How to Write System-specific, Static Checkers in Metal

Benjamin Chelf, Dawson Engler, and Seth Hallem
Stanford University

1. INTRODUCTION

This paper gives an overview of the metal language, which
we have designed to make it easy to construct system-
specific, static analyses. We call these analyses ertensions
because they act as the input to a generic analysis engine
that runs the static analysis over a given source base. We
also interchangeably refer to them as checkers because they
check that a user-specified property holds in the source base
and report any violations of that property. Note that check-
ers may not detect all violations of a specified property.
Their goal is to find as many violations as possible with
a minimum of false positives.

We describe seven checkers in total; most are less than 50
lines of code, but, in aggregate, find hundreds of errors in
a typical large system. In addition to language details, we
give a feel for how to build good checkers: exploiting high-
level knowledge, ranking errors, suppressing false positives.
Further, we show how to write checkers that extract rules
to check from the source code itself without the assistance
of the programmer.

The common thread among these analyses is that they
all exploit the fact that many abstract program restrictions
map clearly to source code actions [5]. While metal exten-
sions are executed much like a traditional dataflow analysis,
they can easily be augmented in ways outside the scope of
traditional approaches, such as using statistical analysis to
discover rules [6].

To check a rule, an extension does two things: (1) recog-
nizes interesting source code actions relevant to a given rule
and (2) checks that these actions satisfy some rule-specific
constraints. We refer to the former as the alphabet of the ex-
tension because it defines a “language” that is the interface
between the extension and the code that it is analyzing. The
latter is most often a finite state machine that defines the
legal and illegal sequences in the alphabet. Because metal
does allow flexibility in several stylized ways, extensions are
not limited to finite-state properties although the majority
of the properties we check are temporal safety properties.

Metal extensions are executed by the analysis engine, zgcc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PASTE ' 02, November 18-19, 2002, Charleston, SC, USA.

Copyright 2002 ACM 1-58113-479=7/02/0011 ...$5.00.

zgce can execute both interprocedural and intraprocedural
analyses. All analyses are flow-sensitive and, in the inter-
procedural case, context-sensitive. The algorithm we use to
execute metal extensions shares many properties with the
standard dataflow analysis techniques in the literature [1,
12], although our techniques do diverge in many ways that
we describe in detail in [10].

2. METAL CRASH COURSE

This section illustrates the main features of metal using
three example checkers. We discuss the main features of
all metal extensions, then we discuss two simple checkers
in detail. We finish by revisiting some of the components
in the extension, and by taking a look at a more complex
extension.

All extensions have two main parts: the language of dis-
course and the state machine (SM). The language of dis-
course defines the interesting features in the code. This
language is defined using metal patterns, which are either
templates written in the source language or calls to boolean-
valued C functions that identify the interesting constructs.
The SM part of the extension follows one of two templates:
track program-wide properties or track object-specific prop-
erties. We call extensions that follow the former tem-
plate global state machines, and those that follow the latter
variable-specific state machines. (The term variable-specific
is something of a misnomer because these extensions can
track arbitrary expressions in addition to variables.)

2.1 Global Checkers: Linux Interrupts

A global extension tracks transitions in a single state ma-
chine that corresponds to a program-wide property such as
“interrupts are disabled.” A global extension defines the
SM as a list of states, each of which guards a list of tran-
sitions that can potentially execute when the SM is in the
guarding state. The first state in this list of states is implic-
itly defined as the initial state of the SM. Each transition is
specified with a pattern, an optional destination state, and
an optional C code action. The pattern identifies a source
construct that, when encountered in the source base, will
cause the transition to execute. The destination state pro-
vides a new state for the SM; if it is omitted, the SM state
remains the same after the transition executes. The action
is an arbitrary block of C code that most often will either
execute a state transition or print a message.

Figure 1 shows a simplified global checker for Linux that
warns when disabled interrupts are not restored. A call
to cli() disables interrupts; a call to sti() enables them.

.module macros.m

sm cli_sti {
enabled:
{ cli(); } ==> disabled
| { sti(); } ==> stop,
{ err("Double sti"); }

disabled:
{ sti(); } ==> enabled
| { c1i(Q); } ==> stop,
{ err("Double cli"); }
| end_of_path ==>
{ err("Did not reverse"); }

Figure 1: Interprocedural interrupt checker: uses a
global SM to track whether disabled interrupts are
re-enabled.

int err(void) {

if (random())

sti(); // goes to enabled state

T
int err_caller() {

cli(); // goes to disabled state

err(); // returns in two states

// { enabled, disabled }

} // end-of-path: ERROR:Did not reverse

int ok(void) {
cli(); // goes to disabled state

}

int ok_caller() {
ok(); // returns in disabled state
sti(); // goes to enabled state

T // end of path: success

Figure 2: Example code and transitions for inter-
rupt checker.

These two functions are the alphabet of the extension. Con-
ceptually, the extension finds violations by checking that
each call to disable interrupts has a matching enable call on
all outgoing paths. As refinements, the extension warns of
duplicate calls to these functions or non-sequitur calls (e.g.,
re-enabling without disabling). Section 2.5 describes a more
sophisticated version.

The extension tracks the interrupt status using two states,
enabled (the initial state) and disabled. The first state
has two transitions. The first, actionless, transition triggers
when a call to c1i() is identified in the source code. It
changes the SM state to disabled. The second transition
triggers on a call to sti(), prints an error message, and
transitions to the special stop state thereby stopping the
analysis of the current path through the program. If no
pattern matches, the SM remains in the same state and
continues down the current code path. The three transition
rules for the disabled state are similar. The one novelty is
the pattern end_of_path, which triggers a transition when
a program path ends.

