
1

Using Redundancies to Find Errors
Yichen Xie and Dawson Engler
Computer Systems Laboratory

Stanford University
Stanford, CA 94305, U.S.A.

Abstract— Programmers generally attempt to perform useful
work. If they performed an action, it was because they believed
it served some purpose. Redundant operations violate this belief.
However, in the past redundant operations have been typically
regarded as minor cosmetic problems rather than serious errors.
This paper demonstrates that in fact many redundancies are
as serious as traditional hard errors (such as race conditions
or null pointer dereferences). We experimentally test this idea
by writing and applying five redundancy checkers to a number
of large open source projects, finding many errors. We then
show that even when redundancies are harmless they strongly
correlate with the presence of traditional hard errors. Finally we
show how flagging redundant operations gives a way to detect
mistakes and omissions in specifications. For example, a locking
specification that binds shared variables to their protecting locks
can use redundancies to detect missing bindings by flagging
critical sections that include no shared state.

Index Terms— Extensible compilation, error detection, pro-
gram redundancy, software quality.

I. INTRODUCTION

Programming languages have long used the fact that many
high-level conceptual errors map to low-level type errors.
This paper demonstrates the same mapping in a different
direction: many high-level conceptual errors also map to low-
level redundant operations. With the exception of a few styl-
ized cases, programmers are generally attempting to perform
useful work. If they performed an action, it was because
they believed it served some purpose. Spurious operations
violate this belief and are likely errors. However, in the past
redundant operations have been typically regarded as merely
cosmetic problems, rather than serious mistakes. Evidence for
this perception is that to the best of our knowledge the many
recent error checking projects focus solely on hard errors such
as null pointer dereferences or failed lock releases, rather than
redundancy checking [2], [4], [5], [9], [13], [23], [25].

We experimentally demonstrate that in fact many redun-
dancies signal mistakes as serious as traditional hard errors.
For example, impossible Boolean conditions can signal mis-
taken expressions; critical sections without shared states can
signal the use of the wrong variable; variables written but
not read can signal an unintentionally lost result. Even when
harmless, these redundancies signal conceptual confusion,
which we would also expect to correlate with hard errors such
as deadlocks, null pointer dereferences, etc.

In this paper we use redundancies to find errors in three
ways: (1) by writing checkers that automatically flag redun-
dancies, (2) using these errors to predict non-redundant errors
(such as null pointer dereferences), and (3) using redundancies

to find incomplete program specifications. We discuss each
below.

We wrote five checkers that flagged potentially dangerous
redundancies: (1) idempotent operations, (2) assignments that
were never read, (3) dead code, (4) conditional branches that
were never taken, and (5) redundant NULL-checks. The errors
found would largely be missed by traditional type systems
and checkers. For example, as Section II shows, assignments
of variables to themselves can signal mistakes, yet such
assignments will type check in any common programming
language we know of.

Of course, some legitimate actions cause redundancies.
Defensive programming may introduce “unnecessary” oper-
ations for robustness; debugging code, such as assertions, can
check for “impossible” conditions; and abstraction boundaries
may force duplicate calculations. Thus, to effectively find
errors, our checkers must separate such redundancies from
those induced by high-level confusion.

The technology behind the checkers is not new. Opti-
mizing compilers use redundancy detection and elimination
algorithms extensively to improve code performance. One
contribution of our work is the realization that these analyses
have been silently finding errors since their invention.

We wrote our redundancy checkers in the MC extensible
compiler system [15], which makes it easy to build system-
specific static analyses. Our analyses do not depend on an
extensible compiler, but it does make it easier to prototype
and perform focused suppression of false positive classes.

We evaluated how effective flagging redundant operations
is at finding dangerous errors by applying the above five check-
ers to three open source software projects: Linux, OpenBSD
and PostgreSQL. These are large, widely-used source code
bases (we check 3.3 million lines of them) that serve as a
known experimental base. Because they have been written by
many people, they are representative of many different coding
styles and abilities.

We expect that redundancies, even when harmless,
strongly correlate with hard errors. Our relatively uncontrover-
sial hypothesis is that confused or incompetent programmers
tend to make mistakes. We experimentally test this hypothesis
by taking a large database of hard Linux errors that we found
in prior work [8] and measure how well redundancies predict
these errors. In our experiments, files that contain redundancies
are roughly 45% to 100% more likely to have traditional hard
errors compared to those drawn by chance. This difference
holds across the different types of redundancies.

Finally, we discuss how traditional checking approaches

2

based on annotations or specifications can use redundancy
checks as a safety net to find missing annotations or incom-
plete specifications. Such specification mistakes commonly
map to redundant operations. For example, assume we have
a specification that binds shared variables to locks. A missed
binding will likely lead to redundancies: a critical section with
no shared state and locks that protect no variables. We can
flag such omissions because we know that every lock should
protect some shared variable and that every critical section
should contain some shared state.

This paper makes four contributions:

1) The idea that redundant operations, like type errors,
commonly flag serious correctness errors.

2) Experimentally validating this idea by writing and ap-
plying five redundancy checkers to real code. The errors
found often surprised us.

3) Demonstrating that redundancies, even when harmless,
strongly correlate with the presence of traditional hard
errors.

4) Showing how redundancies provide a way to detect
dangerous specification omissions.

The main caveat with our approach is that the errors we
count might not be errors since we were examining code we
did not write. To counter this, we only diagnosed ones that
we were reasonably sure about. We have had close to three
years of experience with Linux bugs, so we have reasonable
confidence that our false positive rate of bugs that we diagnose,
while non-zero, is probably less than 5%.

In addition, some of the errors we diagnose are not
traditional “hard errors”– they by themselves would probably
not cause system crashes or security breaches. Rather, they
are nonsensical redundancies that in our opinion result in
unnecessary complexity and confusion. So the diagnosis of
these errors involve personal judgments that may not be shared
by all readers. Although they are not as serious as hard errors,
we think they should nevertheless be fixed in order to improve
program clarity and readability.

Sections II through VI present the five checkers. Sec-
tion VII measures how well these redundant errors correlate
with and predict traditional hard errors. Section VIII discusses
how to check for completeness using redundancies. Section IX
discusses related work. Finally, Section X concludes.

II. IDEMPOTENT OPERATIONS

System Bugs Minor False
Linux 2.4.5-ac8 7 6 3
OpenBSD 3.2 2 6 8
PostgreSQL 0 0 0

TABLE I

BUGS FOUND BY THE IDEMPOTENT CHECKER IN LINUX VERSION

2.4.5-AC8, OPENBSD 3.2, AND POSTGRESQL 7.2.

The checker in this section flags idempotent operations
where a variable is: (1) assigned to itself (x = x), (2) divided
by itself (x / x), (3) bitwise or’d with itself (x | x) or (4)

bitwise and’d with itself (x & x). The checker is the simplest
in the paper (it requires about 10 lines of code in our system).
Even so, it found several interesting cases where redundancies
signal high-level errors. Four of these were apparent typos in
variable assignments. The clearest example was the following
Linux code, where the programmer makes a mistake while
copying structure sa to da:

/* linux2.4.1/net/appletalk/aarp.c:aarp rcv */
else { /* We need to make a copy of the entry. */

da.s node = sa.s node;
da.s net = da.s net;

This is a good example of how redundancies catch cases that
type systems miss. This code — an assignment of an integer
variable to itself — will type check in all common languages
we know of, yet clearly contains an error. Two of the other
errors in Linux were caused by integer overflow (or’ing an
8-bit variable by a constant that only had bits set in the upper
16 bits) which was optimized away by the gcc frontend.
The final one in Linux was caused by an apparently missing
conversion routine. The code seemed to have been tested only
on a machine where the conversion was unnecessary, which
prevented the tester from noticing the missing routine.

