Using model checking and execution generated
tests to find bugs in real code

Dawson Engler
Cristian Cadar, Junfeng Yang, Ted Kremenek, Paul Twohey
Stanford



Slide 1

DE11 old formal verification technique that hasn't met much success with software. other is a very new one that optimistic about
Dawson Engler, 8/4/2005

DE14 Dawson Engler, 8/4/2005



DE10

Background.

Lineage
Did thesis work building a new OS (exokernel)

Spent most of last 7 years developing static techniques
to find bugs in them

The goal: find as many serious bugs as possible.

This talk: two dynamic methods of finding bugs
Implementation-level model checking (since 2001)
Execution generated executions (this year)

Next: 1 minute overview of 7 years of static checking.



Slide 2

DE10

very slow process to generate bugs.
this was pretty hard, so spent the last 1/4th of
my life coming up with static techniques to find bugs.

our main religion is to find as many serious bugs as possible.
Dawson Engler, 8/4/2005



Context: finding bugs w/ static analysis

Systems have many ad hoc correctness rules

"sanitize user input before using it”; “"re-enable
interrupts after disabling” “acquire lock | before using x”

One error = compromised system
If we know rules, can check with extended compiler

Rules map to simple source constructs
Use compiler extensions to express them

save(flags):
cli();
Linux if(l(buf = kmalloc())) " -
drivers/ return O; TT int checker dldblr\oT r'el—"
raidD.c |restore(flags): enable ints
return buf;

Nice: scales, precise, statically find 1000s of errors



High bit: Works well.

A bunch of checkers:
System-specific static checking [OSDI'0O0] (Best paper)
Security checkers [Oakland’'02] & annotations [CCS'03]
Race conditions and deadlocks [SOSP'03]
Path-sensitive memory overflows [FSE'03]
Others [ASPLOS'00,PLDI'02,PASTE'02,FSE'0O2(award)]

Novel statistical-based program analysis
Infer correctness rules [SOSP'01]
Z-ranking [SAS'03]

Correlation ranking [FSE'O3]

Commercialized(ing): Coverity
Successful enough to have marketing dept: next 2 slides.



Coverity 's commercial history

Breakthrough Company Achieved éProductgrowth

technology  jncorporated ~  profitability and

out of proliferation
Stanford

2000-2002 2004-05

* Meta-level « Deluge of requests  : « 7 early adopter * Version 2.0 product
compilation from companies customers, released.
checker . wanting access to the: including VMWare,
(“Stanford . new technology. . SUN, Handspring. = Company quadruples
Checker")
detects 2000+ ' First customer signs: : * Coverity achieves ' 70+ customers including
bugs in Linux. = Sanera systems . profitability. - Juniper,

. Synopsys, Oracle,
Stﬂﬂf“rd .~ Veritas, nVidia,
o - palmOne.

- Self funded

oD —— 1 o 3dFJoo

[ = = T R




A partial list of 70+ customers...
EDA Storage Security
SYNOPSYS VERITAS ®Q MeAfee EE
GrosAY [cadence| panasas J&| Check Point
Networking Government Embedded
PN Qi Juniper e symbol
m el
Biz Applications 0OS Open Source
ORACLE' WIND RIVER & Mus
<bmesoftware

!LILPU(ML’; ) m
S0fTya Apache




DE12

Talk: dynamic techniques a static guy likes.

Static works well at checking surface visible rules
lock() paired with unlock(), don't deref tainted pointer...
Good: All paths + no run code = large bug counts.

Bad: weak at checking properties *implied* by code.

Implementation-level model checking:
How to use formal verification techniques on real code.
Several years of mixed results, then one big win.

Execution generated testing
Use code to automatically make up its inputs
Very new, but *very™ optimistic.



Slide 7

DE12 seconds to minutes to inspect. quick. dynamic much harder typically.
Dawson Engler, 8/4/2005



Model checking

Formal verification technique

Verification via “"exhaustive testing”: Do every possible
action to every possible system state.

Lots of tricks to make exponential space “tractable”
Works well for hardware.
Software = not so clear. Successes: Wagner's MOPS,
Mitchell's protocol work. But many failures.

We've used for several years for bug hunting.
Do every possible action to a state before going to next

Main lever: makes low-probability events as common as
high-probability = quickly find corner-case errors.

