
Exclusion Bias and the Estimation of Peer Effects∗

Bet Caeyers† Marcel Fafchamps‡

April 2023

Abstract

We estimate peer effects in two datasets with non-overlapping peer groups: golfers who play

tournaments randomized in groups of three; and students who are randomly paired for in-class

computer-assisted learning. In such data, existing instrumental variable methods to address

bias in peer effect estimation do not apply. Alternative estimation methods exist that do not

require instruments, but they fail to correct for one understudied but important source of bias

which we call ‘exclusion bias’. We provide formulas for the magnitude of this bias when fixed

effects are included at the level of selection pools. We then derive a consistent estimator that

corrects for this bias and propose a simple method for testing the presence of endogenous peer

effects. Using this novel method, we find positive peer effects in the first case – consistent with

emulation between golfers during the tournament – and negative peer effects in the other –

consistent with congestion or wasteful competition for the computer between students. These

results differ markedly from existing methods in terms of magnitude, significance, and inference.
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1 Introduction

Since Manski’s (1993) seminal article, the estimation of endogenous peer effects has raised con-

siderable interest among economists. Social contact may spur emulation, cooperation, and social

learning between peers. But it can also lead to congestion, competition, or conflict. Promising

environments in which to identify such peer effects are situations in which agents are randomly

assigned to a group within which they have to complete a task, either individually or as a team.

Random assignment takes care of possible self-selection on common ability and interest; and the

partition of individuals into mutually exclusive groups reduces contamination across groups and

should therefore improve causal identification. Examples of such studies include: the assignment

of students to classes (e.g., Carrell et al. 2019), dorm rooms (e.g., Sacerdote 2001, Carrell et al.

2013, Corno et al. 2022), and study groups (e.g., Carrell et al. 2019; Fafchamps and Mo 2018); the

assignment of worker to teams (e.g., Bandiera et al 2009); the assignment of athletes to groups in a

tournament (e.g., Guryan et al. 2009); and the assignment of entrepreneurs to social groups (e.g.,

Fafchamps and Quinn 2018, Cai and Szeidl 2018). In all these examples, individuals are assigned

to a group from within distinct selection pools – e.g., a cohort, school, or classroom. Since selec-

tion pools typically differ in important ways, any analysis of endogenous peer effects must include

selection pool fixed effects.

In this paper, we use a novel method to revisit the estimation of endogenous peer effects in

two separate such applications. In the first application, we re-examine golfers randomly divided

in groups of three for (the first part of) a tournament (e.g., Guryan et al. 2009). Our empirical

relationship of interest is whether a player plays better or worse than predicted by their past

performance when they are matched with players who play better than predicted by their past

performance - and vice versa. Because tournaments differ in the pool of participating players, it

is essential that we control for the average quality of players in a tournament, which we do by

including tournament fixed effects. In the second application, we re-examine students randomly

divided in pairs to work on computer assisted learning in their classroom (e.g., Fafchamps and Mo

2018). Our empirical relationship of interest is whether a student performs better at the exam than

predicted by their previous score when their assigned peer also performed better than predicted

by their own previous score. We include classroom fixed effects to account for variation in average
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student ability across classes. In both cases, we assume the absence of correlated effects within

groups other than those occurring at the level of the selection pool – i.e., the tournament in the

case of golfers, and the classroom in the case of students. We believe this assumption is reasonable

given the controlled nature of each setting: in the tournament, all golfers play the same course

in the same conditions; in the classroom, all students are taught in the same way by the same

teachers.

In both cases, a positive relationship would imply mutually reinforcing peer effects, indicating

strategic complements – which could be caused, for instance, by emulation or mutual assistance

between peers. In contrast, a negative relationship would imply strategic substitutes – for instance

driven by congestion, noxious competition, or emotional drain. In our empirical analysis, we find

positive endogenous peer effects among golfers, consistent with an emulation interpretation, and we

find negative endogenous peer effects among students, consistent with a congestion or competition

interpretation. Our findings differ markedly from results obtained using existing endogenous peer

effect estimation methods, in terms of magnitude, significance, and inference (e.g., Guryan et al.

2009 and Fafchamps and Mo 2018).

The main innovation of our paper is the novel methodology that we develop to obtain these

estimates. The literature has essentially developed two main approaches for estimating endoge-

nous peer effects. Both formalize peer effects as taking place on a network where individuals are

nodes and peer effects are links. Non-overlapping peer groups are represented as a block diagonal

adjacency matrix.

The first of the two existing estimation methods relies on instrumental variables to address

endogeneity. One popular approach uses as instruments the exogenous characteristics of the peers

of my peers (who are not my peers). These characteristics satisfy the exclusion restriction since

they directly affect the behavior of my peers but not mine (e.g., Bramoullé et al. 2009, De Giorgi

et al. 2010). This intuition can be generalized to more distant peers (e.g., Kelejian and Prucha

1998, 1999; Lee et al. 2021). While all these approaches allow the estimation of endogenous and

exogenous peer effects in general network data, they do not help in situations where individuals are

partitioned into mutually exclusive groups since my peers do not have peers that are not also my

peers. This means that these methods produce no instruments. Rose (2017) also applies the idea

of using neighbors of neighbors, but achieves identification not by using instruments but by using
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fluctuations in the variances and covariances of the dependent variable in the social network. This

method also fails in non-overlapping group settings. Another instrumental approach, proposed by

Lee (2007), relies on variation in group size for identification. The logic behind this approach is that

larger groups generate larger multiplier effects. Graham (2008) also uses variation in peer group

size for identification, but relies on variances and covariances instead. In both cases, successful

identification requires having sufficient variation in the size of peer groups (e.g., Davezies et al.