The two errors we found in OpenBSD are violations of
the ANSI C standard. They both lie in the same function in
the same source file. We show one of them below:

1 /* openbsd3.2/sys/kern/subr userconf.c:userconf add */
2 for (i = 0; i < pv size; i++) {
3 if (pv[i] != −1 && pv[i] >= val)
4 pv[i] = pv[i]++; /* error */
5 }

The error occurs at line 4, and is detected with the help of
the code canonicalization algorithm in the xgcc front end that
translates this statement into:

pv[i] = pv[i]; /* redundant */
pv[i]++;

The ANSI C standard (Section 6.3) stipulates that “between
the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation
of an expression.” It is mere coincidence that gcc chooses
to implement the side-effects of pv[i]++ after that of the
assignment itself. In fact, the Compaq C compiler1 evaluates
pv[i]++ first and stores the old value back to pv[i],
causing the piece of code to fail in a non-obvious way. We
tested four C compilers by different vendors on different
architectures2. None of them issued a warning on this illegal
statement.

The minor errors were operations that seemed to follow
a nonsensical but consistent coding pattern, such as adding 0
to a variable for typographical symmetry with other non-zero
additions such as the following

1Compaq C V6.3-129 (dtk) on Compaq Tru64 UNIX V5.0A (Rev. 1094).
2Sun Workshop 6 update 2, GNU GCC 3.2.1, Compaq C V6.3-129, and

MS Visual Studio .NET.

3

/* linux2.4.5-ac8/drivers/video/riva/riva hw.c:
nv4CalcArbitration */

nvclks += 1;
nvclks += 1;
nvclks += 1;
if (mp enable)

mclks+=4;
nvclks += 0; /* suspicious, is it a typo or

should it really be ‘‘+=1’’? */
Curiously, each of the eleven false positives we found

was annotated with a comment explaining why the redundant
operation was being done. This gives evidence for our belief
that programmers regard redundancy as somewhat unusual.

Macros are the main source of false positives. They
represent logical operations that may not map to concrete
actions. For example, networking code contains many calls
of the form “x = ntohs(x)” used to reorder the bytes in
variable x in a canonical “network order” so that a machine
receiving the data can unpack it appropriately. However, on
machines on which the data is already in network order, the
macro will expand to nothing, resulting in code that will
simply assign x to itself. To suppress these false positives, we
modified the preprocessor to note which lines contain macros
— we simply ignore warnings on these lines.

III. REDUNDANT ASSIGNMENTS

System Bugs False Uninspected
Linux 2.4.5-ac8 129 26 1840
OpenBSD 3.2 63 36 117
PostgreSQL 7.2 37 10 0

TABLE II

BUGS FOUND BY THE REDUNDANT ASSIGNMENT CHECKER IN LINUX

VERSION 2.4.5-AC8, OPENBSD 3.2, AND POSTGRESQL 7.2.

The checker in this section flags cases where a value
assigned to a variable is not subsequently used. The checker
tracks the lifetime of variables using a simple intraprocedural
analysis. At each assignment it follows the variable forward
on all paths. It emits an error message if the variable is not
read on any path before either exiting scope or being assigned
another value. As we show, in many cases such lost values
signal real errors, such as control flow following unexpected
paths, results computed but not returned, etc.

The checker found thousands of redundant assignments in
the three systems we checked. Since it was so effective, we
minimized the chance of false positives by radically restricting
the variables it would follow to non-global and non-volatile
ones that were not aliased in any way (i.e. local variables that
never had their addresses taken).

Most of the checker code deals with differentiating the
errors into three classes, which it ranks in the following order:

1) Variables assigned values that are not read, and which
are never subsequently reassigned. Empirically, these
errors tend to be the most serious, since they flag
unintentionally lost results.

2) Variables assigned a non-constant value that are not
read, and which are subsequently reassigned. These are

also commonly errors, but tend to be less severe. False
positives in this class tend to come from assigning a
return value from a function call to a dummy vari-
able that is ignored, which is prevalent in PostgreSQL.
Fortunately, such variables tend to share a consistent
naming pattern (e.g., they are commonly prefixed with
double underscores () in PostgreSQL) and therefore
can be easily suppressed with grep. In presenting bug
counts in Table II, we do not count warnings that are so
suppressed.

3) Variables assigned a constant and then reassigned other
values without being read. These are frequently due to
defensive programming, where the programmer always
initializes a variable to some safe value (most com-
monly: NULL, 0, 0xffffffff, and -1) but does not
read it before redefinition. We track the initial value and
emit it when reporting the error so that messages with
a common defensive value can be easily filtered out.
Again, we do not count filtered messages in Table II.

Suppressing false positives. As with many redundant
checkers, macros and defensive programming cause most false
positives. To minimize the impact of macros, the checker does
not track variables killed or generated within them. Its main
remaining vulnerability are values assigned and then passed
to debugging macros that are turned off:

x = foo−>bar;
DEBUG("bar = %d", x);

Typically there are a small number of such debugging macros,
which we manually turn back on by modifying the header file
in which they are defined.

We use ranking to minimize the impact of defensive
programming. Redundant operations that can be errors when
done within the span of a few lines can be robust programming
practice when separated by 20 lines. Thus we rank reported
errors based on (1) the line distance between the assignment
and reassignment and (2) the number of conditional branches
on the path. Close errors are most likely; farther ones arguably
defensive programming.

The errors. This checker found more errors than all the
others we have written combined. There were two interesting
error patterns that showed up as redundant assignments: (1)
variables whose values were (unintentionally) discarded and
(2) variables whose values were not used because of surprising
control flow (e.g., an unexpected return).

1 /* linux2.4.5-ac8/net/decnet/af decnet.c:dn wait run */
2 do {
3 . . .
4 if (signal pending(current)) {
5 err = −ERESTARTSYS; /* BUG: lost value */
6 break;
7 }
8 . . .
9 } while(scp−>state != DN RUN);

10 return 0; /* should be “return err” here */

Fig. 1. Lost return value caught by flagging the redundant assignment to
err.

4

1 /* linux2.4.1/net/atm/lec.c:lec addr delete: */
2 for(entry=priv−>lec arp tables[i];
3 entry != NULL;
4 entry=next) { /* BUG: never reached */
5 next = entry−>next;
6 if (. . .) {
7 lec arp remove(priv−>lec arp tables, entry);
8 kfree(entry);
9 }

10 lec arp unlock(priv);
11 return 0;
12 }

Fig. 2. A single-iteration loop caught by flagging the redundant assignment
next = entry→next. The assignment appears to be read in the loop
iteration statement (entry = next) but it is dead code, since the loop
always exits after a single iteration. The logical result will be that if the entry
the loop is trying to delete is not the first one in the list, it will not be deleted.

/* linux2.4.5-ac8/fs/ntfs/unistr.c:ntfs collate names */
for (cnt = 0; cnt < min(name1 len, name2 len); ++cnt) {

c1 = le16 to cpu(*name1++);
c2 = le16 to cpu(*name2++);
if (ic) {

if (c1 < upcase len)
c1 = le16 to cpu(upcase[c1]);

if (c2 < upcase len)
c2 = le16 to cpu(upcase[c2]);

}
/* [META] stray terminator! */
if (c1 < 64 && legal ansi char array[c1] & 8);

return err val;
if (c1 < c2)

return −1;
. . .

Fig. 3. Catastrophic return caught by the redundant assignment to c2.
The last conditional is accidentally terminated because of a stray statement
terminator (“;”) at the end of the line, causing the routine to always return
err val.

The majority of the errors (126 of the 129 diagnosed ones)
fall into the first category. Figure 1 shows a representative
example from Linux. Here, if the function signal pending
returns true (a signal is pending to the current process), an
error code is set (err = -ERESTARTSYS) and the code
breaks out of the enclosing loop. The value in err must be
passed back to the caller so that it will retry the system call.
However, the code always returns 0 to the caller, no matter
what happens inside the loop. This will lead to an insidious
error: the code usually works but, occasionally, it will abort
but return a success code, causing the client to assume that
the operation happened.