Metal extensions are applied depth-first to the control flow
graph (CFG) for a function, which is computed from the
abstract syntax tree (AST). Applying an extension depth-
first means that it is applied to each program point down a

single path through the CFG. Each program point is a single
node in the AST. After analyzing a single path through the
CFG, we backtrack to the last branch point, reset the state
of the state machine to the state at that branch point, and
resume the analysis at a different successor from that point.
When the analysis encounters a function call, it retrieves
the CFG for the callee and begins analyzing the callee. The
analysis does not return to the caller until all paths through
the callee are analyzed (see [10]).

The analysis uses a fixed-point computation to determine
when to stop traversing loops in the CFG. The details of
this computation are described in [10]. The practical im-
plication of this fixed point computation is that as long as
the state machine is deterministic, the extension will ana-
lyze each program point in every possible state reachable at
that program point.!

In the case of the interrupt checker, the analysis engine
transparently propagates the current global interrupt state
across procedure calls, and propagates any state changes
back to the caller. The extension will find one error in Fig-
ure 2. It will traverse the two (trivial) call trees: the first
starting with the entry function err_caller, reports an er-
ror; the second, starting with the entry function ok_caller,
passes the check.

2.2 Variable-Specific Checkers: Null Pointers

A variable-specific extension is comprised of a series of
state machines, each of which tracks the state attached to
a single program object. “Program object” is broadly de-
fined to include any expression that has an associated state,
including structure fields, arithmetic expressions, pointer
dereferences, etc. Typical examples of variable-specific prop-
erties include “freed pointers should not be used” and “null
pointers should not be dereferenced.”

A variable-specific extension is logically separated into
two parts: creation transitions and state transitions. The
creation transitions tell the analysis when to begin track-
ing a new object and are guarded by the identifier “start.”
They are active throughout the analysis, although a cre-
ation transition is suppressed if we are already tracking a
state machine associated with the created variable. The
state transitions describe the state machine that each pro-
gram object must follow. They are guarded by bound states.

Figure 3 shows a simple variable-specific extension (the
null checker) that flags when a pointer returned from the
Linux memory allocator, kmalloc, is used without being
checked against NULL. The extension will find one error in
Figure 4.

Each variable-specific extension defines a single typed
identifier that is used to refer to the program object that
a single SM is tracking. In the null checker, the identifier v
is used to refer to the tracked object. The keyword state
in the declaration of v on line 2 indicates that v will re-
fer to the tracked object. The states in a variable-specific
state machine are bound to the identifier that refers to the
tracked object. For example, in the null checker, the states
are unknown, stop, and null, each of which is bound to the
identifier v using the syntax v.unknown, v.stop, and v.null
respectively.

When a variable is in the unknown state, it means that the
value of that variable is the result of a call to the allocation

!There are some subtleties due to recursion that make this
statement false under the conditions described in [10].

1 : sm null_checker local {

2 state killvars decl any_pointer v;
3 decl any_expr X,y;

4 :

5 : // Various uses.

6 : pat use = { *(any *)v }

7 : |l { memset(v, x, y) }

8 : I[N {v+x3

9 : IM{v-x1%

10: H

11: start: { v = kmalloc(x,y) } ==> v.unknown
12: ;

13: v.unknown:

14: { (v == NULL) } ==> true=v.null, false=v.stop

15: | { (v !'= NULL) } ==> true=v.stop, false=v.null

16: ;

17: v.null, v.unknown: use ==> v.stop,

18: { v_err("NULL", v, "Using \"$name\" illegally!"); }
19: ;

20: }

Figure 3: Null Checker: interprocedurally tracks
whether pointers returned by the Linux allocator
are then used without being checked against NULL.

routine kmalloc, and we do not know if that call returned
NULL or not. If the tracked variable is in the null state,
it means that we know that the value of that variable is
NULL along the current path. Finally, if the variable is in
the stop state, it means that we know the value is definitely
not NULL along the current path and we can stop tracking
that variable.

The null checker’s alphabet includes three types of code
constructs: allocations, comparisons, and uses. Allocations
are identified in the null checker with the pattern “{v =
kmalloc(x,y)}.” The transition on line 11 specifies that
whenever a pointer variable “v” is assigned the result of
a call to “kmalloc”, a new state machine should be cre-
ated to track the returned result. In addition, the identifier
“v.unknown” on the right side of the “==>”" operator indi-
cates that this tracked object should begin in the unknown
state. Note that the identifier v is declared on line 2 with
the type any_pointer. This means that the pattern will
match any calls to kmalloc where the return value is cap-
tured, regardless of the base type of the pointer variable that
captures that returned value.

kmalloc accepts two additional arguments, one specifying
the size of the allocation, and the other specifying whether
the allocation can block or not (i.e., are page faults allowed).
Since kmalloc can return NULL regardless of the size of the
allocation or whether or not the call can block, we would
like to match calls to kmalloc with any arbitrary expressions
as its arguments. The two identifiers x and y declared on
line 3 provide exactly this functionality. They are declared
with the type any_expr, which means that when they appear
in a pattern, they are effectively acting as a placeholder
for an arbitrary expression. We call these placeholders hole
variables, which we discuss in more detail in Section 2.3.

The comparison patterns identify cases where the vari-
able is checked against NULL, and they use a path-specific
transition to indicate a different state change depending on
the result of the comparison. For example, if the source
code checks equality of the tracked variable and NULL, the
pattern “{v == NULL}” will identify this comparison, thus
causing the transition on line 14 to execute. The transition

1 : struct foo { int *p; };

2

3 : // p->p and g->p are in unknown state.

4 : void contrived(struct foo *p, struct foo *q) {
5 : if(q->p) // Null check: gq->p goes to stop.
6 : *q=>p; // OK.

7 else

8 : *q->p; // ERROR: g->p is null

9 1 xp->p; // ERROR: p->p is unknown

10: }

11:

12: void contrived_caller(int x, struct foo *p, struct foo *q) {
13: // Put "p->p" in unknown state.