FLASH cache coherence protocol code [ISCA'O1]
AODV ad-hoc routing protocol [OSDI'02]

Linux TCP [NSDI'04]

Storage systems [OSDI'04,BUGS'05]. (this talk)



Model checking file system code.
Why:

File system bugs are some of most serious possible.

Extremely difficult to test: FS must be able to crash at
*any* point and *always™ recover to a valid state.

How: CMC

Implementation-level model checking (similar to Verisoft)
Main trick: run entire Linux kernel in model checker.

Results:

Checked 3 heavily-tested, widely-used Linux file
systems: ext3, JFS, ReiserFS.

Found 32 bugs in total

Best result: 10 cases where crash = lost metadata or
entire directories, including the root “/” directory.

Bugs considered serious: most patched within a day.



A four-slide crash course in model checking

How to explore every FS state?
Start from empty, formatted disk.
Foreach possible operation OP, clone disk, apply OP

mkdfr() fail: malloc()
rmdir() fail: diskread()
T il: ;

Ex1'e.r'na| ::.r'le:(l) 0 X Internal |faili cachelookup():
actions |''""¥ ctions |

unlink() acrio run: journal thread

mount()

unmount() write: block i + crash

CRASH

Check generated FS: if wrong, emit error, discard.
Cannonicalize + hash FS: If seen skip, otherwise explore



The core model checking algorithm

create initial state: S_O;
wl = {S0}; // initialize worklist

while(S = dequeue(wl)) {
foreach op in S.ops
// run “op” on copy of current state "S”

S’ = checkpoint(do_op(op, restore(clone(S))))

if(check_state(S') |= valid)
error “Error!”;

else if(hash_lookup(hash(S')) == false)
enqueue(wl, S')

Do all possible actions to state S before going to next
Viewing state as first class entity changes mindset.

Main issue: do_op(), clone(), checkpoint(), restore().



Galactic view of system: FiSC

Linux

model
CheCking fake HAL
loop S ——
| /root
AN
CMC | ] b
Fake FS ¢

/; \{cj.exﬁ

Main trick: Run entire linux kernel inside model checker.
clone() ~ fork(). checkpoint()/restore() ~ context switch



An OS hackers guide to building CMC

What maps to what
clone() ~ fork()

checkpoint()/restore() ~ context switch. Copy heap,
stack, globals to/from temporary memory.

run_op(): call into linux system call (mkdir(), rmdir(), ...)

How to make initial state?
Call init(), hack it so that when finishes returns to CMC
Checkpoint state, put on worklist.
Start checking.



How to check crashes?
When FS adds new dirty blocks to buffer cache

Write out “every” possible order of all dirty blocks
Copy disk to scratch memory, mount as FS, run fsck().
Check to see if recovered FS is what we expect.

During recovery tool
Cliched error: don't handle crash during recovery
After "every” write fsck does to disk, crash & restart.

Should produce same disk: fsck(d) = fsck(crash(fsck(d)))
Speed: fsck is a deterministic function

Simple: cache result of fsck(d)=d' so don't have to run.

Advanced: after an fsck write, don't crash and rerun if
would not change any value read by re-run fsck.



Plugging a file system intfo CMC

Since CMC runs Linux, checking a Linux FS "simple”

Need:
Fs utilities: mkfs, fsck
Specify which functions mark buffers as dirty.
Minimum disk and memory sizes (2MB, 16 pages for ext3)
Function to compute what FS must recover to after crash

Takes roughly 1-2 weeks for Junfeng to do.



The two goals of model checking

Expose all choice

Model checker needs to see these so it can try all
behaviors.

Do not explore "the same" state (choice)
State space is exponential
Exposing choice makes it more.

Many superficially different states ~ semantically same.
SO: Collapse, skip.



Checking all actions

External actions (mkdir, write(), ...)
Add as option in main model checking loop
Model abstract semantics so can apply to abstract FS.

Environmental and internal actions:

In general: a operation will do a set of specific actions
that, legally, could have been different (“choice points™)

cachelookup() returns a pointer, could have returned null
diskread() returns block, could have returned error
timer does not expire, could have expired.

buffer cache entry is not written, could have been.

The first order win of model checking: in each state, do
*each™* of these choice point possibilities.



Mechanics of choice points

If code hit N choice points, rerun 2”°N times, doing
each one differently.