There were numerous similar errors on the caller side
where the result of a function was assigned to a variable but
then ignored rather than being checked. The fact that logically
the code contains errors is readily flagged by looking for
variables assigned but not used.

The second class contains three diagnosed errors that
comes from calculations aborted by unexpected control flow.
Figure 2 gives one example from Linux: here all paths through
a loop end in a return, wrongly aborting the loop after a single

/* linux2.4.1/net/ipv6/raw.c:rawv6 getsockopt */
switch (optname) {

case IPV6 CHECKSUM:
if (opt−>checksum == 0)

val = −1;
else

val = opt−>offset;
/* BUG: always falls through */

default:
return −ENOPROTOOPT;

}
len=min(sizeof(int),len);
. . .

Fig. 4. Unintentional switch “fall through” causing the code to always return
an error. This maps to the low-level redundancy that the value assigned to
val is never used.

iteration. This error is caught by the fact that an assignment
used to walk down a linked list is never read because the
loop iterator that would do so is dead code. Figure 3 shows
a variation on the theme of unexpected control flow. Here an
if statement has an extraneous statement terminator at its
end, making the subsequent return to be always taken. In
these cases, a coding mistake caused “dangling assignments”
that were not used. This fact allows us to flag such bogus
structures even when we do not know how control flows in
the code. It is the the presence of these errors that has led us
to write the dead-code checker in the next section.

Reassigning values is typically harmless, but it does signal
fairly confused programmers. For example:

/* linux2.4.5-ac8/drivers/net/wan/sdla x25.c:
alloc and init skb buf */

struct sk buff *new skb = *skb;
new skb = dev alloc skb(len + X25 HRDHDR SZ);

where new skb is assigned the value *skb but then imme-
diately reassigned another allocated value. A different case
shows a potential confusion about how C’s iteration statement
works:

/* linux2.4.5-ac8/drivers/scsi/scsi.c:
scsi bottom half handler */

SCnext = SCpnt−>bh next;
for (; SCpnt; SCpnt = SCnext) {

SCnext = SCpnt−>bh next;
Note that the variable SCnext is assigned and then imme-
diately reassigned in the loop. The logic behind this decision
remains unclear.

The most devious error. A few of the values reassigned
before being used were suspicious lost values. One of the worst
(and most interesting) was from a commercial system which
had the equivalent of the following code:

c = p−>buf[0][3];
c = p−>buf[0][3];

At first glance this seems like a harmless obvious copy-
and-paste error. It turned out that the redundancy flags a
much more devious bug. The array buf actually pointed to a
“memory mapped” region of kernel memory. Unlike normal
memory, reads and writes to this region cause the CPU to
issue I/O commands to a hardware device. Thus, the reads are
not idempotent, and the two of them in a row rather than just

5

one can cause very different results to happen. However, the
above code does have a real (but silent) error — in the variant
of C that this code was written, pointers to device memory
must be declared as “volatile.” Otherwise the compiler is free
to optimize duplicate reads away, especially since in this case
there were no pointer stores that could change their values.
Dangerously, in the above case buf was declared as a normal
pointer rather than a volatile one, allowing the compiler to
optimize as it wished. Fortunately the error had not been
triggered because the GNU C compiler that was being used
had a weak optimizer that conservatively did not optimize
expressions that had many levels of indirection. However, the
use of a more aggressive compiler or a later version of gcc
could have caused this extremely difficult to track down bug
to surface.

IV. DEAD CODE

System Bugs False
Linux 2.4.5-ac8 66 26
OpenBSD 3.2 11 4
PostgreSQL 7.2 0 0

TABLE III

BUGS FOUND BY THE DEAD CODE CHECKER ON LINUX VERSION

2.4.5-AC8, OPENBSD 3.2, AND POSTGRESQL 7.2.

The checker in this section flags dead code. Since pro-
grammers generally write code to run it, dead code catches
logical errors signaled by false beliefs that unreachable code
can execute.

1 /* linux2.4.1/drivers/char/rio/rioparam.c:RIOParam */
2 if (retval == RIO FAIL) {
3 rio spin unlock irqrestore(&PortP−>portSem, flags);
4 pseterr(EINTR); /* BUG: returns */
5 func exit();
6 return RIO FAIL;
7 }

Fig. 5. Unexpected return: The call pseterr is a macro that returns its
argument value as an error. Unfortunately, the programmer does not realize
this and inserts subsequent operations, which are flagged by our dead code
checker. There were many other similar misuses of the same macro.

The core of the dead code checker is a straightforward
mark-and-sweep algorithm. For each routine it (1) marks
all blocks reachable from the routine’s entry node and (2)
traverses all blocks in the routine, flagging any that are not
marked. The checker has three modifications to this basic
algorithm. First, it truncates all paths that reach functions that
would not return. Examples include “panic,” “abort” and
“BUG” which are used by Linux to signal a terminal kernel
error and reboot the system — code dominated by such calls
cannot run. Second, we suppress error messages for dead
code caused by constant conditions involving macros or the
sizeof operator, such as

1 /* linux2.4.1/drivers/scsi/53c7,8xx.c:
2 return outstanding commands */
3 for (c = hostdata−>running list; c;
4 c = (struct NCR53c7x0 cmd *) c−>next) {
5 if (c−>cmd−>SCp.buffer) {
6 printk ("...");
7 break;
8 } else {
9 printk ("Duh? ...");

10 break;
11 }
12 /* BUG: cannot be reached */
13 c−>cmd−>SCp.buffer =
14 (struct scatterlist *) list;
15 . . .

Fig. 6. Broken loop: the first if-else statement of the loop contains a break
on both paths, causing the loop to always abort, without ever executing the
subsequent code it contains.

1 /* linux2.4.5-ac8/net/decnet/dn table.c:
2 dn fib table lookup */
3 for(f = dz chain(k, dz); f; f = f−>fn next) {
4 if (!dn key leq(k, f−>fn key))
5 break;
6 else
7 continue;
8

9 /* BUG: cannot be reached */
10 f−>fn state |= DN S ACCESSED;
11

12 if (f−>fn state&DN S ZOMBIE)
13 continue;
14 if (f−>fn scope < key−>scope)
15 continue;

Fig. 7. Useless loop body: similarly to Figure 6 this loop has a broken
if-else statement. One branch aborts the loop, the other uses C’s continue
statement to skip the body and begin another iteration.

/* case 1: debugging statement that is turned ‘off’ */
#define DEBUG 0
if (DEBUG) printf("in foo");
/* case 2: gcc coverts the condition to 0

on 32-bit architectures */
if (sizeof(int) == 64)

printf("64 bit architecture\n");

The former frequently signals code “commented out” by using
a false condition, while the latter is used to carry out architec-
ture dependent operations. We also annotate error messages
when the flagged dead code is only a break or return.
These are commonly a result of defensive programming.
Finally, we suppress dead code in macros.

Despite its simplicity, dead code analysis found a high
number of clearly serious errors. Three of the errors caught
by the redundant assignment checker are also caught by the
dead code detector: (1) the single iteration loop in Figure 2,
(2) the mistaken statement terminator in Figure 3, and (3) the
unintentional fall through in Figure 4.

Figure 5 gives the most frequent copy-and-paste error.
Here the macro “pseterr” has a return statement in its
definition, but the programmer does not realize it. Thus, at all

6

1 /* openbsd3.2/sys/dev/pci/bktr/bktr core.c:tuner ioctl */
2 unsigned temp;
3 . . .
4 temp = tv channel(bktr, (int)*(unsigned long *)arg);
5 if (temp < 0) { /* gcc frontend turns this into 0 */
6 /* BUG: cannot be reached */
7 temp mute(bktr, FALSE);
8 return(EINVAL);
9 }

10 *(unsigned long *)arg = temp;

Fig. 8. Unsigned variable tested for negativity.

seven call sites that use the macro, there is dead code after
the macro that the programmer intended to have executed.