2009). This does not apply to either of our two applications, for which group size is constant.

The second approach, discussed by Anselin (1988) and turned into a Stata command by Drukker

et al. (2013), draws from spatial econometrics (see also Anselin and Bera 1998). The method uses a

maximum likelihood approach to estimate endogenous peer effects directly from the network covari-

ance matrix between observations of the dependent variable, without the need for instruments.1 In

this more structural method, identification of endogenous peer effects is achieved from correlation

patterns between peers. Endogenous peer effects due to reflection (i.e., peers influence each other)

create a network covariance matrix that decays, in a mathematically precise way, as the network

distance between two individuals increases. In contrast, correlated shocks among peers manifest

themselves as correlation patterns between directly linked individuals, without spilling over through

the network. For groups, these take the form of group-level random effects. While this method is

applicable to many social networks (and to geographical data), its application to non-overlapping

peer groups requires assuming away correlated effects. This is because, in this case, endogenous

peer effects are not identified separately from correlated effects: peer effects do not spread be-

yond the group and, consequently, they are indistinguishable from group-level random/correlated

effects.2

We propose a novel approach to estimate endogenous peer effects that applies more generally,

including in settings with fixed group sizes. This approach shares a key similarity with the spatial

ML estimator (e.g., Anselin 1988): it relies on the covariance matrix between observations to

1The Stata command developed by Drukker et al. (2013) also implements the GMM instrumental variable ap-
proach of Kelejian and Prucha (1998). Like the IV estimators of Bramoullé et al. (2009), De Giorgi et al. (2010),
and Lee et al. (2021), this estimator cannot deal with non-overlapping groups.

2The reader familiar with time series analysis will recognize the analogy between endogenous peer effects, which
resemble AR1 autocorrelation in the sense that they create a covariogram that decays with distance; and group
random effects, which resemble a moving average process, in the sense that they create a covariogram that is positive
for linked nodes, and zero otherwise. With non-overlapping groups, there is no AR1 decay beyond the group and
thus both AR1 and moving average DGP produce the same covariogram, ruling out separate identification through
the network covariance of the observations. See Online Appendix B.5 for more details.
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identify peer effects. But it differs in one essential new feature: we correct for exclusion bias, an

important source of bias that, to date, has only received limited attention. Exclusion bias affects all

estimators relying on the covariance matrix for identification when they include pool fixed effects.

But it is most problematic in situations with non-overlapping peer groups of fixed size, for which

alternative IV estimators are not available.

We start by showing that exclusion bias arises from the fact that the assignment of peers is

done without replacement: i cannot be his own peer. When fixed effects are included at the level

of selection pools, the exclusion of i from the pool of i’s peers creates a small sample negative

relationship between i’s observation and that of his peers: if i is above average, the average of

those remaining in the pool is lower than i; conversely, if i is below average, the average of those

remaining in the pool is higher than i. After netting out the pool average via fixed effects, this

implies that i’s observation is negatively correlated with the sample average of the remaining peers

in the pool.3 Guryan et al. (2009) were the first to introduce the notion of exclusion bias when

testing for random peer assignment. They however ignore the presence of exclusion bias in the

estimation of endogenous peer effects.

We illustrate the magnitude of this bias in our two datasets, first by implementing a test of

random assignment of individuals into groups. We find that, had we ignored exclusion bias, we

would have incorrectly concluded that, in both datasets, peers were negatively assorted. Next, we

derive a formula for the asymptotic bias itself, which shows that exclusion bias disappears when

the size of each selection pool tends to infinity.4 Unlike top-level expressions of the bias provided

for instance in Angrist (2014), all formulas presented in this paper are expressed as functions of

the core parameters driving the bias: the size of the peer group and the size of the pool from which

peers are selected. We then use this formula to construct a consistent estimator of endogenous

peer effects. This estimator resembles the spatial maximum likelihood estimator of Anselin (1988),

except that it corrects for exclusion bias. One limitation of this estimator is that identification

requires assuming away correlated effects when peer groups are non-overlapping – a limitation that

3See Online Appendix A for a formal derivation of this statement.
4The source of bias is similar to what arises with autoregressive models in short panels: in such models, introducing

fixed effects generates a bias that only disappears when T , the number of periods, gets large enough (Nickell 1981).
In time series, this problem has been successfully addressed using lagged values as instruments (e.g., Arellano and
Bond 1991, Arellano and Bover 1995, Blundell and Bond 1998). Such instruments are not available in peer effect
models because of reverse feedback.
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also affects the spatial ML estimator in this case. Our new estimator is then used to estimate

endogenous peer effects in the golfer and student data. We find that, had we failed to correct for

exclusion bias, we would have erroneously concluded that peer effects were smaller in both cases.

In the golfer data, positive peer effects would have been rejected, and in the student data, negative

peer effects would have been overestimated. This means that ignoring exclusion bias presents a

real risk of drawing incorrect inference.

At the end of the paper, we briefly discuss how a correction for exclusion bias could be added

to the implementation of the ML estimator by Drukker et al. (2013). This correction would also

make it possible to obtain consistent estimates of peer effects in data with overlapping peer groups

and more general network or spatial configurations, while at the same time allowing for correlated

effects across peers.

