We found bugs with static analysis and model
checking and this is what we learned.

Dawson Engler and Madanlan Musuvathi
Based on work with
Andy Chou, David {Lie, Park, Dill}
Stanford University

What's this all about

A general goal of humanity: automatically find bugs
Success: lots of bugs, lots of code checked.
Two promising approaches
Static analysis
Model checking
We used static analysis heavily for a few years & model
checking for several projects over two years.
General perception:
Static analysis: easy to apply but shallow bugs
Model checking: harder, but strictly better once done

Reality is a bit more subtle.
This talk is about that.

What's the data

Case 1: FLASH cache coherence protocol code
Checked w/ static analysis [ASPLOS'00]
Then w/ model checking [ISCA'01]
Surprise: static analysis found 4x more bugs.

Case 2: AODV loop free, ad-hoc routing protocol
Checked w/ model checking [OSDI'02]
Took 3+ weeks: found ~ 1 bug / 300 lines of code
Checked w/ static (2 hours): more bugs when overlap

Case 3: Linux TCP
Model checking: 6 months, 4 “ok” bugs.

Surprise: So hard to rip TCP out of Linux that it was
easier to jam Linux into model checker

Crude definitions.
“Static analysis” = our approach [DSL'97,0SDI'00]

Flow-sensitive,

inter-procedural, | | compiler
extensible analysis _.|.> extension 'I'*bugs
Goal: max bugs, e

min false pos
Not sound. No annotations.

Works well: 1000s of bugs in Linux, BSD, company code
Expect similar tradeoffs to PREfix, SLAM(?), ESP(?)
“Model checker” = explicit state space model checker
Use Murphi for FLASH, then home-grown for rest.

Probably underestimate work factor

Limited domain: applying model checking to implementation
code.

Some caveats

Main bias:
Static analysis guy that happens to do model checking.
Some things that surprise me will be obvious to you.

The talk is not a jeremiad against model checking!
We want model checking to succeed.
We're going to write a bunch more papers on it.
Life has just not always been exactly as expected.

Of course
This is just a bunch of personal case studies
tarted up with engineers induction
to look like general principles. (1,2,3=QED)
While coefficients may change, general trends should hold

The Talk

An introduction
Case I: FLASH

Case IT: AODV
Case IIT: TCP
Lessons & religion
A summary

Case Study: FLASH

ccNUMA with cache coherence protocols in software.
Has to be extremely fast
BUT: 1 bug deadlocks/livelocks entire machine
Heavily tested for 5 years.
Low-level with long code paths (73-183LOC ave)

~ Interconnection Nework
f I I

CPUO CPU1 CPU 2

Finding FLASH bugs with static analysis

Gross code with many ad hoc correctness rules
But: they have a clear mapping to source code.
Easy to check with compiler.
Example:
WAIT_FOR_DB_FULL must precede MISCBUS_READ_DB

A modicum of detail
start

wait_for_db_ill) “nisc_bus_read db()

smwait_for_db {
decl any_expr addr; @
start:
{ WAIT_FOR DB_FULL(addr); } ==> stop
| { M SCBUS_READ_DB(addr); } ==>

{ err(“Buffer read not synchronized");

}

Handler: i
if(..) LGN C compiler_
A R H p— g
WAIT_FOR_DB_FULL() buf race chkr 1 v:/egd msg
MISCBUS_READ_DB(): synchl
Nice: scales, precise, statically found 34 bugs
FLASH results [ASPLOS'00]
Rule Loc Bugs False
wait_for_db_full before read 12 4 1
has_length parameter for msg 29 18 2
sends must match specified
message length
Message buffers must be 94 9 25

allocated before use,
deallocated after,
not used after dealloc

Messages can only be sent 220 2 0
on pre-specified lanes

Total 355 33 28

Some experiences

Good:
Don't have to understand FLASH to find bugs this way
Checkers small, simple

Doesn't need much help: FLASH not designed for
verification, still found bugs

Not weak: code tested for 5 years, still found bugs.

Bad:
Bug finding is symmetric
We miss many deeper properties...

Finding FLASH bugs with model checking

Want to check deeper properties:
Nodes never overflow their network queues
Sharing list empty for dirty lines
Nodes do not send messages to themselves
Perfect application for model checking
Hard to test: bugs depend on intricate series of low-
probability events
Self -contained system that generates its own events
The (known) problem: writing model is hard
Someone did it for one FLASH protocol. Several months
effort. No bugs. Inert.
But there is a nice trick...