Figure 6 gives another common error — a single-iteration
loop that always terminates because it contains an if-else
statement that breaks out of the loop on both branches. It is
hard to believe that this code was ever tested. Figure 7 gives a
variation on this, where one branch of the if statement breaks
out of the loop but the other uses C’s continue statement,
which skips the rest of the loop body. Thus, none of the code
thereafter can be executed.

Type errors can also result in dead code. Figure 8 shows
an example from OpenBSD. Here the function tv channel
returns -1 on error, but since temp is an unsigned variable,
the error handling code in the true branch of the if statement
is never executed. An obvious fix is to declare temp as int.
As before, none of the four compilers we tested warned about
this suspicious typing mistake.

V. REDUNDANT CONDITIONALS

System Bugs False Uninspected
Linux 2.4.5-ac8 49 52 169
OpenBSD 3.2 64 33 316
PostgreSQL 7.2 0 0 0

TABLE IV

BUGS FOUND BY THE REDUNDANT CONDITIONALS CHECKER IN LINUX

2.4.5-AC8, OPENBSD 3.2, POSTGRESQL 7.2.

The checker in this section uses path-sensitive analysis
to detect redundant (always true or always false) conditionals
in branch statements such as if, while, switch, and etc.
They cannot affect the program state or control flow. Thus,
their presence is a likely indicator of errors. To avoid double
reporting bugs found in the previous section, we only flag non-
constant conditional expressions that are not evaluated by the
dead code checker.

The implementation of the checker uses the false path
pruning (FPP) feature in the xgcc system [15]. FPP was
originally designed to eliminate false positives from infeasible
paths. It prunes a subset of logically inconsistent paths by
keeping track of assignments and conditionals along the way.
The implementation of FPP consists of three separate modules,
each keeping track of one class of program properties as
described below:

1 /* linux2.4.5-ac8/fs/fat/inode.c */
2 error = 0;
3 if (!error) { /* causes unnecessary code complexity */
4 sbi−>fat bits = fat32 ? 32 :
5 (fat ? fat :
6 (sbi−>clusters > MSDOS FAT12 ? 16 : 12));

Fig. 9. Nonsensical programming style: the check at line 3 is clearly
redundant.

1) The first module maintains a mapping from variables to
integer constants. It tracks assignments (e.g. x = 1;
x = x * 2;) and conditional branch statements (e.g.
if (x == 5) {...}) along each execution path to
derive variable-constant bindings.

2) The second module keeps track of a known set of
predicates that must hold true along the current program
path. These predicates are collected from conditional
branches (e.g. in the true branch of if (x != NULL)
{...}, we will collect x != NULL into the known
predicate set), and they will be used later to test the
validity of subsequent control predicates (e.g. if we
encounter if (x != NULL) later in the program, we
will prune the else branch). Note if the value of
variable x is killed (either directly by assignments or
indirectly through pointers), we remove any conditional
in the known predicate set that references x.

3) The third module keeps track of constant bounds of
variables. We derive these bounds from conditional
statements. For example, in the true branch of if (x
<= 5), we enter 5 as x’s upper bound. We prune paths
that contradict with the recorded bound information (e.g.
the true branch of if (x > 7)).

These three simple modules were able to capture enough
information that allows us to find interesting errors in Linux
and OpenBSD.

With FPP, the checker works as follows: for each function,
it traverses the its control flow graph (CFG) with FPP and
marks all reachable CFG edges. At the end of the analysis, it
emits conditionals associated to untraversed ones as errors.

Macros and concurrency are the two major sources of
false positives. To suppress those, we discard warnings that
take place within macros, and ignore conditionals that involve
global, static or volatile variables whose values might be
changed by another thread.

The checker is able to find hundreds of redundant condi-
tionals in Linux and OpenBSD. We classify them into three
major categories which we describe below.

The first class of errors, which are the least serious of
the three, are labeled as “nonsensical programming style.”
Figure 9 shows a representative example from Linux 2.4.5-ac8.
The if statement at line 3 is clearly redundant and leaves one
to wonder about the purpose of such a check. These errors,
although harmless, signal a confused programmer. The latter
conjecture is supported by the statistical analysis described in
section VII.

Figure 10 shows a more problematic case. The second if

7

1 /* linux2.4.5-ac8/drivers/net/wan/sbni.c:sbni ioctl */
2 slave = dev get by name(tmpstr);
3 if(!(slave && slave−>flags & IFF UP &&
4 dev−>flags & IFF UP))
5 {
6 . . . /* print some error message, back out */
7 return −EINVAL;
8 }
9 if (slave) { . . . }

10 /* BUG: !slave is impossible */
11 else {
12 . . . /* print some error message */
13 return −ENOENT;
14 }

Fig. 10. Nonsensical programming style: the check of slave at line 9 is
guaranteed to be true and also notice the difference in return value.

1 /* linux2.4.5-ac8/drivers/net/tokenring/smctr.c:
2 smctr rx frame */
3 while((status = tp−>rx fcb curr[queue]
4 −>frame status) != SUCCESS)
5 {
6 err = HARDWARE FAILED;
7 . . . /* large chunk of apparent recovery code,
8 with no updates to err */
9 if (err != SUCCESS)

10 break;
11 }

Fig. 11. Redundant conditional that suggests a serious program error.

statement is redundant because the first one has already taken
care of the case where slave is false. The fact that a different
error code is returned signals a possible bug in this code.

The second class of errors are again seemingly harmless
on the surface, but when we give a more careful look at the
surrounding code, we often find serious errors. The while
loop in Figure 11 is obviously trying to recover from hardware
errors encountered when reading network packets. But since
the variable err is not updated in the loop body, it would
never become SUCCESS, and thus the loop body will never
be executed more than once, which is suspicious. This signals

1 /* linux2.4.1/drivers/fc/iph5526.c:
2 rscn handler */
3 if ((login state == NODE LOGGED IN) | |
4 (login state == NODE PROCESS LOGGED IN)) {
5 . . .
6 }
7 else
8 if (login state == NODE LOGGED OUT)
9 tx adisc(fi, ELS ADISC, node id,

10 OX ID FIRST SEQUENCE);
11 else
12 /* BUG: redundant conditional */
13 if (login state == NODE LOGGED OUT)
14 tx logi(fi, ELS PLOGI, node id);

Fig. 12. Redundant conditionals that signal errors: a conditional expression
being placed in the else branch of another identical one.

1 /* linux2.4.5-ac8/drivers/scsi/qla1280.c:
2 qla1280 putq t */
3 srb p = q−>q first;
4 while (srb p)
5 srb p = srb p−>s next;
6

7 if (srb p) { /* BUG: this branch is never taken*/
8 sp−>s prev = srb p−>s prev;
9 if (srb p−>s prev)

10 srb p−>s prev−>s next = sp;
11 else
12 q−>q first = sp;
13 srb p−>s prev = sp;
14 sp−>s next = srb p;
15 } else {
16 sp−>s prev = q−>q last;
17 q−>q last−>s next = sp;
18 q−>q last = sp;
19 }

Fig. 13. A serious error in a linked list insertion implementation: srb p
is always null after the while loop (which appears to be checking the wrong
Boolean condition).

a possible error where the programmer forgets to update err
in the large chunk of recovery code in the loop. This bug
would be difficult to detect by testing, because it is in an error
handling branch that is only executed when the hardware fails
in a certain way.

The third class of errors are clearly serious bugs. Figure 12
shows an example from Linux 2.4.5-ac8. As we can see, the
second and third if statements carry out entirely different
actions on identical conditions. Apparently, the programmer
has cut-and-pasted the conditional without changing one of
the two NODE LOGGED OUTs into a more likely fourth pos-
sibility: NODE NOT PRESENT.

