Weird things that surprise academics trying
to commercialize a static checking tool.

Andy Chou, Ben Chelf, Seth Hallem
Charles Henri-Gros, Bryan Fulton, Ted Unangst
Chris Zak
Coverity

Dawson Engler
Stanford

A naive view

Initial market analysis:
“"We handle linux, bsd, we just need a pretty box!”
Not quite.

First rule of static analysis: no check, no bug.
Two first order examples we never would have guessed.
Problem 1: if you can't find the code, can't check it.
Problem 2: if you can't compile code, you can't check it.

And then: how to make money on software tool?
“Tools. Huh. Tools are hard.” Any VC in early 2000.

Myth: the C (or C++) language exists.

Well, not really. The standard is not a compiler.
What exists: gcc-2.1.9-ac7-prepatch-alpha, xcc-i-did-
not-understand-pages4, 33,208-242-of -standard.

Oh. And Microsoft. Conformance = competitive
disadvantage. Do the math on how this deforms .c files

Basic LALR law: What can be parsed will be written.
Rule: static analysis must compile code to check.
If you cannot (correctly) parse “language” cannot check.

Common (mis)usage model: “allegedly C" header file does
something bizarre not-C thing. Included by all source.
Customer watches your compiler emit volumi parse
errors. (This is not impressive.)

Of course: gets way worse with C++ (which we support)

Some bad examples to find in headers
Banal. But take more time than you can believe:

Ishorf x; int *y = &(int)x: I

int foo(int a, int a);

Iunsigned x @ "TEXT"; I // unless "-packed"!

__packed (..) struct foo { .. }

Iunsigned x = Oxdead_beef:; I

IEnd lines with “\r” rather than “\n"

// newline = end

And, of course, asm: __asm mov eax, eab

asm foo() {
mov eax, eab;

#pragma asm
mov eax, eab
#pragma end_asm }

// "] = end
_asm [
mov eax, eab

1

Microsoft example: precompiled headers
Spec:

The compiler treats all code occurring before the .h
file as precompiled. It skips to just beyond the
#include directive associated with the .h file, uses
the code contained in the .pch file, and then compiles
all code after filename

Implication

I can put whatever I want here.

It doesn't have to compile.

If your compiler gives an error it sucks.
#include <some-precompiled-header.h>

Tt gets worse: on-the-fly header fabrication

Solution: pre-preprocessing rewrite rules.

Supply regular expressions to rewrite bad constructs

#pragma asm

#pragma end_asm

!

ppp_translate (“/#pragma asm/#if 0/");
ppp_translate("/#pragma end_asm/#endif/");

#if 0

#endif

What this all means concretely.
We use Edison Desigh Group (EDG) frontend

Pretty much everyone uses. Been around since 1989.

Aggressive support for gcc, microsoft, etc. (bug compat!)

Still: coverity by far the largest source of EDG bugs:
146 parsing test cases (i.e., we got burned)
219 compiler line translation test cases (i.e., ibid).
163 places where frontend hacked (“#ifdef COVERITY")
Still need custom rewriter for many supported compilers:

205 hpux_compilers.c

215 iar_compiler.c

240 ti_compiler.c

251 green_hills_compiler.c

453 sun_compilers.c
485 arm_compilers.c
617 gnu_compilers.c
748 microsoft_compilers.c

377 intel_compilers.c

1587 metrowerks_compilers.c
453 diab_compilers.c

Academics don't understand money.

“We'll just charge per seat like everyone else”
Finish the story: “Company X buys three Purify seats,
one for Asian, one for Europe and one for the US.."
Try #2: "we'll charge per lines of code”
"That is a really stupid idea: (1) .., (2) .., .. (n) .."
Actually works. I'm still in shock. Would recommend it.
Good feature for seller:
No seat games. Revenue grows with code size. Run on
another code base = new sale.
Good feature for buyer: No seat-model problems

Buy once for project, then done. No per-seat or per-
usage cost: no node lock problems: no problems adding,
removing or renaming developers (or machines)

People actually seem to like this pitch.

Some experience.

Surprise: Sales guys are great
Easy to evaluate. Modular.

Company X buys tool, then downsizes. Good or bad?
For sales, very good: X fires 110 people. They get jobs
elsewhere. Recommend coverity. 4 closed deals.

Large companies "want" to be honest
Veritas: want monitoring so don't accidently violate!

What can you sell?

User not same as tool builder. Naive. Inattentive. Cruel.
Makes it difficult to deploy anything sophisticated.
Example: statistical inference.

Some ways, checkers lag much behind our research ones.