14: p->p = kmalloc(sizeof #*p->p,GFP_KERNEL);

15: if(x) {

16: p = q; // Kill p, thus kills "p->p".

17: *p->p; // No error

18: } else {

19: // Put "gq->p" in uknown state.

20: q->p = kmalloc(sizeof *p->p,GFP_KERNEL);
21: contrived(p, q);

22: }

23: }

Figure 4: Contrived null checker example code. Be-
cause the zgcc system does flow and context sensi-
tive interprocedural analysis the null checker from
Figure 3 will flag errors on lines 8 and 9.

specifies that on the true path from the comparison, the SM
should transition to the null state, while on the false path,
the SM should transition to the stop state.

Finally, the use patterns indicate illegal uses of NULL point-
ers. These include calls to memset, pointer dereferences, and
arithmetic operations on pointers. Although this last op-
eration is not technically incorrect, the result is probably
not what the programmer intended. Note that much like
kmalloc, memset takes two additional arguments whose par-
ticular values are irrelevant to the transition. Thus, we again
use the placeholders x and y to indicate that any arbitrary
expression can appear in those slots in the pattern. The
transition on lines 17 and 18 specifies that if a pointer that
is either known to be NULL or whose value is the unchecked
result of a call to the allocator is used in an illegal way,
an error message should be printed. The error message is
specified in an action that calls the error reporting function
v_err with a name for the extension as the first argument,
the AST for the tracked variable as the second argument,
and a format for the message as the third argument. The
name of the tracked variable is substituted for the directive
“$name.”

The qualifier killvars that appears in the declaration of
v on line 2 indicates that if the value of the tracked variable
is updated so that we can no longer rely on the state of the
SM to accurately reflect that value, we should stop track-
ing that variable. Note that this computation is a syntac-
tic approximation; it does not include redefinitions through
aliases.

2.3 Patterns: the Alphabet of an Extension

Metal patterns provide a simple way for extensions to
identify source actions that are relevant to a particular rule.
Patterns are written in an extended version of the source
language (C) and can specify almost arbitrary language con-
structs such as declarations, expressions, and statements.
Patterns are easy to use because they syntactically mirror

Matches

any expression of that type

any legal expression

any scalar value (int, float, etc.)
any pointer of any type

any argument list

any function call

Hole Type

Any C type
any_expr
any_scalar
any_pointer
any_arguments
any_fn_call

Table 1: Hole types and their meanings.

the source constructs that they are intended to match.

A base pattern in metal is a bracketed code fragment writ-
ten in our augmented version of C. Base patterns can be
composed with the logical connectives && and | |. The sim-
plest base patterns in metal syntactically match the code
that the extension wishes to recognize. Because we match
ASTs, spaces and other lexical artifacts do not interfere
with matching. For example, the base pattern {rand()}
will match all calls to the rand function.

A simple pattern could not, for example, match all pointer
dereferences because each dereference refers to a different
pointer. The pattern on line 6 in the null checker matches all
dereferences with a metal hole variable. Any metal variable
declared with the keyword decl is a hole variable. Hole
variables let patterns contain positions where any source
construct of the appropriate type will match.

Hole variables in metal must be typed. If a hole variable is
assigned a C type, the hole can be “filled” by any expression
of that type. If we want to match all pointer dereferences,
though, we cannot assign v any single C type. Metal intro-
duces new meta types that broaden holes to an entire class
of related types. The hole variable v is declared with the
meta type any_pointer, which matches pointers to storage
of any type. Table 1 lists the hole types and their meanings.

If the same hole variable appears multiple times in a pat-
tern, each appearance must contain equivalent ASTs. For
example, the pattern {foo(x,x)} matches calls of the form
f00(0,0) and foo(alil,alil), but not foo(0,1).

A hole variable used within an action (as opposed to a pat-
tern) refers to the AST node that matches the hole. Thus,
the use of v on line 18 in the null checker refers to the AST
for the tracked variable.

Callouts let programmers extend the matching language
to express unanticipated or linguistically awkward features
by writing boolean expressions in C code that determine
whether a match occurs. Callouts are identified syntactically
by appending the prefix $ to a base pattern.

The degenerate callouts, ${0} and ${1}, match nothing
and everything respectively. Callouts are most often used as
a conjunct that refines a more general pattern. For example,

{ fn(args) } && ${ mc_is_call_to(fn, "gets") }
refines a pattern that matches all function calls to one that
only matches calls to gets. The variable fn is a hole variable
of type any_fn_call, and the variable args is a hole with
type any_arguments. This pattern could have been written
as literal C code as well.

Used alone, callout functions can only refer to the current
program point, mc_stmt, and any global state either within
the extension or within zgcc. Used as a conjunct or dis-
junct with other patterns, the callout can refer to the ASTs
matching the hole variables used in these patterns as ar-
guments (see fn in the example above). zgcc provides an
extensive library of functions useful as callouts.

Legal patterns can specify any C expression or statement
(including loops, conditionals, or switch statements) with
two restrictions. First, all identifiers in the pattern must be
either hole variables defined in the extension or legal names
in the scope of the code base being checked. Second, the
C constructs used in the pattern must compile in isolation.
Example illegal patterns include a single case arm without
any enclosing switch statement; an isolated break; etc. All
of these constructs can be matched with a callout.

2.4 Metal Transitions

At each program point encountered during the analysis,
the extension iterates over all transitions that are guarded
by the current SM state and executes the first transition
that applies. A transition applies when its pattern matches
at the current program point, and when there are no other
transitions that subsume that transition.