Figure 13 shows another serious error. The author obvi-
ously wanted to insert sp into a doubly-linked list that starts
from q->q first, but the while loop clearly does nothing
other than setting srb p to NULL, which is nonsensical.
The checker detects this error by inferring that the ensuing
if statement is redundant. An apparent fix is to replace
the while condition (srb p) with (srb p && srb p-
>next). This bug can be dangerous and hard to detect,
because it quietly discards everything that was in the original
list and constructs a new one with sp as its sole element. As a
matter of fact, the same error is still present in the latest stable
2.4.20 release of the Linux kernel source as of this writing.

VI. REDUNDANT NULL-CHECKS

The checker described in this section uses redundancies to
flag misunderstandings of function interfaces in Linux. Certain
functions, such as kmalloc, returns a NULL pointer on
failure. Callers of these functions need to check the validity of
their return values before they can safely dereference them. In
prior work [11], we described an algorithm that automatically
derives the set of potential NULL-returning functions in Linux.
Here we use the logical opposite of that algorithm to flag
functions whose return values should never be checked against

8

1 /* linux2.5.53/fs/ntfs/attrib.c:ntfs merge run lists */
2 if (!slots) {
3 /* FIXME/TODO: We need to have the extra
4 * memory already! (AIA) */
5 drl = ntfs rl realloc(drl, ds, ds + 1);
6 if (!drl) /* BUG: drl is never NULL */
7 goto critical error;
8 }

Fig. 14. Redundant NULL-check of drl signals a more serious problem:
return values of ntfs rl realloc should in fact be checked with IS ERR.
A NULL-check will never catch the error case.

NULL. A naive view is that at worst such redundant checks
are minor performance mistakes. In practice, we found they
can flag two dangerous situations.

1) The programmer believes that a function can fail when it
cannot. If they misunderstand the function’s interface at
this basic level, they likely misunderstand other aspects.

2) The programmer correctly believes that a function can
fail, but misunderstands how to check for failure. Linux
and other systems have functions that indicate failure in
some way other than returning a null pointer.

For each pointer-returning function f the checker tracks
two counts:

1) The number of call sites where the pointer returned by
f was checked against null before use.

2) The number of call sites where the returned pointer was
not checked against null before use.

A function f whose result is often checked against NULL
implies the belief that f could potentially return NULL.
Conversely, many uses with few NULL checks implies the
belief that the function should not be checked against NULL.
We use the z-statistic [14] to rank functions from most to
least likely to return NULL based on these counts. Return
values from functions with highest z-values should probably
be checked before use, whereas NULL-checks on those from
the lowest ranked functions are most likely redundant.

Figure 14 shows one of the two bugs we found in a recent
release of Linux. Here, the redundant NULL-check at line 6
signals the problem: the programmer has obviously misun-
derstood the interface to the function ntfs rl realloc,
which, as shown below,

/* 2.5.53/fs/ntfs/attrib.c:ntfs rl realloc */
. . .
new rl = ntfs malloc nofs(new size);
if (unlikely(!new rl))

return ERR PTR(−ENOMEM);
. . .

will never return NULL. Instead, on memory exhaustion, it
will return what is essentially ((void*)-ENOMEM), which
should be checked using the special IS ERR macro. When
ntfs rl realloc fails, the null check will fail too, and
the code will dereference the returned value, which will likely
correspond to a valid physical address, causing a very difficult-
to-diagnose memory corruption bug. Unsurprisingly, the same
bug appeared again at another location in this author’s code.

VII. PREDICTING HARD ERRORS WITH REDUNDANCIES

In this section we show the correlation between redundant
errors and hard bugs that can crash a system. The redundant
errors are collected from the redundant assignment checker, the
dead code checker, and the redundant conditional checker. 3

The hard bugs were collected from Linux 2.4.1 with checkers
described in [8]. These bugs include use of freed memory,
dereferences of null pointers, potential deadlocks, unreleased
locks, and security violations (e.g., the use of an untrusted
value as an array index). They have been reported to and
largely confirmed by Linux developers. We show that there is
a strong correlation between these two error populations using
a statistical technique called the contingency table method [6].
Further, we show that a file containing a redundant error
is roughly 45% to 100% more likely to have a hard error
than one selected at random. These results indicate that (1)
files with redundant errors are good audit candidates and (2)
redundancy correlates with confused programmers who will
probably make a series of mistakes.

A. Methodology

This subsection describes the statistical methods used to
measure the association between program redundancies and
hard errors. Our analysis is based on the 2 × 2 contingency
table [6] method. It is a standard statistical tool for studying the
association between two different attributes of a population. In
our case, the population is the set of files we have checked in
Linux, and the two attributes are: (a) whether a file contains
redundancies, and (b) whether it contains hard errors.

In the contingency table approach, the population is cross-
classified into four categories based on two attributes, say
A and B, of the population. We obtain counts (oij) in each
category, and tabulate the results as follows:

B
A True False Totals

True o11 o12 n1·

False o21 o22 n2·

Totals n·1 n·2 n··

The values in the margin (n1·, n2·, n·1, n·2) are row and
column totals, and n·· is the grand total. The null hypothesis
H0 of this test is that A and B are mutually independent,
i.e. knowing A gives no additional information about B. More
precisely, if H0 holds, we expect that:

o11

o11 + o12

≈
o21

o21 + o22

≈
n·1

n·1 + n·2

4.

We can then compute expected values (eij) for the four cells
in the table as follows:

eij =
ni·n·j

n··

3We exclude the idempotent operation and redundant NULL-check results
because the total number of bugs is too small to be statistically significant.

4To see this is true, consider 100 white balls in an urn. We first randomly
draw 40 of them and put a red mark on them. We put them back in the urn.
Then we randomly draw 80 of them and put a blue mark on them. Obviously,
we should expect roughly 80% of the 40 balls with red marks to have blue
marks, as should we expect roughly 80% of the remaining 60 balls without
the red mark to have a blue mark.

9

We use a “chi-squared” test statistic [14]:

T =
∑

i,j∈{1,2}

(oij − eij)
2

eij

to measure how far the observed values (oij) deviates from the
expected values (eij). Using the T statistic, we can derive the
the probability of observing oij if the null hypothesis H0 is
true. This probability is called the p-value.5 The smaller the p-
value, the stronger the evidence against H0, thus the stronger
the correlation between attributes A and B.

B. Data acquisition and test results

In our previous work [8], we used the xgcc system to
check 2055 files in Linux 2.4.1. These focused on serious
system crashing hard bug and collected more than 1800
serious hard bugs in 551 files. The types of bugs we checked
for included null pointer dereference, deadlocks, and missed
security checks. We use these bugs to represent the class
of serious hard errors, and derive correlation with program
redundancies.

We cross-classify the program files in the Linux kernel
into the following four categories and obtain counts in each:

1) o11: number of files with both redundancies and hard
errors.

2) o12: number of files with redundancies but not hard
errors.

3) o21: number of files with hard errors but not redundan-
cies.

4) o22: number of files with neither redundancies nor hard
errors.

We can then carry out the test described in section VII-A
for the redundant assignment checker, dead code checker, and
redundant conditional checker.

The result of the tests are given in Tables V through VIII.
Note that in the aggregate case, the total number of redun-
dancies is less than the sum of number of redundancies from
each of the four checkers. That is because we avoid double
counting files that are flagged by two or more checkers. As we
can see, the correlation between redundancies and hard errors
are extremely high, with p-values being approximately 0 in
all four cases. The results strongly suggest that redundancies
often signal confused programmers, and therefore are a good
predictor for hard, serious errors.

