed paths in code you can run, (2) only re-
quires a shallow understanding of code, (3) applies in hours
rather than weeks, (4) easily checks millions of lines of code,
rather than tens of thousands, (5) can find thousands of er-
rors rather than tens. The first question you ask with static
analysis is “how big is the code?” Nicely, bigger is actually
better, since it lets you amortize the fixed cost of setting
up checking. Model checking’s first question is “what does
the code do?” This is both because many program classes

cannot be model checked and because doing so requires an
intimate understanding of the code. Finally, given enough
code we are surprised when static analysis gets no results,
but less surprised if model checking does not (or if the at-
tempt abandoned). Most of these are direct implications of
the fact that model checking runs code and static analysis
does not.

We believe static analysis will generally win in terms of
finding as many bugs as possible. In this sense it is bet-
ter, since less bugs gets users closer to the desired goal of
the absence of bugs (“total correctness”). However, model
checking has advantages that seem hard for static analysis
to match: (1) it can check the implications of code, rather
than just surface-visible properties, (2) it can do end-to-end
checks (the routing table has no loops) rather than having
to anticipate and craft checks for all ways that an error type
can arise, (3) it gives much stronger correctness results —
we would be surprised if code crashed after being model
checked, whereas we are not surprised at all if it crashes
after being statically checked.

A significant model checking drawback is the need to
create a working, correct environment model. We had not
realized just how difficult this would be for large code bases.
In all cases it added weeks to months of effort compared to
static analysis. Also, practicality forced omissions in model
behavior, both deliberate and accidental. In both FLASH
and AODV, unmodeled code (such as omitting the I/O sys-
tem or multicast support) led to many false negatives. Fi-
nally, because the model must perfectly replicate real be-
havior, we had to fight with many (often quite-tricky-to-
diagnose) false positives during development. In TCP this
problem eventually forced us to resort to running the entire
Linux kernel inside our model checker rather than creating
a set of fake stubs to emulate TCP’s interface to it. This
was not anticipated.

All three model checking case studies reinforced the fol-
lowing four lessons:

1. No model is as good as the implementation itself. Any
modification, translation, approximation done is a po-
tential for producing false positives, danger of checking
far less system behaviors, and of course missing critical
errors.

2. Any manual work required in the model checking pro-
cess becomes immensely difficult as the scale of the sys-
tem increases. In order to scale, model checker should
require as little user input, annotations and guidance
as possible.

3. If an unit-test framework is not available, then define
the system boundary only along well-known, public
interfaces.

4. Try to cover as much as possible: the more code you
trigger, the more bugs you find, and more useful model
checking is.

8 Acknowledgments

This paper recounts research done with others. In particu-
lar, we thank David Lie and Andy Chou for their discussions
of lessons learned model checking the FLASH code (of which
they did the bulk of the work) and David Park for his sig-
nificant help developing CMC and model-checking TCP. We
especially thank David Dill for his valuable discussions over
the years. We thank Willem Visser for thoughtful comments
on a previous version of this paper.

This research was supported in part by DARPA contract

MDA904-98-C-A933, by GSRC/MARCO Grant No:SA3276JB,

and by a grant from the Stanford Networking Research Cen-
ter. Dawson Engler is partially supported by an NSF Career
Award.

References

[1]

[2

—

[3]

[4

[l

[5]

[7]

(8]

[11]

[12]

Thomas Ball, Rupak Majumdar, Todd Millstein, and
Sriram K. Rajamani. Automatic predicate abstraction
of C programs. In Proceedings of the SIGPLAN 01
Conference on Programming Language Design and I'm-
plementation, 2001.

G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In IEEE International Conference
on Automated Software Engineering (ASE), 2000.

W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static an-
alyzer for finding dynamic programming errors. Soft-
ware: Practice and Ezperience, 30(7):775-802, 2000.

Sathish Chandra, Patrice Godefroid, and Christopher
Palm. Software model checking in practice: An indus-
trial case study. In Proceedings of International Con-
ference on Software Engineering (ICSE), 2002.