One transition is subsumed by another if there is another
transition that matches at an ancestor of the current pro-
gram point in the AST. For example, suppose an extension
includes the pattern “{v},” where v is a hole variable that
matches any expression. Instead of matching at every ex-
pression in the program, the extension will only match top-
level expressions. For example, in the assignment statement
x = y + z, the extension will only match once at the ex-
pression corresponding to the entire assignment rather than
matching at the expressions y, z, y + z, and x. Since not
all extensions want the subsumption feature, it is enabled
with the qualifier subsume placed after the SM declaration
(on the line with the keyword sm, after the extension name).

Transitions can include C code actions that execute when-
ever the transition executes. Actions are one way that an
extension can extend the basic SM abstraction. C code ac-
tions allow the extension to perform arbitrary computations
whenever a transition executes. The main types of actions
that we have found useful are those that perform error re-
porting and those that enhance the analysis machinery. In
the null checker, we saw an action that reports an error. The
remaining examples in this paper illustrate some additional
uses for these actions.

2.5 The Rest of Metal : An Interrupt Checker

While the interprocedural interrupt checker is simple, an
intraprocedural one can be much faster, both during analysis
and during error inspection. Local errors often take seconds
to inspect, whereas interprocedural errors can take minutes
of exhausting reasoning. What we commonly do is craft a
local checker to find as many errors as possible. If more
depth is required, an interprocedural checker is used.

The checker in Figure 5 is an intraprocedural interrupt
checker that illustrates many of the remaining metal fea-
tures. It detects interrupt handling mistakes by finding vi-
olations of the following two properties:

1. Consistency: If one path first disables (enables) inter-
rupts, no other path first enables (disables) them. For
example, in the function err2 in Figure 6, the true
branch from the if statement first disables then en-
ables interrupts, while the false branch first enables,
then disables interrupts. The checker will, thus, flag
an error in this function.

The checker tracks this property by maintaining two
counters that track the number of paths that start by

// Mark paths containing non-returning function as dead.
sm kill_paths local {

decl any_fn_call call;

decl any_args args;

start: { call(args) } ==
{
char *n = mc_identifier(call);
if (mc_fn_is_noreturn(call))
mc_set_path_kill(call);
else if(n && (!strcmp(n, "panic") || !strcmp(n, "BUG")))
mc_set_path_kill(call);
};
T

.module macros.m // Include useful macros.

// Extension data and code: accessible from SM
// pattern matching callouts and actions.
sm_header { static int enables, disables; }

sm cli_sti_consistent local {
decl any_expr flags;

// Run at beginning of each function.
init { enables = disables = 0; };

// Run at the end of each function.
final {
if (!mc_nerrors() && enables != 0 && disables != Q)
err("CLI_STI: enable %d to disable %d",
enables, disables);

};

// Pattern to match the various ways to
// disable interrupts.

pat disable =

cli(); ¥

__global_cli(); }
local_irq_disable(); }
local_bh_disable(); }

N

I
I
I
// ... to enable interrupts.

pat enable =

stiQ); }

__global_sti(); }
local_irqg_enable(); }
local_bh_enable(); }
restore_flags(flags); }
__restore_flags(flags); }

N e N

start:
disable ==> disabled, { disables++; }
| enable ==> enabled, { enables++; }

disabled:
enable ==> start,
{ note("CLI_STI: reversed disable [SUCCESS]"); }
| disable ==> stop,
{ err("CLI_STI: double disable [FAIL]"); }
enabled:
disable ==> start,
{ note("CLI_STI: reversed enable [SUCCESS]"); }
| enable ==> stop,
{ err("CLI_STI: double enable [FAIL]"); }

disabled, enabled: end_of_path ==
{ err("CLI_STI: did not reverse [FAIL]"); }

Figure 5: Checker that determines if interrupts are
enabled and disabled consistently and idempotently.

int enable_disable_ok(int x) {

cli();
if(x !'= 0)
sti(); // reversed disable [SUCCESS]
else if(x > 0)
sti(); // reversed disable [SUCCESS]
else
// No error: kill paths prunes path.
panic("impossible value");

int erri(int x) {

}

cli();
if(x)

sti(); // reversed disable [SUCCESS]
else

return -1; // did not reverse [FAIL]

// ERROR:CLI_STI: enable 1 to disable 1
int err2(int x) {

}

if(x) {

cliQ);

sti(); // reversed disable [SUCCESS]
} else {

sti();

cli(); // reversed enable [SUCCESS]
}

int err3(int x) {

}

if(x) {

cli(); // did not reverse [FAIL]
} else {

sti(Q);

cli(); // reversed enable [SUCCESS]
}

int err4(void) {

}

cli(); // did not reverse [FAIL]

Figure 6: Example code with an assortment of dis-
able and enable errors.

disabling or enabling interrupts respectively. After an-
alyzing a function, at most one of these counters should
be non-zero.

2. Idempotence: when the function exits, interrupts are
at the same level as they were when it began executing.
The function err1 in Figure 6 shows a violation of this
property. At the exit from this function, interrupts are
either disabled or enabled depending on which path is
executed. Assuming interrupts are initially enabled
(otherwise we have a double disable error), the exit
state is not the same as the entry state along all paths.
The functions err3 and err4 also violate this property.

The checker tracks idempotency by checking that any
path that disables interrupts subsequently re-enables
them or, conversely, if it enables them that it subse-
quently disables them. As part of this tracking it also
flags redundant enable or disable operations.

Interrupt handling mistakes crash machines. Thus, code
tends to manipulate interrupts in stylized, simplistic pat-
terns. While overly conservative, this checker fits the most
common idioms. This example, like many others, illustrates
how checkers benefit from vetting human level operations:
code that is easy for humans to understand tends to be easy
for checkers to check.

The checker illustrates several syntactic features of metal:

1. local: Tells zgcc to run the extension intraprocedu-
rally.

2. pat: The checker uses two metal pattern variables,
each of which names a collection of patterns: disable
represents the patterns that identify ways of disabling
interrupts; enable represents the patterns that iden-
tify ways of enabling interrupts.