Run on S, let kmalloc sys_mkdir(...) {
and cachelookup

succeed i£(I(b = cachelookup(..))
Run on S, only fail readblock(b);
kmalloc ‘
Run on S, only fail »
cachelookup. if(I(p = kmalloc(...)))
Run on S, fail both return —-ENOMEM;

(If hit new choice
points, also do)

Optimize: only do one "failure” choice per transition
Boring Error: "Bug if diskread fails & then kmalloc fails”




Adding a choice point to file system code

Easy: insert call o "cmc_choose(N)"
cmc_choose will return to callsite N times with return
values 0, 1, .., n-1

struct block* read_block(int i) {
struct block *b;

if (b = cache_lookup(i))) Returns two times,
if(cmc_choose(2) == (S———— 15" = return O
return b; 2nd = peturn 1

return disk_read (i);

}

Insert whenever specification lets code do one of
several actions.




Slightly subtle: make abstract concrete

Spec:"foo() returns NULL when allocation fails”
Where to put choice point?

T *foo (...) {

L)
if(...)

p = malloc();




Slightly subtle: make abstract concrete

Spec:"foo() returns NULL when allocation fails”
Wrong: put choice buried down where implementation

does T %00 (...) {

If(...)
If(...)
If(cmc_choose(2) == 0)
return NULL;
else

p = malloc();

Will only make choice when implementation does, rather
than when *could* make (always).



Slightly subtle: make abstract concrete

Right: Put error choice as first action so always
happens no matter what path implementation takes

T *foo (...) {
If(cmc_choose(2) == 0)
return NULL,;

L)
if(...)

p = malloc();

More extreme: insert error choice even if
*implementation* of foo() doesn't allocate memory!



DE13

After expose choice, cut down exponentials.

Downscale: less stuff = less states to explore.
Small disks. 2MB for ext3
Small memory. 16 pages for ext3
Tiny FS topology. 2-4 node

Canonicalization: remove superficial differences

General rule: setting things to constants: e.g. inode
generation #, mount count

1/ 4 A\ VW / 4 N\ rmnwm . W\ nm@ A\ 1/ 4 \\X-¥/4
Z 17, “2" "3

Filenames. “x”, “y”,

Exponential space, but not uniformly interesting
Guide search towards “more interesting” states

Bias towards states with more dirty buffers, new lines of
code executed, new FS topologies, ...



Slide 23

DE13 set everything to constants: inode gen #, mount counts, time fields, zeroing freed memory, unused disk blocks
Dawson Engler, 8/4/2005



DE6

Results

Error Type | VFS | ext2 | ext3 | JFS | Reiser | total
Data loss N/A | NJA| 1 8 1 10
False clean | N/JA | NJA | 1 1 2
Security 2 2 1 3+ 2
Crashes 1 10 1 12
Other 1 1 1 3
Total 2 2 5 21 2 32

32 in total, 21 fixed, 9 of the remaining 11
confirmed




Slide 24

DE6 security: happened on mkdir/creat: did lookup of name, lookup rfails if (1) name does not exist or

(2) memory allocation fails. code did not differentiate. so under low memory conditions attacker could create files with same
name in directory to hijack.

reiser just really big and slow. jfs guys responsive, so hit on. also have a really bad dynamic w.r.t. journal abort.
Dawson Engler, 8/4/2005



DE/

Root cause of worst errors: journalling bugs

To do an operation:
Record effects of operation in log (“intent”)
Apply operation to in-memory copy of FS data
Flush log (so know how to fix on-disk data). wait()
Flush data.

All FSes we check get this right.

To recover after crash
Replay log to fix FS.
Flush FS changes to disk. wait()
Clear log. Flush to disk.
All FSes we check get this wrong.