Hao Chen and David Wagner. MOPS: an infrastructure
for examining security properties of software. In Pro-
ceedings of the 9th ACM conference on Computer and
communications security, pages 235 — 244. ACM Press,
2002.

A. Chou, B. Chelf, D.R. Engler, and M. Heinrich. Us-
ing meta-level compilation to check FLASH protocol
code. In Ninth International Conference on Architec-
ture Support for Programming Languages and Operating
Systems, November 2000.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S.
Pasareanu, Robby, and H. Zheng. Bandera: Extract-
ing finite-state models from Java source code. In ICSE
2000, 2000.

C.Perkins, E. Royer, and S. Das. Ad Hoc On
Demand Distance Vector (AODV) Routing. IETF
Draft, http://www.ietf.org/internet-drafts/draft-ietf-
manet-aodv-10.txt, January 2002.

Manuvir Das, Sorin Lerner, and Mark Seigle. Esp:
Path-sensitive program verification in polynomial time.
In Conference on Programming Language Design and
Implementation, 2002.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and
C. Han Yang. Protocol verification as a hardware design
aid. In IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pages 522—
525, 1992.

D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of Operating Sys-
tems Design and Implementation (OSDI), September
2000.

D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to infer-
ring errors in systems code. In Proceedings of the Figh-
teenth ACM Symposium on Operating Systems Princi-
ples, 2001.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

(23]

[24]

25]

[26]

27]

Erik Nordstrom et al. AODV-UU Implementation.
http://user.it.uu.se/ henrikl/aodv/.

C. Flanagan, M. R. K. Leino, M. Lillibridge, C. Nelson,
J. Saxe, and R. Stata. Extended static checking for
Java. In 2002 Conference on Programming Language
Design and Implementation, pages 234-245, June 2002.

P. Godefroid. Model Checking for Programming Lan-
guages using VeriSoft. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages,
1997.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static anal-
yses. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2002.

G. Holzmann and M. Smith. Software model check-
ing: Extracting verification models from source code.
In Invited Paper. Proc. PSTV/FORTE99 Publ. Kluwer,
1999.

Gerard J. Holzmann. The model checker SPIN. Soft-
ware Engineering, 23(5):279-295, 1997.

Luke Klein-Berndt and et.al. Kernel AODV Implemen-
tation. http://w3.antd.nist.gov/wctg/aodv_kernel/.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hen-
nessy. The Stanford FLASH multiprocessor. In Pro-
ceedings of the 21st International Symposium on Com-
puter Architecture, April 1994.

D. Lie, A. Chou, D. Engler, and D. Dill. A simple
method for extracting models from protocol code. In
Proceedings of the 28th Annual International Sympo-
sium on Computer Architecture, July 2001.

F. Lilieblad and et.al. Mad-hoc AODV Implementation.
http://mad-hoc.flyinglinux.net/.

H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom,
and C. Tschudin. A large-scale testbed for reproducible
ad hoc protocol evaluations. In IEEE Wireless Com-
munications and Networking Conference, March 2002.

Madanlal Musuvathi, David Park, Andy Chou, Daw-
son R. Engler, and David L. Dill. CMC: A Pragmatic
Approach to Model Checking Real Code. In Proceedings
of the Fifth Symposium on Operating Systems Design
and Implementation, December 2002.

S. Park and D.L. Dill. Verification of FLASH cache
coherence protocol by aggregation of distributed trans-
actions. In Proceedings of the 8th ACM Symposium on
Parallel Algorithsm and Architectures, pages 288—296,
June 1996.

J. Pincus. Personal communication. PREfix did not tar-
get data races because of the user-interface complexities
in reporting and diagnosis., March 2003.

U. Stern and D. L. Dill A New Scheme for
Memory-Efficient Probabilistic Verification. In IFIP
TC6/WG@G6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification,
Testing, and Verification, 1996.

[28] The User-mode Linux Kernel. http://user-mode-
linux.sourceforge.net /.