3. init { ... }; : The code in the init block is run
at the beginning of each function. The checker uses it
to initialize its counting variables before the analysis
starts.

4. final { ... }; : The codein the final block is run
at the end of each function. The extension uses it to
check if at most one of its two counts are non-zero and
gives an error message otherwise.

5. sm_header { ... } : Extensions can place arbitrary
code and data in the header section, which can be ac-
cessed by the extension’s callouts and actions. In the
interrupt checker, the actions in the two transitions
guarded by the start state increment the counters
used to track the consistency property.

6. .module: This command imports another extension
into the current one. This extension imports the file
macros.m, which defines the macros err and note in
an sm_header block.

Composition: Extensions can be composed. They are
run in the order they are given in the extension file. An
extension can use the results of previous extensions in its
own analysis. A common pattern is for an extension to use
zgcc's internal interface to annotate the ASTs with arbitrary
data values. Subsequent extensions can retrieve and use
these values.

The kill_paths extension defined above the interrupt ex-
tension uses the composition feature to tell zgcc which paths
are dead because of calls to functions that cannot return.
The extension matches all function calls and, if they are
annotated with the GCC attribute “no-return” or are calls
to panic or BUG (both reboot the machine), marks them
using the zgcc function mc_set_path kill. If zgcc encoun-
ters a marked call while executing the interrupt checker, it
will stop traversing the current path so that no errors are
reported along paths that pass through one of these calls.

Statistical ranking: Checkers can give false positives.
They may be overly conservative, use approximate analysis,
or check a rule that does not apply in some contexts. We
use statistical analysis to counter these false reports.

We rank errors from most to least probable by counting
the number of times a given check was successful versus
how many times it was not. The interrupt checker shows
a very crude method. First, it emits a “SUCCESS” message
whenever the checker goes back to a clean interrupt state
and a “FAIL” message when either a redundant operation
occurs, or the idempotency property is violated. Second,
a post-processing script counts the number of SUCCESS and
FAIL messages for each function, and the errors in functions
with many successes and few failures are ranked above those
with many failures. In Figure 6, this method ranks the errors
in err2 first (two successes, no failures), then erri and err3
(one success, one failure) and finally err4 (one failure).

The underlying observation is that the most reliable er-
ror reports are based on analysis decisions that (1) lead to
few violations of a property and (2) lead to many successful
checks of that property.

3. CONSISTENCY CHECKING

We often do not know the actual state of the system at
a given point in the analysis. However, in some instances,
we can use the source code to determine what the program-
mer believes the system state to be and perform consistency
checks on these beliefs. The following code illustrates some
of the types of beliefs that we can infer:

// action some possible beliefs
Z = *p; // p '= null
2: free(p); // p is heap allocated
// p will not be used

1

z

w

[ary

3: unlock(1l); // 1 was locked.
4: w=x/2z; // 1= 0
// w, x, z not guarded by 1

Assuming the programmer does not want their code to
crash, we can infer from line 1 that the programmer believes
that p is not null. Similarly, from line 2 we infer the belief
that p is a valid, heap-allocated pointer and will not be used
subsequently. Line 3 demonstrates a belief that 1 was locked
prior to that statement. In line 4, the programmer clearly
believes that z is not 0 as it is used in the denominator of
a division. Also, more subtly, we may infer that accesses to
the variables w, x, and z do not need to be guarded by the
lock 1 since it is unlocked prior to the use of these variables.

A code action generally implies its pre- and post-
conditions as beliefs. We call the beliefs shown above MUST
beliefs, since we know that the programmer must have them.
The key feature of belief checking is that it requires no a pri-
ori knowledge of truth. If two beliefs contradict, we know
that one is an error without knowing what the correct belief
is. To illustrate, consider the following code snippet.

1: z = *p;
2: if (p == NULL)

Line 1 demonstrates a belief that p is not null. However, in
line 2, the programmer believes that p could be null since
she checks its value. Although we do not know at this point
which belief is correct, we do know that one of them must
be incorrect. Either the dereference on line 1 may crash the
system or the check on line 2 is redundant.

This section shows a simple example of belief checking
for null pointers. The next section describes how to reason
about MAY beliefs, which are inferred beliefs that the pro-
grammer may hold, but the evidence from which we inferred
the belief may also be coincidental.

The null consistency checker warns if a programmer deref-
erences a pointer that she must believe is NULL. The checker
infers beliefs from two code actions:

1. A dereference of a pointer, p, implies a belief that p is
not null.

2. A pointer checked against NULL implies a belief that p
is null on one path from the branch and non-null on the
other path (which path implies which belief depends
on whether the comparison is == or !=).

: .module macros.m
: .module kill-paths.m

: sm internal_null_checker subsume {
state killvars decl any_pointer v;
decl any_pointer vi;

// null comparisions
: pat null_comp =
10: { ((v = v1) == NULL) }

WO ~NO U WN -

11: Il { (v == NULL) }

12: ;

13: // non-null comparisions

14: pat not_null_comp =

15: { ((v = v1) != NULL) }

16: Il { (v !'= NULL) }

17: H

18:

19: // Only track pointers directly involved in a
20: // comparision rather than all pointers.

21: start, v.null:

22: not_null_comp && ${ !mc_in_macro(v) } ==>
23: true = v.stop, false = v.null

24: | null_comp && ${ !mc_in_macro(v) } ==>

25: true = v.null, false = v.stop

26: H

27: v.null: { *(any*)v } ==> v.stop,

28: { v_err("NULL", v, "Using \"$name\" illegally!"); }
29: ;

30: }

Figure T: Null Consistency Checker: inter-
procedurally tracks whether pointers checked
against null are used.