The paper is organized as follows. In Section 2 we briefly introduce the two datasets and the

testing strategy used in our analysis. We then conduct a test of random assignment to peer groups

in Section 3. In Section 4 we derive an asymptotic formula for exclusion bias and use it to construct

a consistent estimator of endogenous peer effects in Section 5. The performance of our estimator is

illustrated using simulations. This estimator is applied to our two datasets in Section 6 to obtain

consistent estimates of peer effects in non-overlapping peer groups. Section 7 concludes. In Online

Appendix A we discuss in more detail the source of the exclusion bias, how the reflection bias and

exclusion bias combine, and the intuition behind the methodology that we propose in the paper to

simultaneously address both biases. Online Appendix B presents extensions of the method.ology

as well as a discussion of ways to avoid exclusion bias in IV regressions. All proofs are gathered

into Online Appendix C.

2 Data and testing strategy

When estimating peer effects, there are two types of causal identification that researchers may

have in mind. They may want to estimate the causal effect that an exogenous rise in the behavior

of one agent may have on the peers. This is the domain of diffusion experiments in which the

researcher ‘treats’ a random or carefully selected set of nodes and observes how the treatment affects

peers (e.g., Banerjee et al. 2013). Alternatively, the researcher may want to study the nature of
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peer interactions itself, for instance to determine whether a particular activity is characterized by

strategic complements or substitutes: e.g., does a sporting event create emulation among groups

of players; or does a particular environment generate wasteful competition or congestion between

peers. Our empirical applications belong to the second type of study: we are not seeking to identify

the ‘causal’ effect that treating one agent would have on its peers. Rather we want to determine

the nature of strategic interactions between agents by observing whether their performance in a

task is more correlated within than across groups.

To this effect, we investigate two existing experiments in which subjects within a selection pool

are randomly assigned to groups of fixed size and asked to perform a task in a tightly controlled

environment. The first dataset comes from golf tournaments in which participants are randomly

assigned to groups of players within their qualification category. Here we are using data made

publicly available by Guryan et al. (2009). The second dataset comes from Fafchamps and Mo

(2018) and includes Chinese primary school students randomly paired within their classroom for

a computer-assisted course lasting the entire academic year. In both cases, we limit our data to

groups of the same size – three in the golfer data and two in the student data. This is done to

ensure entire comparability across groups, but it also serves to demonstrate that our method works

with groups of fixed size for which instrumental variables do not exist. In the Guryan et al. (2009)

dataset, we drop observations involving golfers assigned to a group outside their selection pool

(6% of observations) since they do not fit our postulated data generation process. To speed up

an execution time that increases exponentially with the size of matrix G later in our analysis, we

reduce the number of observations by focusing on a random sub-set of 100 out of 302 selection

pools. This leaves a sample of 2,517 observations from 100 pools of 25 golfers each, on average,

organized in groups of three.

In both cases we want to estimate a standard linear-in-means model of peer effects (Manski,

1993):

yikl,t+1 = β1ȳ−ikl,t+1 + β2yiklt + β3ȳ−iklt + δl + ϵikl,t+1 (2.1)

where yikl,t+1 denotes an outcome of interest for individual i in group k from selection pool l at

time t + 1 and ȳ−ikl,t+1 is the average value of ykl,t+1 for the peers of i in group k from selection

pool l. The intercept is subsumed into the pool fixed effects δl. Coefficient β1 is the endogenous
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peer effect that measures the nature and extent of strategic interactions: if effort and performance

are strategic complements, we expect β1 > 0; if they are strategic substitutes, β1 < 1. Regressors

yiklt and ȳ−iklt measure the past performance of i and of his/her peers. Since past performance

of individual i is bound to affect their performance in our data, we expect β2 > 0. Coefficient

β3 estimates what is commonly referred to as an exogenous peer effect (or contextual peer effect):

β3 > 0 means that i’s performance is higher when matched with peers who have performed well in

the past, and lower if they have performed poorly; in contrast, β3 < 0 means that i’s performance

suffers when matched with peers who have done well in the past.

We include selection pool fixed effects δl to capture possible correlation in residuals within

selection pools, as is likely. But we assume that, conditional on δl, the residuals ϵikl,t+1 are not

correlated within groups. The suitability of this assumption depends on the context. Given the

inclusion of pool fixed effects and the controlled nature of both study environments, it is a reasonable

assumption in the two datasets we have selected. It implies that correlation in performance between

individuals in the same group must come either from endogenous or exogenous peer effects.

3 Testing for random peer assignment

When estimating model (2.1), peer self-selection is a major threat to identification because, if

individuals were left to their own device, they would sort differently depending on the nature of the

strategic interactions (e.g., Legros and Newman 2007). Hence, if assignment into peer groups was

not random, we may falsely ascribe a correlation in performance to strategic effects when they are

in fact due to positive or negative assorting. In the two empirical settings that we include in our

analysis, individuals were supposed to be assigned to peer groups in a random fashion. We need to

verify that this was indeed the case.