A striking similarity
Murphi model FLASH

Rule "Pl Local Get (Put)"

voi d Pl Local Get (void) {
1: Cache. State = Invalid

/Il ... Boilerplate setup

& ! Cache. Wit 2 if (!'hl.Pending) {
2: & ! DH. Pending 3 if ('hl.Dirty) {
3: &! DHDirty ==> 4! /1 ASSERT(hl . Local);

Begin -

4: Assert !DH Local ; 6 Pl _SEND(F_DATA, F_FREE, F_SWAP,
5. DH Local := true; F_NOMIT, F_DEC 1);
6. CC_Put(Home, Menory); 5 hi.Local = 1; h
EndRul e;

Use correspondence to auto-extract model from code
Use extension to mark features you care about
System does a backwards slice & translates to Murphi

A simple user-written marker

smlen slicer {
decl any_expr type, data, keep, swp, wait, nl;

all:

/1 match all uses of length field

{ nh.len}

/1 match all uses of directory entries

{ hl.Local } || { hl.Dirty } || { hl.List }

/1 match all network and processor sends

|| { NI_SENDX(type, data, keep, swp, wait, nl); }

|| { PI_SENXtype, data, keep, swp, wait, nl); }
= { ngk_tag(nc_stnt); }

The extraction process

ranslatof

Reduce manual effort:
Check at all.
Check more things
Important: more automatic = more fidelity

Reversed extraction: mapped manual spec back to code
Four serious model errors.

Model checking results [ISCA'01]

Protocol Errors Protocol Extracted Manual Metal
(Loc) (Loc) (LOC) (LOC)

Dynptr(*) 6 12K 1100 1000 99
Bitvector 2 8k 700 1000 100
RAC 0 10K 1500 1200 119
Coma 0 15K 2800 1400 159

Extraction a win.

Two deep errors.

Dynptr checked manually.

But: 6 bugs found with static analysis...

Myth: model checking will find more bugs

Not quite: 4x fewer
And was after trying to pump up model checking bugs...
Two laws: No check, no bug. No run, no bug.
Our tragedy: the environment problem.
Hard. Messy. Tedious. So omit parts. And omit bugs.
FLASH:
No cache line data, so didn't check data buffer handling,
missing all alloc errors (9) and buffer races (4)
No I/O subsystem (hairy): missed all errors in I/0 sends
No uncached reads/writes: uncommon paths, many bugs.
No lanes: so missed all deadlock bugs (2)
Create model at all takes time, so skipped “sci” (5 bugs)

The Talk
An introduction
Case I: FLASH

Static: exploit fact that rules map to source code
constructs. Checks all code paths, in all code.

Model checking: exploit same fact to auto-extract model
from code. Checks more properties but less code.

Case IT: AODV

Case IIT: TCP
Lessons & religion
A summary

Case Study: AODV Routing Protocol

AODV: Ad-hoc On-demand Distance Vector
Routing protocol for ad-hoc networks
draft-ietf-manet-aodv-12.txt
Guarantees loop freeness
Checked three implementations
Mad-hoc
Kernel AODV (NIST implementation)
AODV-UU (Uppsala Univ. implementation)
First used model checking, then static analysis.
Model checked using CMC
Checks C code directly
No need to slice, or translate to weak language.

Checking AODV with CMC [0SDT'02]

Properties checked
CMC: seg faults, memory leaks, uses of freed memory
Routing table does not have a loop
At most one route table entry per destination
Hop count is infinity or <= nodes in network
Hop count on sent packet cannot be infinity

Effort:
Protocol Code Checks Environment Cann'ic
Mad-hoc 3336 301 100 + 400 165
Kernel-aodv 4508 301 266 + 400 179
Aodv-uu 5286 332 128 + 400 185

Results:42 bugs in total, 35 distinct, one spec bug.

Classification of Bugs

madhoc Kernel AODV-

AODV WU

Mishandling malloc failures 4 6 2
Memory leaks 5 3 0
Use after free 1 1 0
Invalid route table entry 0 0 1
Unexpected message 2 0 0
Invalid packet generation 3 2 (2) 2
Program assertion failures 1 1(1) 1
Routing loops 2 3(2) 2(1)
Total bugs 18 16 (5) 8 (1)
LOC/bug 185 281 661

Static analysis vs model checking
Model checking:

Two weeks to build mad-hoc model
Then 1 week each for kernel-aodv and aodv-uu
Done by Madan, who wrote CMC.

Static analysis:
Two hours to run several generic memory checkers.
Done by me, but non-expert could probably do easily.
Lots left to check..

High bit
Model checking checked more properties
Static checked more code.
When checked same property, static won.