“No, your tool is broken: that's not a bug”

“No, the loop will go for(s=0; s < n; s++) {
"
through oncel! switch(s) {
for(i=1; i < 0; i++) { case 0: assert(0):
...deadcode... return;
}
"No, && is ‘or'" ~-gead code..
') void *foo(void *p, void *q) {
if(lp && lq)
return O;

"No, ANSTI lets you write 1 past end of the array!"
("We'll have to agree to disagree.” i)
I unsigned p[4]: p[4] = 1; I

Coverity 's commercial history

c
o
m
m
a
n
d
Breakthrough Company Achieved Product growth L
technology incorporated profitability and o
out of proliferation J
Stanford a
r
g9
2000-2002 2002 2003 2004-05 ,—‘,f‘
e
« Meta-level + Deluge of requests = 7 early adopter + Version 2.0 product 3
compilation from companies customers, released s
checker wanting access to the. including VMWare,
(“Stanford new SUN, + Company
Checker")
detects 2000+« First customer signs: |+ Coverity achieves » 70+ customers including
bugs in Linux Sanera systems profitability. Juniper,
Synopsys, Oracle,
Stﬂ]lfﬂl’[l Veritas, nvidi,
palmOne.
i « Self funded

—

A partial list of 70+ customers...

EDA 1 Storage (Security
SYNoPsys VERITAS 8 R MeAfee EE y
GMSR [cadence] panccs [Check Point

Networking 1 Government [Embedded

Cswsmons

Jduniper D IcE RS TRRTON symbol’
Parconi
Biz Applications oS Open Source
ORACLE WINDRIVER \ el
& are e - mozilla]
Shucofiere (I <o | oo “Apache :

Slide 8

DE6 whole bunch of options: razor blade model, where we give away checkers for free and charge for
system. or inverse razor where we give away system and charge for checkers. or charge per seat,
or charge per lines of code (prefix). get a lot of pushback on the last one. prefix worked ok, but
not what we would consider a success.

i argued very strongly against per line model. completely wrong.
Dawson Engler, 8/23/2005

Slide 9

DE7 count how often something true versus not. sort in decreasing deviance. inspect until hit fp.
developer inspect all, mark as FP. say tool sucks to everyone.

Dawson Engler, 8/23/2005
Slide 10
DE8 we know about these since happen in results meetings. a bit dangerous, but usually other

developers will laugh at the confused one. scary to think of other times when things just marked as
FP.
Dawson Engler, 8/23/2005

Summary

Static analysis
Better at checking surface properties
Big wins: don't run code, all paths. Easy diagnosis.
Low incremental cost per line of code
Can get results in an afternoon: much easier to
commercialize.
10-100x more bugs.

Model checking
Better at checking code implications.
Major win over testing: explore all actions a state can do
before going to next
Makes low-probability events as probable as high.
Works very well when massive interleavings and bugs
horrible.

Open Q: how fo get the bugs that matter?

Myth: all bugs matter and all will be fixed
FALSE
Find 10 bugs, all get fixed. Find 10,000..
Reality
All sites have many open bugs (observed by us & PREfix)
Myth lives because state-of -art is so bad at bug finding
What users really want: The 5-10 that "really matter”
General belief: bugs follow 90/10 distribution
Out of 1000, 100 account for most pain.
Fixing 900 waste of resources & may make things worse
How to find worst? No one has a good answer to this.

Open Q: Do static tools really help?

Bugs found ugs that
mattered

ugs found
Bugs that

The hope mattered The null hypothesis

Bugs that
mattered
ugs found

A Possibility

Dangers: Opportunity cost. Deterministic bugs to non-
deterministic.

Some cursory static analysis experiences

Bugs are everywhere

Initially worried we'd resort to historical data...

100 checks? You'll find bugs (if not, bug in analysis)
Finding errors often easy, saying why is hard

Have to track and articulate all reasons.
Ease-of-inspection *crucial*

Extreme: Don't report errors that are too hard.
The advantage of checking human-level operations

Easy for people? Easy for analysis. Hard for analysis?
Hard for people.

Soundness not needed for good results.

Myth: more analysis is always better

Does not always improve results, and can make worse

The best error:
Easy to diagnose
True error
More analysis used, the worse it is for both

More analysis = the harder error is to reason about,
since user has to manually emulate each analysis step.

Number of steps increase, so does the chance that one
went wrong. No analysis = no mistake.

In practice:
Demote errors based on how much analysis required
Revert to weaker analysis to cherry pick easy bugs
Give up on errors that are too hard to diagnose.

Myth: Soundness is a virtue.

Soundness: Find all bugs of type X.
Not a bad thing. More bugs good.
BUT: can only do if you check weak properties.
What soundness really wants to be when it grows up:
Total correctness: Find all bugs.
Most direct approximation: find as many bugs as possible.
Opportunity cost:
Diminishing returns: Initial analysis finds most bugs
Spend on what gets the next biggest set of bugs
Easy experiment: bug counts for sound vs unsound tools.
End-to-end argument:
"It generally does not make much sense to reduce the

residual error rate of one system component (property)
much below that of the others.