Since Sacerdote (2001), in applied economics random peer assignment is typically verified by

testing whether α1 = 0 in a linear-in-means model of the following form:

yiklt = α1ȳ−iklt + δl + ϵiklt (3.1)

where yiklt denotes the past performance of individual i in group k from pool l. The intercept is

subsumed in the selection pool dummies. Regressor ȳ−iklt denotes the average of i’s peers in group
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k (excluding i herself). Selection pool dummies δl are included to control for randomization strata

fixed effects. – e.g., in the golfer data, the quality of contestants varies across tournaments; and in

the student data, the school performance of students varies across classes and schools. In our data,

each peer group has size K = 3 in the golfer data and K = 2 in the student data. If the number

of groups in a selection pool is Np, then the pool size L = Np ×K. If the total number of pools in

the sample is N, then the total sample size S = N × L.

Model (3.1) is typically estimated using ordinary least squares (OLS). Researchers proceed as

if random assignment of peers implies that the OLS estimate of the coefficient α1 in regression

(3.1) should be 0. As shown through simulations by Guryan et al. (2009), this is incorrect: in

small samples or when using pool fixed effects, a mechanical negative relationship exists between

i’s characteristics and those of i’s peers prior to treatment. This can be shown easily if we rewrite

model (3.1) in deviation from the pool mean to eliminate the fixed effects δl:

ÿikl = α1 ¨̄y−ikl + ϵ̈ikl

where ÿikl ≡ yikl−yl where yl is the sample mean of variable yikl in selection pool l . Variables ¨̄y−ikl

and ϵ̈ikl are similarly defined. The time subscript t has been omitted to improve clarity. Now let

y−il ≡
∑

j ̸=i,j∈l yjl denote the leave-out mean of y, that is, the sample mean of the y observations

that belong to the same selection pool as i, but does not include the i observation. Let similarly

denote the deviation of this variable from its pool mean as ÿ−il. It follows immediately that the

correlation between ÿikl and ÿ−il is −1: if ÿikl deviate from the pool sample mean by a value d,

then ÿ−il must mechanically deviate from the pool mean by an equivalent but opposite amount.5

Since the peers assigned to i in group k are selected randomly from the observations that form ÿ−il,

the mean ¨̄y−ikl will, on average, be negatively correlated with yikl. We refer to this phenomenon

as ‘exclusion bias’ since it mechanically arises from the fact that i is excluded from being her own

peer.

Guryan et al. (2009), Wang (2009) and Stevenson (2015, 2017) have proposed methods to test

the null hypothesis of random peer assignment while correcting for exclusion bias. The method

proposed by Guryan et al. (2009), henceforth GKN, uses the average of the selection pool as control

5Online Appendix A provides some simple examples.
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variable to eliminate exclusion bias. While the method is simple to implement, it only identifies

the parameter of interest α1 if there is sample variation in the size of peer selection pools; if every

selection pool has the same number of individuals (which is common in practice), the model is

unidentified. By extension, limited variation in pool size results in weak identification.

Wang (2009) suggests an alternative approach that involves running an F-test of joint signifi-

cance of peer group dummies in a model of the form:

yikl = α1Ck + δl + ϵikl (3.2)

where Ck is a set of group dummies. The author argues that, if individuals are randomly assigned

to groups, all group means should be statistically similar and the coefficients included in vector α1

should jointly not be significantly different from zero. This method has been criticized by Stevenson

(2015) who shows that, based on simulation results, the method fails to reject the null hypothesis

if peers are negatively correlated.

Stevenson (2015, 2017) proposes a split-sample method which, as the term suggests, involves

splitting the original sample to break the mechanical negative correlation introduced by exclusion

bias. The approach recognizes the fact that exclusion bias manifests itself if and only if (i) indi-

viduals are excluded from their own peer groups and (ii) if they are included in the peer groups of

other individuals in the sample. If each individual in the study sample only appears on one side

of the peer effect estimation equation, there is no problem. The split-sample method exploits this

feature, as follows. The researcher first randomly selects one observation from each peer group

in the original dataset. The researcher then calculates the average outcome of the peers of those

individuals selected in Step 1, excluding the selected individuals themselves. Finally, the researcher

regresses the outcomes of the sub-sample of the individuals selected in Step 1 on the average peer

group outcomes constructed in Step 2. The method effectively creates a new dataset – derived

from the original data – where individuals are excluded from their own peer group but also from

the peer groups of other individuals in the sample. This eliminates the source of the exclusion bias.

One obvious downside of this approach is the large loss of efficiency that results from the reduction

in sample size. The efficiency of the approach can in principle be improved by performing multiple

iterations, but this is cumbersome, especially with large datasets.
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In contrast, randomization inference through the permutation method offers a simple and gen-

erally applicable way of testing random peer assignment that overcomes the limitations of these

other methods (e.g., Fisher 1925, Guryan et al. 2009). The idea is to simulate, using the data at

hand, the distribution of α̂1 under the null hypothesis of random peer assignment.6 The application

of this idea to networks goes back to Krackhardt (1988). It is more general and simpler to use than

the method proposed by Athey et al. (2018), which re-randomizes treatments across peers.

Before applying the method to our data, we illustrate how it would work when the researcher

has observational data yiklt partitioned in groups of varying size Ki within pools of size Li. The

first four columns of Table 1 give an example of such data structure. We test random assignment

within pools using regression (3.1) and applying Krackardt’s (1988) permutation method to generate

each synthetic sample.7 To visualize the performance of the proposed testing method, we generate

artificial samples of 1000 observations for three values of K = {2, 5, 10}. We set the size of each pool

to L = 20 and we posit ϵiklt ∼ N(0, 1). Figure 1 shows the distribution of 1000 simulated α̂s
1 under

the null of random peer assignment for K = {2, 5, 10}. The striking finding is that the histograms

are not centered around α1 = 0. They are all shifted to the left due to exclusion bias. The

permutation method corrects p-values by taking this distributional shift into consideration when

calculating the probability of observing α̂1 under the null. Figure 2 illustrates, for one particular

example (i.e., S = 1000, N = 50, L = 20 and K = 5), that the permutation method yields correct

inference.