C. Predicting hard errors

In addition to the qualitative measure of correlation, we
want to know quantitatively how much more likely it is that
we will find hard errors in a file that contains one or more
redundant operations. More precisely, let E be the event that
a given source file contains one or more hard errors, and R be
the event that it has one or more forms of redundant operations,

5Technically, under H0, T has a χ2 distribution with one degree of
freedom. p-value can be looked up in the cumulative distribution table of
the χ2

1
distribution. For example, if T is larger than 4, the p-value will go

below 5%.

Redundant Hard Bugs
Assignments Yes No Totals

Yes 345 435 780
No 206 1069 1275

Totals 551 1504 2055

T = 194.37, p-value = 0.00

TABLE V

CONTINGENCY TABLE: REDUNDANT ASSIGNMENTS VS. HARD BUGS.

THERE ARE 345 FILES WITH BOTH ERROR TYPES, 435 FILES WITH A

REDUNDANT ASSIGNMENTS AND NO HARD BUGS, 206 FILES WITH A HARD

BUG AND NO REDUNDANT ASSIGNMENTS, AND 1069 FILES WITH NO BUGS

OF EITHER TYPE. A T -STATISTIC VALUE ABOVE FOUR GIVES A p-VALUE

OF LESS THAN 0.05, WHICH STRONGLY SUGGESTS THE TWO EVENTS ARE

NOT INDEPENDENT. THE OBSERVED T VALUE OF 194.37 GIVES A

p-VALUE OF ESSENTIALLY 0, NOTICEABLY BETTER THAN THE STANDARD

THRESHOLD. INTUITIVELY, THE CORRELATION BETWEEN ERROR TYPES

CAN BE SEEN IN THAT THE RATIO OF 345/435 IS CONSIDERABLY LARGER

THAN THE RATIO 206/1069 — IF THE EVENTS WERE INDEPENDENT, WE

EXPECT THESE TWO RATIOS TO BE APPROXIMATELY EQUAL.

Hard Bugs
Dead Code Yes No Totals

Yes 133 135 268
No 418 1369 1787

Totals 551 1504 2055

T = 81.74, p-value = 0.00

TABLE VI

CONTINGENCY TABLE: DEAD CODE VS. HARD BUGS

we can compute a confidence interval for T ′ = (P (E|R) −
P (E))/P (E), which measures how much more likely we are
to find hard errors in a file given the presence of redundancies.

The prior probability of hard errors is computed as follows:

P (E) =
Number of files with hard errors

Total number of files checked
=

551

2055
= 0.2681

We tabulate the conditional probabilities and T ′ values in
Table IX. (Again, we excluded the idempotent operations and
redundant NULL-checks because of their small bug sample.)
As shown in the table, given presence of any form of redundant
operation, it is roughly 45%− 100% more likely we will find
an error in that file than in a randomly selected file.

Redundant Hard Bugs
Conditionals Yes No Totals

Yes 75 79 154
No 476 1425 1901

Totals 551 1504 2055

T = 40.65, p-value = 0.00

TABLE VII

CONTINGENCY TABLE: REDUNDANT CONDITIONALS VS. HARD BUGS

10

R R ∧ E R P(E|R) P(E|R) − P(E)
Standard

Error
95% Confidence
Interval for T ′

Assign 353 889 0.3971 0.1289 0.0191 48.11% ± 13.95%
Dead Code 30 56 0.5357 0.2676 0.0674 99.82% ± 49.23%

Conditionals 75 154 0.4870 0.2189 0.0414 81.65% ± 30.28%
Aggregate 372 945 0.3937 0.1255 0.0187 46.83% ± 13.65%

TABLE IX

PROGRAM FILES WITH REDUNDANCIES ARE ON AVERAGE ROUGHLY 50% MORE LIKELY TO CONTAIN HARD ERRORS

Hard Bugs
Aggregate Yes No Totals

Yes 372 573 945
No 179 931 1110

Totals 551 1504 2055

T = 140.48, p-value = 0.00

TABLE VIII

CONTINGENCY TABLE: PROGRAM REDUNDANCIES (AGGREGATE) VS.

HARD BUGS

VIII. DETECTING SPECIFICATION MISTAKES

This section describes how to use redundant code actions
to find several types of specification errors and omissions.
Often program specifications give extra information that allow
code to be checked: whether return values of routines must be
checked against NULL, which shared variables are protected by
which locks, which permission checks guard which sensitive
operations, etc. A vulnerability of this approach is that if a
code feature is not annotated or included in the specification, it
will not be checked. We can catch such omissions by flagging
redundant operations. In the above cases, and in many others,
at least one of the specified actions makes little sense in
isolation — critical sections without shared states are pointless
as are permission checks that do not guard known sensitive
actions. Thus, if code does not intend to do useless operations,
then such redundancies will happen exactly when checkable
actions have been missed. (At the very least we will have
caught something pointless that should be deleted.) We sketch
four examples below, and close with two case studies that use
redundancies to find missing checkable actions.

Detecting omitted null annotations. Tools such as
Splint [12] let programmers annotate functions that can return
a null pointer with a “null” annotation. The tool emits an
error for any unchecked use of a pointer returned from a null
routine. In a real system, many functions can return null, mak-
ing it easy to forget to annotate them all. We can catch such
omissions using redundancies. We know only the return value
of null functions should be checked. Thus, a check on a non-
annotated function means that either the function: (1) should
be annotated with null or (2) the function cannot return
null and the programmer has misunderstood the interface. A
variant of this technique has been applied with success in [11],
and also in the checker described in Section VI.

Finding missed lock-variable bindings. Data race detec-
tion tools such as Warlock [24] let users explicitly bind locks
to the variables they protect. The tool warns when annotated

variables are accessed without their lock held. However, lock-
variable bindings can easily be forgotten, causing the variable
to be (silently) unchecked. We can use redundancies to catch
such mistakes. Critical sections must protect some shared state:
flagging those that do not will find either (1) useless locking
(which should be deleted for better performance) or (2) places
where a shared variable was not annotated.

Missed “volatile” annotations. As described in Sec-
tion IV, in C, variables with unusual read/write semantics must
be annotated with the “volatile” type qualifier to prevent the
compiler from doing optimizations that are safe on normal
variables, but incorrect on volatile ones, such as eliminating
duplicate reads or writes. A missing volatile annotation
is a silent error, in that the software will usually work, but
only occasionally give incorrect results on certain hardware-
compiler combinations. As shown, such omissions can be
detected by flagging redundant operations (reads or writes)
that do not make sense for non-volatile variables.

Missed permission checks. A secure system must guard
sensitive operations (such as modifying a file or killing a pro-
cess) with permission checks. A tool can automatically catch
such mistakes given a specification of which checks protect
which operations. The large number of sensitive operations
makes it easy to forget a binding. As before, we can use
redundancies to find such omissions: assuming programmers
do not do redundant permission checks, finding permission
check that does not guard a known sensitive operation signals
an incomplete specification.

A. Case study: Finding missed security holes

In a separate paper [3] we describe a checker that found
operating system security holes caused when an integer read
from untrusted sources (network packets, system call param-
eters) was passed to a trusting sink (array indices, length
parameters in memory copy operations) without being checked
against a safe upper and lower bound. A single violation can
let a malicious attacker take control of the entire system.
Unfortunately, the checker is vulnerable to omissions. An
omitted source means the checker will not track the data
produced. An omitted sink means the checker will not warn
when unsanitized data reaches it.

When implementing the checker we used the ideas in this
section to detect such omissions. Given a list of known sources
and sinks, the normal checking sequence is: (1) the code reads
data from an unsafe source, (2) checks it, and (3) passes it to
a trusting sink. Assuming programmers do not do gratuitous
sanitization, a missed sink can be detected by flagging when

11

code does steps (1) and (2), but not (3). Reading a value from
a known source and sanitizing it implies the code believes
the value will reach a dangerous operation. If the value does
not reach a known sink, we have likely missed one in our
specification. Similarly, we could (but did not) infer missed
sources by doing the converse of this analysis: flagging when
the OS sanitizes data we do not think is tainted and then passes
it to a trusting sink.