Slide 25

DE7 like all reliability based on duplication: duplicate intent and then action. make intent persistent, then flush out screwed up

datastructures.
Dawson Engler, 8/4/2005



ext3 Recovery Bug

recover_ext3_journall(...)
... jotrnal_recover(...) {
retval = -journal_récover(journal) // replay the journal

... ...
// clear the journal // sync maodifications to disk
e2fsck_journal_release(...) fsync_no super (...)
... }
j /

// Error! Empty macro, doesn’t sync dq;a/!
#define fsync_no_super(dev) do {} while (0)

Code was directly adapted from the kernel
But, fsync_no_super was defined as NOP



Recent work: making 10x lighter-weight

Running Linux in model checker incredibly invasive.
Hard to check different OS version, OS, or applications

Only needed so could checkpoint and restore! Instead
Checkpoint state by recording choices from initial disk

Restore state by: mounting copy of initial disk and
applying these choices to copy of initial disk

| /root | mkfs
R mkdir("/b"):
L c__ mkdir("/a/c");

Result: reduces to single ramdisk driver plus model
checking process



Results from version 2.0 (EXPLODE)

Version control bugs:
CVS: “cvs commit” does not
Bitkeeper: “"bk pull” + crash = completely wasted repo
Subversion: crash = corruption.

Linux RAID:

does not reconstruct bad sectors: marks disk as faulty,
removes from RAID, returns error.

Two sectors go bad on two disks, almost all
reconstruction fails.

NSF: write file, then read through hardlink =
different resulf.



Static analysis vs model checking

First question:  "How big is code?” "What does it do?"
To check? Must compile Must run.

Time: Hours. Weeks.

Don't understand?  So what. Big Problem.
Coverage? All paths! All paths! Executed paths.
FP/Bug time: Seconds to min Seconds to days.
Bug counts 100-1000s 0-10s

Big code: 10MLOC 10K

No results? Surprised. Less surprised.
Crash after check? Not surprised. More surprised (much).
Better at? Source visible |Code implications &

rules all ways to get errors



Model checking summary

Main trick:
Do every possible action to a state before going to next
Makes low-probability events as probable as high.

Mechanics: (1) expose all choice points, (2) collapse
semantically isomorphic states.

Works well when:
Bugs are very serious (to recoup pain)
Huge number of possible interleavings (to beat testing)

Checking storage systems a good case

Main source of errors: must always be able to recover to
valid file system state no matter where crash occurs.

Very difficult to reason about.
Result: found serious errors in every system we checked.



Execution generated testing
How to make code blow itself up

Dawson Engler & Cristian Cadar
Stanford University



Goal: find many bugs in systems code

Generic features:

Baroque interfaces, tricky input, rats nest of
conditionals.

Enormous undertaking to hit with manual testing.

Random "fuzz" testing

Charm: no manual work in‘ri:(c:(djag)s(inf x) {
Blind generation makes hard return -x:
:':pmfrzrr";c;rs for narrow if(x == 12345678)
return -x;
Also hard to hit errors that return x:
require structure }

The rest of this talk: a simple trick to finesse.



EGT: Execution generated testing[SPIN'O5]

Basic idea: use the code itself to construct its input!

Basic algorithm:
Symbolic execution + constraint solving.

Run code on symbolic input, initial value = "anything”

As code observes input, it tells us values input can be.

At conditionals that use symbolic input, fork
On true branch, add constraint that input satisfies check
On false that it does not.

Then generate inputs based on these constraints and re-
run code using them.



The toy example

int bad_abs(int x) { int bad_abs_egt(int x) {
if(x < 0) if(fork() == child)
return -x: set(x < 0 && ret = -x);
if(x == 12345678) return ret;
return -x; else
return x; set(x >= 0);
} if(fork() == child)
set(x = 12345678);
Initialize x to be “any int" set(ret = -x);
Code will return 3 times. olse return ret:
Solve consfrginfs at each set(x |= 12345678):
to get our 3 test cases. set(ret = x);
return ret;




The big picture

Implementation prototype
Do source-to-source transformation using Cil

Use CVCL decision procedure solver to solve constraints,
then re-run code on concrete values.

Robustness: use mixed symbolic and concrete execution.

Three ways to look at what's going on
Grammar extraction.
Turn code inside out from input consumer to generator

Sort-of Heisenberg effect: observations perturb symbolic
inputs into increasingly concrete ones. More definitive
observation = more definitive perturbation.

Next: one transformation, some results.



Mixed execution

Basic idea: given an operation:
If all of its operands are concrete, just do it.
If any are symbolic, add constraint.

If current constraints are impossible, stop.

If current path causes something to blow up, solve+emit.
If current path calls unmodelled function, solve and call.
If program exits, solve+emit.

How to track?

Use variable address to determine if symbolic or concrete

Note: symbolic assignment not destructive. Creates new
symbol.