Having validated the approach, we apply it to test for random peer assignment in our two

datasets. Results are shown in Table 2 . We see that OLS point estimates for α̂1 are well below 0

in both cases, and that OLS p-values reject random peer assignment in both cases. We then use

randomization inference to correct for this and find that random assignment of peers is not rejected

6Permutation methods can also approximate the distribution of α̂1 under more complicated random assignment
processes, such as multi-level stratification.

7We start by estimating the model on the data to obtain the OLS estimate α̂1. We wish to know how likely it
is to obtain value α̂1under the null of random assignment within pools. To this effect, we simulate the distribution
of α̂1 under the null. This is accomplished by keeping individuals within their selection pool but reassigning them
to counterfactual groups. This is illustrated in column 5 of Table 1. For each reassignment we estimate regression
(3.1) and obtain a counterfactual realization of α̂s

1 for simulation sample s under the null. By repeating this process
a large enough number of times, we obtain an approximation of the distribution of α̂1 under the null. The mean of
the distribution of α̂s

1 is the average bias under the null. We then compare our α̂1 estimate to the distribution of α̂s
1.

To obtain the p-value of the test of random peer assignment, we proceed in the same way as in other bootstrapping
procedures, e.g., by taking the proportion of α̂s

1 that are either above the absolute value of α̂1 or below minus the
absolute value of α̂1.
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in either of the two datasets. This is the first evidence we provide in this paper that neglecting

exclusion bias can lead to incorrect inference. For this reason, we devote the next section to a

thorough investigation of the source of this bias.

4 Exclusion bias

In this section, we derive a formula for exclusion bias in tests of random peer assignment and

demonstrate its validity using simulations. This analysis is an essential stepping stone towards the

development of our peer effect estimator in Section 5.

4.1 Formula

We now provide a formula for the exclusion bias that affects α̂1 in regression (3.1). The formula is

applicable to cases assuming homoskedastic error terms and cases where we observe all individuals

in each of the non-overlapping pools of potential peers. The proof is provided in Appendix C. We

start by considering the case when N pools of L individuals are each randomly partitioned into

non-overlapping groups of K peers – for instance, when students in a school cohort l are randomly

assigned to a dormitory or work group k (e.g., Sacerdote 2001; Glaeser et al. 2003; Zimmerman

2003, and Duflo and Saez 2011). Below we extend our main result to the more general case when

selection pools and peer groups differ in size. If N = 1, pool dummies δl drop out of regression

(3.1). We obtain the following Proposition:

Proposition 1: Let the errors in model (3.1) be i.i.d. with variance σ2
ϵ , let peers be assigned

randomly (β1 = 0). Then the estimate of α1 obtained by estimating model (3.1) with pool fixed

effects satisfies the following properties:

plimN→∞[α̂FE
1 ] = − (L− 1)(K − 1)

(L−K)L+ (K − 1)
< 0 for L,K fixed (4.1)

plimL→∞[α̂1] = 0 for N = 1 andK fixed (4.2)

E
[
α̂FE
1 |N

]
< plimN→∞

[
α̂FE
1

]
≤ 0 for L,K fixed (4.3)
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Proof: see Appendix C.1, Appendix C.2 and Appendix C.3

Equation (4.1) in Proposition 1 provides a formula for the magnitude of the exclusion bias in

tests of random peer assignment in the most common case when peers are drawn from separate

selection pools. It demonstrates that, for a sufficiently large number of pools of fixed size L, the

magnitude of the exclusion bias depends on only two key parameters: the size of peer groups K;

and the size L of the pools from which peers are drawn. More specifically we have:

1.
△|plimN→∞[α̂FE

1 ]|
△L < 0: For a given peer group size K, the asymptotic exclusion bias falls as

pool size L increases.8 This property is similar to what happens in autoregressive models

with panel fixed effects, where the OLS-FE bias falls as T , the number of periods, increases.

2.
△|plimN→∞[α̂FE

1 ]|
△K > 0: For a given pool size L, the asymptotic exclusion bias is more severe

with large peer groups or, equivalently, with a smaller number of groups in each pool.9

Equation (4.2) extends formula (4.1) to the special case when all peers come from the same selection

pool and this peer selection pool equals the sample population. In this case, the exclusion bias

disappears asymptotically as L grows. A more detailed discussion is presented in Appendix C.2.

Equations (4.1) and (4.2) only apply in the limit, that is, when sample size tends to infinity.

Can we say something about exclusion bias in small samples? The last part of the Proposition,

equation (4.3), provides an additional result, obtained using Taylor approximations and Monte

Carlo simulations in Appendix C.3. It shows that, for a given pool size L and a given number of

pools N , the expectation of the exclusion bias is more negative than its asymptotic value. In the

next section, we illustrate this with a simulation analysis. We also confirm that the expected bias

converges to its asymptotic value (4.1) as the sample size grows larger, keeping the sizes of selection

pools L and peer groups K constant. A similar result applies to the situation where N = 1, in

which case E [α̂1|L] < plimL→∞ [α̂1] ≤ 0 for N,K fixed. When the number of peer groups is

small, the magnitude of the exclusion bias can be large even with a large L, something we also

illustrate in the next section.