The analysis found roughly 10 common uses of sanitized
inputs in Linux 2.4.6 [3]. Nine of these uses were harmless;
however one was a security hole. Unexpectedly, this was not
from a specification omission. Rather, the sink was known,
but our inter-procedural analysis had been overly simplistic,
causing us to miss the path to it. The fact that redundancies
flag errors both in the specification and in the tool itself was
a nice surprise.

B. Case study: Helping static race detection

We have developed a static race detection tool, Rac-
erX [10], that has been dramatically improved by explicitly
using the fact that programmers do not perform redundant
operations.

At a high level, the tool is based on a static lockset
algorithm similar to the dynamic version used in Eraser [23]. It
works roughly as follows: (1) the user supplies a list of locking
functions and a source base to check; (2) the tool compiles
the source base and does a context-sensitive interprocedural
analysis to compute the set of locks held at all program points;
(3) RacerX warns when shared variables are used without a
consistent lock held.

This simple approach needs several modifications to be
practical. We describe two problems below that can be coun-
tered in part by using the ideas in this paper.

First, it is extremely difficult to determine if an unprotected
access is actually an bug. Many unprotected accesses are
perfectly acceptable. For example, programmers intentionally
do unprotected modifications of statistics variables for speed,
or they may orchestrate reads and writes of shared variables
to be non-interfering (e.g., a variable that has a single reader
and writer may not need locking). An unprotected access
is only an error if it allows an application-specific invariant
to be violated. Thus, reasoning about such accesses requires
understanding complex code invariants and actual interleav-
ings (rather than potential ones), both of which are often
undocumented. In our experience, a single race condition
report can easily take tens of minutes to diagnose. Even at
the end it may not be possible to determine if the report is
actually an error. In contrast, other types of errors found with
static analysis often take seconds to diagnose (e.g., uses of
freed variables, not releasing acquired locks).

We can simplify this problem using a form of redundancy
analysis. The assumption that programmers do not write
redundant critical sections, implies that the first, last, and only
shared data accesses in a critical section are special:

• If a variable or function call is the only statement within
the critical section, we have very strong evidence that
the programmer thinks (1) the state should be protected

1 /* ERROR: linux-2.5.62/drivers/char/esp.c:
2 * 2313:block til ready: calling <serial out-info>

3 * without “cli()”!
4 */
5 restore flags(flags); /* re-enable interrupts */
6 set current state(TASK INTERRUPTIBLE);
7 if (tty hung up p(filp)
8 | | !(info−>flags & ASYNC INITIALIZED)) {
9 . . .

10 }
11

12 /* non-disabled access to serial out-info! */
13 serial out(info, UART ESI CMD1, ESI GET UART STAT);
14 if (serial in(info, UART ESI STAT2) & UART MSR DCD)
15 do clocal = 1;
16 . . .
17

18 /* Example 1 drivers/char/esp.c:1206 */
19 save flags(flags); cli();
20 /* set baud */
21 serial out(info, UART ESI CMD1, ESI SET BAUD);
22 serial out(info, UART ESI CMD2, quot >> 8);
23 serial out(info, UART ESI CMD2, quot & 0xff);
24 restore flags(flags);
25

26 . . .
27

28 /* Example 2: drivers/char/esp.c:1426 */
29 cli();
30 info−>IER &= ˜UART IER RDI;
31 serial out(info, UART ESI CMD1, ESI SET SRV MASK);
32 serial out(info, UART ESI CMD2, info−>IER);
33 serial out(info, UART ESI CMD1, ESI SET RX TIMEOUT);
34 serial out(info, UART ESI CMD2, 0x00);
35 sti();

Fig. 15. Error ranked high because of redundancy analysis: there were 28
places where the routine serial out was used as the first or last statement
in a critical section.

in general and (2) that the acquired lock enforces this
protection.

• Similarly, the first and last accesses of shared states in a
critical section also receive special treatment (although to
a lesser degree), since programmers often acquire a lock
on the first shared state access that must be protected and
release it immediately after the last one–i.e., they do not
gratuitously make critical sections large.

A crucial result of these observations is that displaying
such examples of where a variable or function was explicitly
protected makes it very clear to a user of RacerX what exactly
is being protected. Figure 15 gives a simple example of this
from Linux. There were 37 accesses to serial out with
the argument info with some sort of lock held, in contrast
there was only one unlocked use. This function-argument pair
was the first statement of a critical section 11 times and the
last one 17 times. Looking at the examples it is obvious
that the programmer is explicitly disabling interrupts6 before

6cli() clears the Interrupt Enable Flag on x86 architectures, thus it
prevents preemption, and has the effect of acquiring a global kernel lock on
single processor systems. sti() and restore flags(flags) restores
the Interrupt Enable Flag. They can be thought of as releasing the kernel lock
previously acquired by cli().

12

invoking this routine. In particular we do not have to look at
the implementation of serial out and try to reason about
whether it or the device it interacts with needs to be protected
with disabled interrupts. In practice we almost always look at
errors that have such features over those that do not.

A second problem with static race detection is that
many seemingly multi-threaded code paths are actually single-
threaded. Examples include operating system interrupt han-
dlers and initialization code that runs before other threads have
been activated [23]. Warnings for accesses to shared variables
on single-threaded code paths can swamp the user with false
positives, at the very least hiding real errors and in the worse
case causing the user to discard the tool.

This problem can also be countered using redundancy
analysis. We assume that in general programmers do not do
spurious locking. We can thus infer that any concurrency
operation implies that the calling code is multithreaded. These
operations include locking, as well as calls to library rou-
tines that provide atomic operations such as atomic add
or test and set. (From this perspective, concurrency calls
can be viewed as carefully inserted annotations specifying that
code is multithreaded.)

RacerX considers any function to be multithreaded if con-
currency operations occur (1) anywhere within the function,
or (2) anywhere above it in the call chain7. Note that such
operations below the function may not indicate the function
itself is multithreaded. For example, it could be calling library
code that always conservatively acquires locks. RacerX com-
putes the information for (1) and (2) in two passes. First, it
walks over all functions, marking them as multithreaded if
they do explicit concurrency operations within the function
body. Second, when doing the normal lockset computation it
also tracks if it has hit a known multithreaded function. If so,
it adds this annotation to any error emitted.

Finally, static checkers have the invidious problem that
errors in their analysis often cause silent false negatives.
Redundancy analysis can help find these: critical sections that
contain no shared states imply that either the programmer
made a mistake or the analysis did. We found eight errors in
the RacerX implementation when we modified the tool to flag
empty critical sections. There were six minor errors, one error
where we mishandled arrays (and so ignored all array uses
indexed by pointer variables) and a particularly nasty silent
lockset caching error that caused us to miss over 20% of all
code paths.

IX. RELATED WORK

In writing the five redundancy checkers, we leverage
heavily from existing research on program redundancy detec-
tion and elimination. Techniques such as partial redundancy
elimination [18], [20], [21] and dead code elimination algo-
rithms [1], [17], [19] have long been used in optimizing com-
pilers to reduce code size and improve program performance.
While our analyses closely mirror these ideas at their core,

7Since RacerX is a static tool, we approximate this information by a simple
reachability analysis on the static call graph.

there are two key differences that distinguish our approach to
that used in optimizing compilers:

1) Optimizers typically operate on a low-level intermedi-
ate representation (IR) with a limited set of primitive
operations on typeless pseudo-registers. In contrast, our
analyses need to operate at the source level and work
with (or around) the full-blown semantic complexity
of C. The reason is three-fold: a) many redundant
operations are introduced in the translation from source
constructs to intermediate representations, making it
hard to distinguish ones that pre-exist in the source
program; b) useful diagnostic information such as types
(e.g. unsigned vs. signed) and variable or macro
names (e.g. DEBUG) are typically discarded during the
translation to IR—we find such information essential in
focused suppression of false positives; c) the translation
to IR usually changes the source constructs so much that
reporting sensible warning messages at the IR level is
extremely difficult, if not impossible.