As discussed above, if the inferred beliefs contradict, we
know that there is an error in the source. Figure 7 shows
the checker’s implementation. For example, the transition
on line 24 transitions the tracked object to the null state
on the “true” path from an equality comparison, v==NULL,
and prints an error message if it subsequently encounters a
dereference along that path. This checker could also look for
pointers that are dereferenced and then compared to NULL,
but the example omits this case for brevity.

One important feature of this checker is that we ignore
comparisons to NULL that appear inside of macro expan-
sions. Macros may perform a comparison that is irrelevant
to the context in which the macro is invoked. Thus, com-
parisons to NULL within a macro should not be viewed as a
programmer’s belief at the program point where the macro
is used. Often, beliefs must be prevented from violating ab-
straction boundaries. In this case, we draw the abstraction
line by using the callout “mc_in_macro(v),” which returns
true if the use of v is inside of a macro.

4. STATISTICAL INFERENCE

In both the null checker from Figure 3 and the interrupt
checker from Figure 5, the extensions’ alphabets were hard-
wired into the source of the extension. In the former, point-
ers returned by “kmalloc” were specified as the pointers the
analysis should track. In the latter, various interrupt en-
abling and disabling calls, such as “c1li” and “sti”, were
specified as interesting source actions. This section demon-
strates how to automatically infer properties to check from
the source code itself rather than requiring it to be hard-
wired into extension.

Such inference eliminates a significant bottleneck to check-

ing large systems. Knowing what to check usually deter-
mines how many errors you can find. Manually extracting
rules from a morass of missing or incorrect documentation
is mindnumbingly tedious. Even when the rules are known,
rule inference acts as a safety net to catch missed checkable
rules. (E.g., pointers from Linux’s vmalloc can also be null.)

The quickest way to see how to use statistical inference is
by example. How can we infer which functions can return
null pointers? Count the number of times the programmer
compares the result against NULL versus the number of times
the programmer uses the result without any comparison.
The higher the ratio of checks to uses-without-checks, the
more likely the function must be checked. How do we deter-
mine if two functions a() and b() must be paired? Count
the number of times a appears with b versus the number of
times each function appears alone. Functions that must be
paired will have a high ratio of paired calls to unpaired calls.

The core idea behind the approach is that to determine
whether a rule applies or not, we assume that it does and
then count the number of times the code we are analyzing
follows the rule (successes) versus the number of times the
code does not (failures). The larger the skew in evidence,
the more likely that the rule is a valid one.

The main question to answer is how to weigh the evidence.
For example, if a() is paired with b() 9 times out of 10, how
much more or less convincing is that evidence than if it was
paired 90 times out of 1007 A simple ratio of successes to
failures does not work well because it ignores the sample
size — a 9 to 10 ratio would be considered the same as a 90
to 100 even though the latter is subjectively much stronger
evidence.

We use the ideas of “hypothesis testing [9]” to weigh the
evidence. We can view these questions as “binary trials:”
independent events that have exactly one of two discrete
outcomes. Such trials occur in many settings — the success
or failure of administering a drug or whether a coin came up
heads or tails. To weigh such evidence, we can use the bino-
mial formula, which computes the probability that an event
had k successes out of n attempts given that the probability

of success is p:
(Z) xp*(1—p)"*

Intuitively, we expect that for a large number of trials,
the ratio k/n should approach p and, if it does not, that
this is strong evidence that the true probability is not p.
Conversely, for a small number of trials, it is not surprising
if k/n is far from p. (A degenerate example is a single toss
of a fair coin: the frequency of heads will be 0 or 1, while the
expected ratio is .5). The expected range of the divergence
can be quantified using the standard deviation, which for
the binomial formula is given by ¢ = 1/p x (1 — p)/n. The
standard deviation goes to zero as m increases to infinity
(we expect k/n to converge to p given an infinite number of
trials).

The following measurement computes how many standard
deviations away the observed ratio of success to failures is
from the expected ratio for the given number of trials:

z=(k/n—p)//px (1—=p)/n

As the number of standard deviations increases, the im-

sm null_checker_stat local {
state killvars decl any_pointer v;
decl any_fn_call call;
decl any_args args;
decl any_expr x, ¥y;

// Put any pointer returned by a function in
// unknown state and record function name in
// data field.
start:
{ v = call(args) } ==> v.unknown,
{ mc_v_set_data(v, mc_identifier(call)); 1}
v.unknown:
{ (v == NULL) } || { (v != NULL) } ==> v.stop,
{ v_note("NULL_STAT", v,
"Checking ptr [SUCCESS=$datal"); }
| { *(any *)v } || { memset(v, x, y) } ==> v.stop,
{ v_err("NULL_STAT", v,
"Using \"$name\" illegally! [FAIL=$datal"); 1}

Figure 8: Statistical checker to infer if a function
can return a null pointer.

probability of the event does as well. This normalized mea-
surement allows us to rank different sample sizes with differ-
ent ratios from most to least probable. We do so by counting
the number of successes and failures for a given trial, and
ranking the failures (the errors) using the computed z value
above. We call this process z-ranking.

The remaining question is what value to use for p. Since
we assume programmers are usually right, we set p > .8
depending on how harshly we want to penalize mistakes.
For example, a value of .8 corresponds to one mistake out of
five attempts. Error rates equal to this will have a z value
of zero; error rates better than it will have a positive value
(they are a positive number of standard deviations from p);
and error rates worse will have a negative value.

4.1 Inferring Routines that Return NULL

Figure 8 shows a statistical checker that infers which func-
tions can return null. It closely resembles the null checker
from Figure 3. The two main differences are:

1. The statistical checker tracks pointers returned by
any routine rather than just pointers returned from
kmalloc. The name of the function assigned
to the pointer is extracted using the zgcc rou-
tine mc_identifier(call) and then stored in the
“data” part of the SM state for v using the routine
“mc_v_set_data.” The data part of the SM state is
one of the ways in which metal allows the user to ex-
tend the state space in arbitrary, potentially infinite
ways. The data value is treated as an opaque handle,
and is concatenated with the named SM states (e.g.,
null, unknown, stop) to form the actual SM state.