8Proof: Since (L−1)(K−1)
(L−K)L+(K−1)

= (K−1)
L−K
L−1

L+(K−1)
, the derivative only depends on how the first term in the denominator

varies with L: if it increases with L, the absolute value of the bias falls. It is easy to see that L−K
L−1

increases with L
since L > K by construction. Hence the result. QED.

9Proof: Since (L−1)(K−1)
(L−K)L+(K−1)

= L−1
L−K
K−1

L+1
, the derivative only depends on how the first term in the denominator

varies with K: if it falls with K, the absolute value of the bias increases. We have
∂ L−K

K−1

∂K
= − L−1

(K−1)2
< 0 since both

L and K are larger than 1 by construction. Hence the result. QED.
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So far we have assumed that all selection pools are of equal size L and that groups are of equal

size K. Proposition 2 generalizes formula (4.1) for any arbitrary combination of group and pool

sizes.

Proposition 2: Let Kk denote the size of group k and let Lk be the size of its pool. Let the

errors in model (3.1) be i.i.d. with variance σ2
ϵ , let peers be assigned randomly (α1 = 0). Then the

plim of α̂1 in model (3.1) with pool fixed effects is given by the following formula:

plimN→∞[α̂FE
1 ] =

∑
k

Kk

M

s2zk
s2z

plimN→∞[α̂1k] where (4.4)

plimN→∞[α̂1k] = − (Lk − 1)(Kk − 1)

(Lk −Kk)Lk + (Kk − 1)

s2zk =
(Kk − 1) + (Lk −Kk)Lk

Lk(Lk − 1)(Kk − 1)
and s2z =

∑
k

Kk

M
s2zk

and M ≡
∑

k Kk is the total number of observations in the estimation sample.

Proof: see Appendix C.4.

Proposition 2 shows that plimN→∞[α̂FE
1 ] is nothing but a weighted sum of plim’s from formula

(4.1) with weights derived from a simple covariance decomposition.10 It should be noted that the

results in Propositions 1 and 2 hold for a model having the form of equation (3.1), that is, is

the natural form for a test of random assignment. They do not apply if the regression includes

additional regressors. If the researcher wishes to add regressors wikl when testing for randomized

assignment, it is necessary to first partial out wikl from yikl and ȳ−ikl.
11 Propositions 1 and 2 and

the other results from this section apply to these partialled-out regressions.

10In the case where groups in a pool l are all the same size Kl but group size Kl and pool size Ll vary across pools,
the formula simplifies to:

plimN→∞[α̂FE
1 ] = −

∑
l
Ml
Ll∑

l
Ml
Ll

(Kl−1)+(Ll−Kl)Ll
(Ll−1)(Kl−1)

where Ml is the size of the sample of all pools of size l. In contrast, if pool size is constant but group size Kk varies,
the formula simplifies to:

plimN→∞[α̂FE
1 ] = − 1∑

k
Kk
L

(Kk−1)+(L−Kk)L
(L−1)(Kk−1)

11Practically, this means doing the following: (1) take out the pool fixed effect by expressing all variables in
deviation from their selection pool mean – e.g., ÿikl ≡ yikl − 1

Lk

∑
ik∈l yikl; (2) regress the demeaned ÿikl on ẅikl and

keep the residuals, which we denote as ûikt; (3) regress ÿ−ikl on ẅ−ikl (the de-meaned leave-out mean of wikl for

peers) and keep the residuals, which we denote as v̂−ikl; and (4) construct ¨̂uikt ≡ ûikt − ρv̂−ikl; and (5) regress ¨̂uikt

on v̂−ikl. This is the partialled-out regression.
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In Appendix B.1 we illustrate how formulas (4.1) and (4.4) can be used in order to transform

model (3.1) to obtain a consistent estimate of α1. This solution offers an alternative approach to

correcting inference in standard tests of random peer assignment, instead of using randomization

inference described in Section 3.

4.2 Simulation results

We start by noting that Proposition 1 correctly predicts the magnitude of exclusion bias found in

Section 3: Figure 1 is centered on the plim of α̂1 under the null that is given by (4.1) in Proposition

1. We now present simulation evidence to demonstrate that this is a general property of the formula.

Results from a Monte Carlo simulation are presented in Table 3. Simulations vary pool size L

and peer group size K while keeping an integer number of groups L/K. For each simulation we

generate a random sample of N ×L = 1000 observations. Each observation is assigned one realiza-

tion of a standard normally distributed i.i.d. characteristic yi ∼ N(0, 1). The N × L observations

are then randomly assigned to pools of L individuals each, and subsequently randomly assigned to

a group of size K within each pool. A pool-specific shock is added to simulate differences across

pools δl.