Model checking vs static analysis (SA)

CMC & CMC SA only

SA only
Mishandling malloc failures 11 1 8
Memory leaks 8 5
Use after free 2
Invalid route table entry 1
Unexpected message 2
Invalid packet generation 7
Program assertion failures 3
Routing loops 7

Total bugs 21 21 13

Fundamental law: No check, no bug.

Static: checked more code = 13 bugs.

Check same property: static won. Only missed 1 CMC bug
Why CMC missed SA bugs:

6 were in code cut out of model (e.g., multicast)

6 because environment had mistakes (send_datagram())

1 in dead code

1 null pointer bug in model!

Model checking: more properties = 21 bugs
Some fundamentally hard to get with static
Others checkable, but many ways to violate.

Two emblematic bugs The Talk

The bug SA for(i =0y i <ont:i++) An introduction
checked for (1 (tp = malloc(.))) Case I: FLASH
& missed break;

tp->next = head; head = tp; Case IT: AODV

for(i=0; i <cnt;i++) Static: all code, all paths, hours, but fewer checks.
tnp = head; Model checking: more properties, smaller code, weeks.
Pead i cacasnext: AODV: model checking success. Cool bugs. Nice bug rate.
ree(tnp); Surprise: most bugs shallow.
The spec bug: time goes backwards if msg reordered. Case IIL: TCP
cur_rt = getentry(recv_rt->dst_ip);

if(cur_rt && .) { Lessons & religion
cur_rt->dst_seq = recv_rt->dst_seq;

A summary
Case study: TCP The approach that failed: kernel-lib.c
“Gee, AODV worked so well, let's check the hardest The obvious Tcp
thing we can think of" apprtoach:
Linux version 2.4.19 Rip TCP out
About 50K lines of code.
A lot of work. Where to cut?

Conventional
wisdom: as small as possible.
Basic question: calls foo(). Fake foo() or include?

4 bugs, sort of.

Serious problems because model check = run code Faking takes work. Including leads to transitive closure
Cutting code out of kernel (environment) Building fake stubs
Getting it to run (false positives) Hard + Messy + Bad docs = easy to get slightly wrong.
Getting the parts that didn't run to run (coverage) Model checker good at finding slightly wrong things.

Result: most bugs were false. Take days to diagnose.
Myth: model checking has no false positives.

Instead: jam Linux into CMC. Fundamental law: no run, no bug.
Main lesson: must cut along well-defined boundaries. Method line protocol branching additional
Linux: syscall boundary and hardware abstraction layer o] coverage coverage factor bugs
tandar

ref TCP client&server 47% 64.7% 2.9 2

+ simultaneous

connect 51% 66.7% 3.67 0
+ partial close 53% 79.5% 3.89 2
+ corruption 51% 84.3% 7.01 0

Combined cov. 55.4% 92.1%

Nasty: unchecked code is silent. Can detect with static,
but diagnostic rather than constructive.

Cost: State ~300K, each transition ~5ms Big static win: Check all paths, finding errors on any

The Talk

An introduction
Case I: FLASH
Case IT: AODV

Case III: TCP
Myth: model checking does not have false positives
Environment is really hard. We're not kidding.
Executing lots of code not easy, either.

A more refined view
Some religion
A summary

Where static wins.

Static analysis Model checking
Compile & Check Run = Check
So what. Problem.
So what. Can't play.
All paths! All paths! Executed paths.
"How big is code?” "What does it do?"
Hours. Weeks.
100-1000s 0-10s
1oMmLoc 10K
Surprised. Less surprised.

Where model checking wins.

Subtle errors: run code, so can check its implications
Data invariants, feedback properties, global properties.
Static better at checking properties in code, model
checking better at checking properties implied by code.

End-to-end: catch bug no matter how generated

Static detects ways to cause error, model checking
checks for the error itself.

Many bugs easily found with SA, but they come up in so
many ways that there is no percentage.

Stronger guarantees:
Most bugs show up bugs
with a small value of N.

N

The Talk

An introduction
Case I: FLASH
Case IT: AODV
Case IIT: TCP

A more refined view

Some questions & some dogma

A summary

Open Q: how fo get the bugs that matter?

Myth: all bugs matter and all will be fixed
FALSE
Find 10 bugs, all get fixed. Find 1,000...
Reality
All sites have many open bugs (observed by us & PREfix)
Myth lives because state-of -art is so bad at bug finding
What users really want: The 5-10 that "really matter”
General belief: bugs follow 90/10 distribution
Out of 1000, 100 account for most pain.
Fixing 900 waste of resources & may make things worse
How to find worst? No one has a good answer to this.

Open Q: Do static tools really help?