2. The checker emits a FAIL message when a pointer in
the unknown state is used. It emits a SUCCESS message
when a pointer in the ok (checked) state is used. The
$data part of the output message will be replaced with
the data part of v’s state (i.e., the function name).

The statistical analysis requires the following steps:

void v_contrived(int #*p, int *q) {
q = malloc(sizeof *q);
// Checking ptr [SUCCESS=malloc]
if(!q)
return;
p = malloc(sizeof *p);
// Using "p" illegally! [FAIL=malloc]
memset(p, 0, sizeof *p);

p = foo();
*p; // Using "p" illegally! [FAIL=foo]
q = foo();
*q; // Using "q" illegally! [FAIL=foo]

Figure 9: Example code for the null stat checker.
The error message for malloc will be ranked above
the two for foo, since malloc has one success and one
failure, while foo has no successes and two failures.

1. Run the extension over the code.

2. Count the number of SUCCESS and FAIL messages for
each checked function and use these counts to compute
a z value for the function.

3. Sort the error messages (i.e., those with FAIL) by the
z-rank of the corresponding function.

4. The programmer inspects the errors starting from the
top of the list and continuing down until the false pos-
itive rate is too high.

If the success and failure messages are emitted in a standard
form, we provide a generic script that will do steps 2 and 3
for a wide range of statistical analyses.

To make the process more concrete, consider the code in
Figure 9. There are four calls to functions that return a
pointer: two for malloc and two for foo. The returned
pointer of malloc is checked once before use (a success) and
used once without checking (a failure). Both calls to foo
use the return pointer without checks (two failures). Thus,
the z-rank for the single malloc error message will be:

1/2—.8/+/8%(1—.8)/2 = —1.06

And the z value for the two error messages for foo will be

0/2 — .8/\/8*(1— 8)/2=-283

Thus, the error for malloc will be ranked above the errors
for foo. (Note that in general the counts and skew are much
higher.)

4.2 Inferring Deallocation Routines

This section describes how to statistically infer functions
that free their arguments. We first show a deterministic
checker that warns when a pointer passed to the deallocation
function kfree is later used. We then show a statistical
checker that infers such functions.

Figure 10 shows the deterministic free checker. It works
as follows:

1. When a variable is passed to kfree, it is put in the
freed state and a new SM is created to track that
variable (line 23).

2. The only legal operations on freed pointers are (1)
comparisons to other pointers, and (2) printing their

1 : sm_header {

2 : // does fn contain "print" or "debug"?
3: static int is_debug_call(mc_tree fn) {
4 . char *n;

5 : if(!(n = mc_identifier(fn)))

6 : return 0;

7 : return strstr(n, "print") != 0

8 : |l strstr(n, "debug") != 0;

9 : ¥

10: }

11: sm free_checker local subsume {

12: state killvars decl any_pointer v;
13: decl any_pointer x;

14: decl any_fn_call call;

15:

16: pat safe_uses =

17: // don’t warn about comparisions.

18: {G=x)}I {(v!=x)37

19: // or calls to debugging functions that

20: // have v as any argument.

21: Il ({ call(-1, v) } && ${ is_debug_call(call) })
22: ;

23: start: { kfree(v) } ==> v.freed

24 ;

25: v.freed:

26: safe_uses ==> { /* do nothing */ }

27: // warn about all other uses.

28: | { v} ==>v.stop,

29: { v_err("FREE", v, "Using freed ’$name’!"); }
30: ;

31: }

Figure 10: Deterministic checker to detect when a
freed variable is used.

value in debugging code. The patterns on lines 18
and 21 identify these two cases. Note that the call-
out to is_debug_call is used to refine a pattern that
matches any function call with the tracked object as
an argument to one that only matches debugging rou-
tines (identified by the strings “print” and “debug”).
The transition on line 26 identifies safe uses of a freed
pointer and does the identity transition in the SM.

3. All other uses of the freed pointer are flagged as errors
by the transition on lines 28-30.

The need for the transition identifying safe pointer uses is
rather subtle. There are two ways to write this extension.
One way identifies all possible illegal uses of freed pointers
explicitly. Since the only truly illegal use of a freed pointer is
a dereference, this checker seems easy to write at first cut.
Without a perfect alias analysis, though, this checker will
miss many errors when pointers are assigned into arrays or
complex data structures.

Instead of identifying illegal uses of freed pointers, the
extension in Figure 10 flags all uses of a freed pointer as
illegal ezcept comparisons and debugging printouts. The
subsumption feature in metal makes this extension easy to
write. The transition on lines 28-30 flags an error on all
uses of the freed pointer, but the transition on line 26 will
subsume that transition if the use is actually legal.

While this checker works well in practice, systems often
have many different deallocation functions, ranging from
general-purpose routines to wrappers around these routines
to a variety of ad hoc routines that manage their own free
lists. We want to automatically detect such functions.

In general, a pointer passed to a valid free function will

not be used afterwards. We can thus infer if a function frees
its argument using the same template as we used in the
statistical null checker. We show the code for the statistical
free checker in Figure 11. The extension works as follows:

1. Blindly assume that every function frees all of its
pointer arguments.

2. Count the total number of function-argument pairs (n
in the formula for the z-statistic). We can think of
this number as the size of the population from which
we are sampling,.

3. Each time a function argument is used in a way that
would be unsafe for a freed pointer, emit a failure mes-
sage that indicates which population the failure be-
longs to. The number of such error messages (err)
equals n — k in the formula for the z-statistic.

4. Rank the errors for each pair using the z value com-
puted based on n and k = n — err. This ranking puts
the errors from the most likely pairs to the top of the
list.