2) While being sound and conservative is vital in optimiz-
ing compilers, error detection tools like ours can afford
(and are often required) to be flexible for the sake of
usefulness and efficiency. The redundant NULL checker
in Section VI harvests function interface specifications
from a statistical analysis of their usage patterns. Al-
though the analysis is effective, it is neither sound nor
conservative, and therefore would most likely not be
admissible in optimizers.

3) Compilers are typically invoked far more frequently than
checking tools during the development cycle. There-
fore, speed is essential for the analyses being used in
the optimizer. Expensive path-sensitive algorithms are
carried out sparingly, if at all, on small portions of
performance critical code simply because their time
complexity usually outweighs their benefit. In contrast,
checking tools like ours are less frequently run and
can therefore afford to use more expensive analyses.
The redundant conditional checker is one such example.
The less stringent speed requirement does give us a
substantial edge in detecting more classes of errors with
more accuracy.

Redundancy analyses have also been used in existing
checking tools. Fosdick and Osterweil first applied data flow
anomaly detection techniques in the context of software relia-
bility. In their DAVE system [22], they used a depth first search
algorithm to detect a set of variable def-use type of anomalies
such as uninitialized read, double definition, etc. However,
according to our experiments, path insensitive analysis like
theirs produces an overwhelming number of false positives,
especially for the uninitialized read checker. We were unable
to find experimental validations of their approach to make a
meaningful comparison.

Recent releases of the GNU C compiler (version 3 and up)
provides users with the “-Wunreachable-code” option
to detect dead code in the source program. However, their
analysis provides no means of controlled suppression of false
positives, which we find essential in limiting the number of

13

false warnings. Also, because of its recent inception, the dead
code detection algorithm is not yet fully functional8 as of this
writing.

Dynamic techniques [7], [16] instruments the program and
detects anomalies that arise during execution. However, they
are weaker in that they can only find errors on executed paths.
Furthermore, the run-time overhead and difficulty in instru-
menting low-level operating system code limits the applicabil-
ity of dynamic approaches. The effectiveness of the dynamic
approach is unclear because of the lack of experimental results.

Finally, some of the errors we found overlap with
ones detected by other non-redundant checkers. For exam-
ple, Splint [12] warns about fall-through case branches in
switch statements even when they do not cause redundan-
cies. It could have (but did not) issued a warning for the error
shown in Figure 4.9 However, many if not most of the errors
we find (particularly those in Section V and Section VI) are
not found by other tools and thus seem worth investigating.
Unfortunately we cannot do a more direct comparision to
Splint because it lacks experimental data and we were unable
to use it to compile the programs we check.

X. CONCLUSION

This paper explored the hypothesis that redundancies,
like type errors, flag higher-level correctness mistakes. We
evaluated the approach using five checkers which we applied to
the Linux, OpenBSD, and PostgreSQL. These simple analyses
found many surprising (to us) error types. Further, they corre-
lated well with known hard errors: redundancies seemed to flag
confused or poor programmers who were prone to other errors.
These indicators could be used to identify low-quality code
in otherwise high-quality systems and help managers choose
audit candidates in large code bases.

XI. ACKNOWLEDGEMENT

This research was supported in part by DARPA contract
MDA904-98-C-A933 and by a grant from the Stanford Net-
working Research Center. Dawson Engler is partially sup-
ported by an NSF Career Award. We thank Andy Chou, God-
mar Back, Russel Greene, Ted Kremenek, and Ted Unangst
for their help in writing this paper. We would also like to
thank the editors and the anonymous reviewers for their helpful
comments.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[2] A. Aiken, M. Fahndrich, and Z. Su. Detecting races in relay ladder
logic programs. In Proceedings of the 1st International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
April 1998.

[3] K. Ashcraft and D.R. Engler. Using programmer-written compiler
extensions to catch security holes. In Proceedings of 2002 IEEE
Symposium on Security and Privacy, May 2002.

8One sample error in the GCC analysis is reported at
http://gcc.gnu.org/ml/gcc-prs/2003-03/msg01359.html.

9Apparently the parser was having trouble understanding the code and did
not get far enough to check the problem part of the program.

[4] T. Ball and S.K. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN 2001 Workshop on Model Checking of
Software, May 2001.

[5] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding
dynamic programming errors. Software: Practice and Experience,
30(7):775–802, June 2000.

[6] G. Casella and R. L. Berger. Statistical Inference. Wadsworth Group,
Pacific Grove, CA, 2002.

[7] F. T. Chan and T. Y. Chen. AIDA–a dynamic data flow anomaly de-
tection system for Pascal programs. Software: Practice and Experience,
17(3):227–239, March 1987.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D.R. Engler. An empirical
study of operating systems errors. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, October 2001.

[9] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-
level software. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, June 2001.

[10] D.R. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, October 2003.

[11] D.R. Engler, D.Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems code.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, pages 57–72. ACM Press, October 2001.

[12] D. Evans, J. Guttag, J. Horning, and Y.M. Tan. LCLint: a tool for using
specifications to check code. In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 87–96. ACM
Press, December 1994.

[13] C. Flanagan, M.R.K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of
the SIGPLAN ’02 Conference on Programming Language Design and
Implementation, pages 234–245, June 2002.

[14] D. Freedman, R. Pisani, and R. Purves. Statistics. W W Norton & Co.,
third edition, September 1997.

[15] S. Hallem, B. Chelf, Y. Xie, and D.R. Engler. A system and language
for building system-specific, static analyses. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 69–82. ACM Press, June 2002.

[16] J. C. Huang. Detection of data flow anomaly through program instru-
mentation. IEEE Transactions on Software Engineering, 5(3):226–236,
May 1979.

[17] K. Kennedy. In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter A Survey of Data Flow
Analysis Techniques, pages 5–54. Prentice-Hall, 1981.

[18] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proceedings
of the SIGPLAN ’92 Conference on Programming Language Design and
Implementation, pages 224–234, June 1992.

[19] J. Knoop, O. Rüthing, and B. Steffen. Partial dead code elimination.
In Proceedings of the SIGPLAN ’94 Conference on Programming
Language Design and Implementation, pages 147–158, June 1994.

[20] E. Morel and C. Renvoise. Global optimization by suppression of partial
redundancies. Communications of the ACM, 22(2):96–103, February
1979.

[21] E. Morel and C. Renvoise. In S. Muchnick and N. Jones, editors, Pro-
gram Flow Analysis: Theory and Applications, chapter Interprocedural
Elimination of Partial Redundancies, pages 160–188. Prentice-Hall,
1981.

[22] L.J. Osterweil and L. D. Fosdick. DAVE–a validation error detection
and documentation system for fortran programs. Software: Practice and
Experience, 6(4):473–486, December 1976.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multithreaded programming.
ACM Transactions on Computer Systems, 15(4):391–411, November
1997.

[24] N. Sterling. WARLOCK - a static data race analysis tool. In USENIX
Winter Technical Conference, pages 97–106, January 1993.

[25] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In The 2000
Network and Distributed Systems Security Conference. San Diego, CA,
February 2000.

Yichen Xie is a Ph.D. candidate in the Computer Science Department at
Stanford. He received his B.S. in Computer Science from Yale in 2001,

14

and M.S. in Computer Science from Stanford in 2003. His current research
interests include static program analysis and software model checking.

Dawson Engler is an Assistant Professor and Terman Fellow at Stanford. He
received his PhD from M.I.T. and his undergraduate degree from University
of Arizona, the latter in large part funded by being a bouncer. His past work
has ranged from extensible operating systems to dynamic code generation. His
current research focuses on developing techniques to find as many interesting
software errors as possible.