Bugs found ugs that
mattered
Bugs found
Bugs that

The hope mattered The null hypothesis

ugs that
mattered
ugs found

A Possibility

Dangers: Opportunity cost. Deterministic bugs to non-
deterministic.

Future? Combine more aggressively.

Simplest: Find false negatives in both.

Run static, see why missed bugs. Run model checking,
see why missed bugs.

Find a bug type with model checking, write static checker
Use SA to give model checking visibility into code.
Smear invariant checks throughout code: memory
corruption, race detection, assertions.
State space tricks: analyze if-statements and use to
drive into different states. Capture the paths explored,
favor states on new paths.
Use model checking to deepen static analysis.
Simulation + state space tricks.

Some cursory static analysis experiences

Bugs are everywhere

Initially worried we'd resort to historical data...

100 checks? You'll find bugs (if not, bug in analysis)
Finding errors often easy, saying why is hard

Have to track and articulate all reasons.
Ease-of-inspection *crucial*

Extreme: Don't report errors that are too hard.
The advantage of checking human-level operations

Easy for people? Easy for analysis. Hard for analysis?
Hard for people.

Soundness not needed for good results.

Myth: more analysis is always better

Does not always improve results, and can make worse
The best error:

Easy to diagnose

True error
More analysis used, the worse it is for both

More analysis = the harder error is to reason about,
since user has to manually emulate each analysis step.

Number of steps increase, so does the chance that one
went wrong. No analysis = no mistake.

In practice:
Demote errors based on how much analysis required
Revert to weaker analysis to cherry pick easy bugs
Give up on errors that are too hard to diagnose.

Myth: Soundness is a virfue.

Soundness: Find all bugs of type X.
Not a bad thing. More bugs good.
BUT: can only do if you check weak properties.
What soundness really wants to be when it grows up:
Total correctness: Find all bugs.
Most direct approximation: find as many bugs as possible.
Opportunity cost:
Diminishing returns: Initial analysis finds most bugs
Spend resources on what gets the next chunk of bugs
Easy experiment: bug counts for sound vs unsound tools.
What users really care about:
Find just the important bugs. Very different.

Related work

Tool-based static analysis
PREfix/PREfast
SLAM
EsSP
Generic model checking
Murphi
Spin
SMV
Automatic model generation model checking
Pathfinder
Bandera
Verisoft
SLAM (sort of)

Summary

Static analysis: exploit that rules map to source code
Push button, check all code, all paths. Hours.

Don't understand? Can't run? So what.

Model checking: more properties, but less code.
Check code implications, check all ways to cause error.
Didn't think of all ways to cause segfault? So what.

What surprised us:

How hard environment is.

How bad coverage is.

That static analysis found so many errors in comparison.
The cost of simplifications.

That bugs were so shallow.

Main CMC Results

3 different implementations of AODV
(AODV is an ad-hoc routing protocol)
35 bugs in the implementations
1 bug in the AODV specification!

Linux TCP (version 2.4.19)

CMC scales to such large systems (~50K lines)
4 bugs in the implementation

FreeBSD TCP module in OSKit
4 bugs in OSKit

DHCP (version 2.0 from ISC)

1 bug

Case study: TCP

“Gee, AODV worked so well, let's check the hardest
thing we can think of"
Linux version 2.4.19
About 50K lines of code.
A lot of work.
4 bugs, sort of.
Biggest problem: cutting it out of kernel.
Myth: model checking does not have false positives
Majority of errors found during development will be false
Mostly from environment and harness code mistakes

Easy to get environment slightly wrong. Model checker
really good at finding slightly wrong things

TCP's lessons for checking big code

Touch nothing
Code is its best model

Any translation, approximation, modification = potential
mistake.

Manual labor is no fun

It's really bad if your approach requires effort
proportional to code size

Only cut along well-defined interfaces.
Otherwise you'll get FP's from subtle misunderstandings.

Best heuristic for bugs: hit as much code as possible

Ideal: only check code designed for unit testing...

What this is all about.

A goal of humanity: automatically find bugs in code
Success: lots of bugs, lots of code checked.
We've used static analysis to do this for a few years.
Found bugs, generally happy.
Lots of properties we couldn't check.
Last couple of years started getting into model
checking
The general perception:
Static analysis: easy to apply but shallow bugs
Model checking: harder, but strictly better once done

Reality is a bit more subtle.
This talk is about that.

Summary

Static

Orders of magnitude easier: push a button and check all
code, all paths

Find bugs when completely ignorant about code
Finds more bugs when checking same properties.
Model checking:
Misses many errors because misses code
Environment: big source of false positives and negatives
Finds all ways to get a error
Checks implications of code
Surprises
Model checking finds less bugs
Many bugs actually shallow