Example transformation: "+"

T plus_rule(T x, T y) {

if(x and y are concrete)

return (concrete=x.concrete+y.concrete, <invalid>);
s = new symbolic var T;
if(x is concrete)

add_constraint(s = x.concrete + y.symbolic);
else if(y is concrete)

add_constraint(s = x.symbolic + y.concrete);
else

add_constraint(s = x.symbolic + y.symbolic);
return (concrete=<invalid>, symbolic = s);

Each var v has v.concrete and v.symbolic fields
If v is concrete, symbolic=<invalid> and vice versa.



Micro-case study: Mutt's UTF8 routine

Versions <= 1.4 have buffer overflow.

Used as main working example in recent OSDI paper,
which used carefully hand-crafted input to exploit.

Took routine, ran through EGT, immediately hit error.

Assumingly OSDI paper suggested increasing malloc from
n*2 bytes to n*7/3. We did this and reran. Blew up.

For input size 4 it took 34minutes to generate 458 tests
that give 96% statement coverage.



Case study: printf

Typical of systems code:
Highly complex, tricky interface.
Format string = exceptionally ugly, startling language

Nice for EGT:

complex conditionals = hard to test
mostly flat comparisons = easy to solve
multiple implementations = easy to check correctness.

Checked:

PintOS printf (developer reads standards for fun)
Reduced-functionality printf for embedded devices.
GCCfast printf



Printf results

Made format string symbolic. Test cases for size 4:
Pintos: 40 minutes, 3234 cases, 95% coverage
Gccefast: 87 minutes, 2105 cases, 98% coverage
Embedded printf: 21 minutes, 337 cases, 95% coverage

DE8

Representative subset:

“%lle” " %HOf" “%g%.” " % +I" “%#the” “ %00.”
"% #H" "om---" " %lG" “%chi” " %9Is%” " %0g"
“ %.E" " %e-u" " %9d" " %00 * %#t+-" " %0 u”




Slide 40

DES8 code expects these. but i don't know what most

of these mean. charm is you don't have to: automatically extracted
Dawson Engler, 8/4/2005



Two Bugs

Incorrect grouping of integers.

| printf("%'d", -155209728); |

prints "-15,5209,728" instead of "-155,209,728"
“"Dammit. I thought I fixed that.” -- Ben Pfaff

Incorrect handling of plus flags

"%" followed by a space means "a blank should be left
before a positive number (or empty string) produced by a
signed conversion”.

Pintos incorrectly leaves a blank before an unsigned flag.

"This case is so obscure I never would have thought of
that” --- Ben.



Server case study: Wsmp3

Mp3 server

2000 lines

Version 0.0.5 contains one known security hole.

We found this, plus three other overflows + one inf loop
Simple:

Make recv input symbolic:

ssize_t recv_model(int s, char *buf, size_t len, int flags) {
egt_make_bytes_symbolic(buf, msg_len):
return msg_len;

./configure && make && run
Re-feed packets back into wsmp3 while running valgrind.



DE5

Two EGT-found WsMp3 bugs

Network controlled infinite loop:

// cp points to 6™ character in msg.
while(cp[0] == "." || cp[0] == /")
for(i =1 cp[i] != O; i++) {

}

}

A buffer overflow

op = malloc(10);

// buf points to network msg
for(i = O; buf[i] |= "' i++)
op[i] = buf[il:




Slide 43

DE5 6th msg character is "." or "/" followed by {.|/}*
then a 0 will inf loop

buf points to message: if no spaces in first 10 characters = buffer overflow
Dawson Engler, 8/4/2005



Related work

Static test generation
Weak. Run into intractable problems promptly.

Dynamic test generation
Much: use manually-written specification.
Others: try to hit a given program point.
Nothing on getting comprehensive coverage for real code

Concurrent work: DART [pldiOb].

Very similar. Does not handle pointers, commits to
values early. Better at extracting code from
environment.



Conclusion
EGT [SPIN'O5]:

Automatic input generation for comprehensive execution.

Make input symbolic. Run code. If operation concrete,
do it. If symbolic, track constraints. Generate concrete
solution at end (or on way), feed back to code.

Finds bugs in (small) real code.
Zero false positives.

Combine with
model checking “"choice” to control environment decisions
static inference of rules (all paths = lots of data)



Current work

Purify on steroids: partially symbolic dynamic checking

Rather than “"was there a memory overflow” to “could
there have been a memory overflow?"”