We repeat this process 1000 times for a particular vector {K,L} and for each generated sample

we estimate regression (3.1) and collect the estimated α̂1. The average α̂1 for each vector {K,L}

is summarized in Table 3. For comparison purposes, we also report the predicted plimN→∞[α̂1]

derived in Proposition 1.1. Results verify Proposition 1.1: the average bias over 1000 replications

is reasonably close to its predicted asymptotic value; it increases in K; and decreases in L. Table

3 also shows the proportion of artificially generated samples for which we falsely reject the null

hypothesis that α1 = 0 at the 1%, 5% and 10% significance levels. Random assignment is falsely

rejected in a surprisingly large fraction of simulations, especially when K is large relative to L. To

illustrate this graphically for one particular example (L = 20 and K = 5), we plot in Figure 3 the

rate at which OLS rejects the null hypothesis that α1 = 0. If the test is unbiased, the rejection

rate should lie along the 45 degree line. This is clearly not what we observe: the rejection rate

is well above the 45 degree line, confirming that testing whether α1 = 0 in OLS regression (3.1)

over-rejects the null of random assignment in a substantial proportion of cases. To summarize, the

test is strongly biased and the magnitude of the bias in large samples is well predicted by formula
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(4.1).

Simulation results presented in Table 4 show for a given pool size L = 50 and separately for

K = 5 and K = 10, what happens to the exclusion bias when N , the number of selection pools,

increases. The results confirm that the bias is larger in small samples and that it converges to the

value predicted by (4.1) as N increases (predicted values for K = 5 and K = 10 are shown in the

middle and bottom panel of column 2 in Table 3, respectively).

5 Endogenous peer effect estimator

Equipped with a better understanding of exclusion bias, we are now in a position to derive a

consistent estimator of endogenous peer effects in regression (2.1). In Appendix A we discuss in

more detail the source of the exclusion bias, how the reflection bias and exclusion bias combine and

the intuition behind the methodology that we propose in the paper to simultaneously address both

biases. As explained in the introduction, our estimation approach cannot rely on instrumental

variables, since they are not available in non-overlapping peer groups. We rely instead on the

structure of the covariance matrix between observations, like the ML estimator of Anselin (1988).

Formally, we consider a data generating process similar to that of Moffit (2001). In Appendix A

we use a simple K = 2 setting to provide an illustration for which the exact value of the reflection

and exclusion biases can be derived algebraically. In Section 5.1 we generalize the approach to

any group size and we show how a simple sequential algorithm can be used to obtain an estimate

of β1 in regression (2.1) that is free of both reflection and exclusion bias. Throughout the formal

presentation we assume homoskedasticity of the errors. We do, however, conduct inference by re-

randomizing peer assignment within pools, which de facto corrects for the clustering of standard

errors within pools – and thus also for heteroskedasticity.

5.1 Deriving the estimator

To simplify the algebra, we start by rewriting model (2.1) in a more general, matrix-oriented form:

yil = β1GilYl + β2xil + β3GilXl + δl + ϵil (5.1)
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where: Yl is the vector of all yjl in pool l; vector Gil picks all the peers of individual i in pool l

and assigns them a weight 1/(K − 1) to construct the peer group’s mean;12 xil is an individual

characteristic that affect yil directly – past performance yiklt in our case;13 Xl is the vector of

all Xjl in pool l; and δl is a selection-pool fixed effect. Parameter β1 captures endogenous peer

effects; parameter β2 captures the effect of the characteristics of individual i on yil; and β3 captures

so-called exogenous peer effects, that is, characteristics of peers that affect i directly without the

need to influence peers’ behavior.

Combining all selection pools, regression model (5.1) can be rewritten in matrix form as:

Y = β1GY + β2X + β3GX +△+ ϵ

where: Y and X are vectors containing all observations on yil and xil, respectively; and G is a

weighting matrix that picks relevant peers and averages them. The model can be further simplified

by expressing all variables in deviation from their l pool mean to eliminate the pool fixed effect δl.

We obtain the following expression:

Ÿ = β1GŸ + β2Ẍ + β3GẌ + ϵ̈

where, as before, the notation Z̈ ≡ Z − Z l where Z l stacks the element-by-element sample mean

of vector Zil in selection pool l. Simple algebra yields the following reduced-form model:

Ÿ = (I − β1G)−1(β2Ẍ + β3GẌ + ϵ̈)

from which we obtain an identifying relationship similar to that used by Rose (2017, equation 3.4):

E[Ÿ Ÿ ′] = E[(I − β1G)−1(β2Ẍ + β3GẌ + ϵ̈) (β3Ẍ + β3GẌ + ϵ̈)′(I − β1G
′)−1]

= (I − β1G)−1E[(β2Ẍ + β3GẌ)(β2Ẍ + β3GẌ)′](I − β1G
′)−1

+(I − β1G)−1E[ϵ̈ ϵ̈′](I − β1G
′)−1 (5.2)

12This can be generalized to linear-in-level peer effect models by letting each Gil be a vector from a network
adjacency matrix.

13This can easily be generalized to allow multiple exogenous characteristics.
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where we have assumed that the G matrix is non-stochastic. As in Liu (2017), the covariance

matrix of the Ẍ’s is identified from the data. If the ϵ̈’s are i.i.d, we have E[ϵ̈ ϵ̈′] = σ2
ϵ I. In this case

expression (5.2) can be used as starting point for estimation as suggested, for instance, by Anselin

(1988) for spatial models and by Rose (2017) for peer effect models. This is also the formula behind

the ML estimator implemented by Drukker et al. (2013).