For simplicity, the pattern on line 22 in the statistical free
checker only considers functions that take a single pointer
argument as input. The pattern on line 29 also limits the
number of populations we consider by only considering func-
tions with a suggestive name. The callout to is_free refines
the pattern on line 22 to identify these calls.

The population size for a given function (n in the z-
formula) is the number of callsites. The transition on lines
22-26 records the name of the function in the data field, and
emits a message at each callsite. The tag POP=name in the
error message tells the post-processing script that the mes-
sage is associated with function “name.” The script counts
the number of POP and FAIL messages for each function and
ranks its error messages (i.e., those with FAIL in them) based
on the z value computed from these counts. These failures
are the most likely dereferences of deallocated pointers.

The similarity between the deterministic and statistical
null and free checkers is not coincidental. Almost all deter-
ministic checkers have a useful statistical analogue that can
find more code actions to check.

Statistical analysis can be used to compute many other
properties: which locks protect which variables, what are
the bounds of an array, etc. It can also be used to learn
general regular expressions from source code traces.

Surprisingly, statistical analysis is useful even for known
checks. Using the methods described, the errors reported by
a checker can be ranked from most probable to least proba-
ble. We have noticed that the most probable error reports
are those that come from checkers that (1) flagged few errors
in total and (2) had many successful checks. Clearly, this is
analogous to the properties of likely rules described above.
By using a similar form of z-ranking, we can rank error mes-
sages based on their likelihood of being actual errors. This
ranking works well in practice. It has transformed check-
ers with unusably high false positive rates into effective bug
finders.

5. RELATED WORK

There are several other projects that are similar in spirit
to metal and zgce, although, in most cases, the underlying

1 : sm_header {

2 : // does fn contain suggestive name?
3: static int is_free(mc_tree fn) {
4 . char *n;

5 : if(!(n = mc_identifier(fn)))
6 : return 0;

7 : return strstr(n, "free") != 0
8 : || strstr(n, "Free") != 0
9 : || strstr(n, "Dealloc") != 0

10: || strstr(n, "dealloc") != 0;
11: }

12: }

13: sm stat_free_checker local subsume {
14: state killvars decl any_pointer v;
15: decl any_pointer x;

16: decl any_fn_call call;

17:

18: pat safe_uses =

19: {G=x)}II {!'=x)17

20: Il ({ call(-1, v) } && ${ is_debug_call(call) })
21: ;

22: start: { call(v) } && ${ is_free(call) } ==> v.freed,
23: { mc_v_set_data(v, mc_identifier(call));

24: v_note("STAT_FREE", v,

25: "freeing $name [POP=$datal"); }

26: ;

27: v.freed:

28: safe_uses ==> { /* do nothing */ }

29: | { v} ==> v.stop,

30: { v_err("STAT_FREE", v,

31: "Using freed ’$name’! [FAIL=$datal"); 1}
32: ;

33: }

Figure 11: Statistical checker to infer free functions.

goals and technologies are different. The PREfix project,
described in [3], has the most similar goals to our own al-
though the underlying technology is very different. Several
projects aim to verify temporal safety properties [4, 2, 11].
These projects hope to find all violations of a given property,
whereas we make no such guarantees. Several other projects
check similar properties using language annotations [7, 8].
We view these approaches as complementary to our own.
Annotations can be useful to analysis, but programmers do
not reliably annotate their code. None of these projects offer
the same flexibility in the rule description as metal does, but
most of them do provide stronger guarantees for the results
of the analysis. A more complete discussion of related work
can be found in [10].

6. CONCLUSION

This paper provides an overview on how to write system-
specific, static checkers in the metal language. Metal al-
lows extension writers to concisely express a broad range of
checking properties. Its key features are: (1) patterns to
match interesting code constructs, (2) callouts, which can
refine pattern results, (3) states, which provide a sugared
way to express restrictions and (4) actions, which augment
the state machine with general-purpose code. States can be
either global (essentially bound to the current code path) or
bound to a given expression. Extensions can be run using ei-
ther a context-sensitive interprocedural analysis or intrapro-
cedurally. Both inter- and intraprocedural analysis are flow
sensitive. Extensions can be composed and can communi-
cate using annotations.

We described how to make checkers more powerful by

cross-checking program beliefs and by using statistical anal-
ysis to automatically find what to check. Both techniques
allow checkers to detect errors without having to know truth.

7. ACKNOWLEDGEMENTS

We thank Junfeng Yang and Ken Ashcraft for their helpful
comments. This work was supported by NFS award 0086160
and by DARPA contract MDA904-98-C-A933.

8. REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

[2] T. Ball and S.K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001
Workshop on Model Checking of Software, May 2001.

[3] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software: Practice and Ezperience, 30(7):775-802,
2000.

[4] Manuvir Das, Sorin Lerner, and Mark Seigle.
Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, Berlin, Germany, June 2002.

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of Operating Systems Design and
Implementation (OSDI), September 2000.

[6] D. Engler, D. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: A general
approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles, 2001.

[7] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, and
J. Saxe. Extended static check for java. In Proceedings
of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation,
pages 246257, 2002.

[8] J.S. Foster, T. Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, June 2002.

[9] D. Freedman, R. Pisani, and R. Purves. Statistics.
W.W. Norton, third edition edition, 1998.

[10] Seth Hallem, Benjamin Chelf, Yichen Xie, and
Dawson Engler. A system and language for building
system-specific, static analyses. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 69-82,
2002.

[11] T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy
abstraction. In Proceedings of the 29th Annual
Symposium on Principles of Programming Languages,
January 2002.

[12] Thomas Reps, Susan Horowitz, and Mooly Sagiv.
Precise interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22th Annual
Symposium on Principles of Programming Languages,
pages 49-61, 1995.