Deep checking of network facing code.
Random tests = hard to hit packet of death.

EGT: jam symbolic packet through, automatically discover
ones that drive code down different paths.

Automatic cross checking

Take complex code and automatically discover how to
drive; then cross check across multiple implementations

Standard libraries (like printf), V2.22 of code vs V2.23

GUIs: standard wisdom = impossible to test
Generate “symbolic event” that can be anything, follow.



Conclusion

Static checking
Works well with surface visible rules
Big advantages: All paths. No run code.
Weak at: checking code implications. Dynamic opposite.

Model checking
Do all actions to a state.
Expose choice. Ignore superficial differences.
Works if bugs serious, lots of potential actions.

Execution generated testing
Automatic input generation for exhaustive testing.



Checking AODV with CMC [OSDI'02]

Properties checked
CMC: seg faults, memory leaks, uses of freed memory
Routing table does not have a loop
At most one route table entry per destination
Hop count is infinity or <= nodes in network
Hop count on sent packet is not infinity

Effort:
Protocol Code Checks Environment Cann'ic
Mad-hoc 3336 301 100 + 400 165
Kernel-aodv 4508 301 266 + 400 179
Aodv-uu 5286 332 128 + 400 185

Results:42 bugs in total, 35 distinct, one spec bug.
~1 bug per 300 lines of code.



Classification of Bugs

madhoc Kernel AODV-

AODV UU
Mishandling malloc failures 4 6 2
Memory leaks 5 3 o)
Use after free 1 1 0
Invalid route table entry o) o) 1
Unexpected message 2 o) o)
Invalid packet generation 3 2 (2) 2
Program assertion failures 1 1 (1) 1
Routing loops 2 3 (2) 2 (1)
Total bugs 18 16 (b) 8 (1)

LOC/bug 185 281 661



Shocked: when they checked the same static won. Mo st bugs shallow:

only missed 1! Found with model checking. Means bu gs were relatively
shallow, which was surprising. Also means that mod el checking missed
them, which | found astounding. In the end, model checking beat it, but A)
it's not entirely clear that is how it has to be.

SA only
Mishandling malloc failures 11 1 8
Memory leaks 8 5
Use after free 2
Invalid route table entry 1
Unexpected message 2
Invalid packet generation 7
Program assertion failures 3
Routing loops 7

Total bugs 21 2

=2

13



Who missed what and why.

Static: more code + more paths = more bugs (13)
Check same property: static won. Only missed 1 CMC bug

Why CMC missed SA bugs: no run, no bug.
6 were in code cut out of model (e.g., multicast)
6 because environment had mistakes (send_datagram())
1 in dead code
1 null pointer bug in model!

Why SA missed model checking bugs: no check, no bug
Model checking: more rules = more bugs (21)
Some of this is fundamental. Next three slides discuss.



Find bugs no easily visible to inspection.E.g., tree is balanced,
single cache line copy exists, routing table does not have loops

Significant model checking win #1

Subtle errors: run code, so can check its implications
Data invariants, feedback properties, global properties.

Static better at checking properties in code, model
checking better at checking properties implied by code.

The CMC bug SA checked for and missed:

for(i=0; | <cnt;i++) {
tp = malloc(sizeof *tp);
if('1tp)
break;
tp->next = head; head = tp;

for(i=0, tp = head; i< cnt ;i++, tp=tp->next) {
t_entry = getentry(tp->unr_dst_ip);




Finds errors without having to anticipate all the w ays that these
errors could ajise. In Contraié, static analysi%& annot do such
,

Significanto checking win c ways of

causing an error.

End-to-end: catch bug no matter how generated

Static detects ways to cause error, model checking
checks for the error itself.

Many bugs easily found with SA, but they come up in so
many ways that there is no percentage in writing checker

Perfect example: The AODV spec bug:

Time goes backwards if old message shows up:

cur_rt = getentry(recv_rt->dst_Ip);
// bug If: recv_rt->dst_seq < cur_rt->dst_seq!
if(cur_rt && ...){

cur_rt->dst_seq =recv_rt->dst_seq;

Not hard to check, but hard to recoup effort.



ERROR synt axerror
OFFENDI NG COVMAND: - -nostri ngval - -

STACK:

true
true