Since there is exclusion bias, however, E[ϵ̈ ϵ̈′] ̸= σ2
ϵ I. This means that all estimators that ignore

this fact are inconsistent when they include pool fixed effects. Formula (4.1) can nonetheless be

used to construct the asymptotic covariance matrix of the ϵ̈’s. To demonstrate, let us arrange all

observations so that the observations from the first pool come first, then the observations from the

second pool, etc. In this case E[ϵ̈ ϵ̈′] is a block-diagonal matrix:

E[ϵ̈ ϵ̈′] =



B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 B


(5.3)

where each block B is an L× L matrix of the form:

B =


E[ϵ̈21] E[ϵ̈1ϵ̈2] ...

E[ϵ̈2ϵ̈1] E[ϵ̈22] ...

... ... ...

 (5.4)

From equation (A.5) in Appendix A, we know that, for any two individuals i and j in the same

selection pool of size L, we have plim[ϵ̈iϵ̈j ] = ρσ2
ϵ with ρ = − 1

L−1 for i ̸= j. We use this fact to

replace, in the estimation, each block matrix B by its probability limit:

plimB = σ2
ϵ


1 ρ ...

ρ 1 ...

... ... ...

 ≡ σ2
ϵA (5.5)

where the asymptotic value of ρ is known and need not be estimated.

Equation (5.2), combined with (5.3) and (5.5), provides a characterization of the data generating
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process that can be used to estimate structural parameters β1,β2, β3 and σ2. Our approach to

estimation is to rely on the method of moments (MM) to choose the parameter β1 that provides

the best fit to the observed data E[Ÿ Ÿ ′]. The resulting estimator inherits the consistency properties

of method of moments estimators. Estimation is achieved using a search algorithm. For each guess

β
(n)
1 that the algorithm makes about β1, we solve for the corresponding values of β2 and β3 by

calculating Ÿ − β
(n)
1 GŸ and regressing it on Ẍ and GẌ to obtain estimates of β̂2

(n)
and β̂3

(n)
. In

our data, this is achieved by estimating a regression of the form:

ỹikl,t+1 = β0 + β2yiklt + β3ȳ−iklt + δl + ϵikl,t+1 (5.6)

where ỹikl,t+1 ≡ yikl,t+1 − β
(n)
1 ȳ−ikl,t+1. This regression is then demeaned and combined with

equation (5.3) to compute the right-hand side of equation (5.2) that corresponds to that particular

guess β
(n)
1 . This process also yields an estimate of the variance of errors σ̂

2(n)
ϵ . Using β

(n)
1 , β̂2

(n)
, β̂3

(n)

and σ̂
2(n)
ϵ we compute the value of each element of the right hand side of equation (5.2). Subtracting

each value from the corresponding yiyj , taking squares, and summing over all ij pairs yields the

value of the fit for guess β
(n)
1 . The algorithm then seeks the value of β

(n)
1 that minimizes the

distance between this constructed matrix and the data matrix E[Ÿ Ÿ ′], that is, the lowest sum of

squared residuals in equation (5.2). This algorithm is intuitive and reasonably fast.14

Inference is conducted using the permutation method described in Section 3 to generate the

distribution of the estimates under the null. The p-value for β̂1 is obtained by constructing artifac-

tual samples in which groups are formed at random within selection pools and by simulating the

distribution of β̂1 under the null hypothesis of no endogenous peer effects. Estimates for β2 and β3

are those given by model (5.6) at the optimal value of β̂1; their standard errors are clustered by

selection pool.

5.2 Demonstrating the performance of the estimator

To illustrate the effectiveness of this approach, we estimate model (5.1) on simulated data using

this algorithm. The average results from 1000 Monte Carlo replications are shown in Table 5. We

14It also resembles, in spirit, the concentrated likelihood function method that Drukker et al. (2013) use for the
ML estimator – except that we rely on least squares instead of a likelihood function as objective function. This
approach, combined with the fact that we rely on randomization inference (see below), obviates the need for making
assumptions about the functional form of the distribution of disturbances.
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keep the number of pools and pool size in each sample constant at N = 50 and L = 20 but we vary

K and β1 across simulation exercises. Pool fixed effects are included throughout.

In Panel A, we report the simulated expected value of the naive β̂1
FE

and its p-value obtained

by regressing Yi on GiY and pool dummies. Results confirm that the naive β̂1
FE

and the inference

based on it are biased. This bias comes from two sources: reflection and exclusion bias. When β1

is small, the exclusion bias dominates and the naive β̂1
FE

underestimates the true β1. On average,

β̂1
FE

is more likely to overestimate the true β1 when exclusion bias is small, which occurs when

L is large. The third row of Panel A shows the proportion of times the simulated naive p-value is

smaller or equal to 0.05. In columns 1 and 4 (when β1 = 0), this statistic gives the likelihood of

making a type II error, that is, the probability of rejecting the null hypothesis when it is true. If the

estimator is unbiased then we would expect this statistic to be close to 5%. The actual figures are

much higher: around 18.4% when K = 2 and 56.9% when K = 5, confirming that inference based

on the naive model is seriously biased. This will come as a surprise to those who only consider

reflection bias: indeed this bias operates as a multiplier – i.e., it only multiplies the true value of

β1 – and, consequently, it does not bias estimates when β1 = 0. Based on this belief, researchers

would have a high probability of erroneously concluding that negative peer effects are present in

columns 1 and 4 when in fact they are absent.

In columns 2-3 and 5-6 of Table 5 (where β1 > 0), we see that, when K = 2, the null hypothesis

of β1 = 0 is rejected in 87.8% to 100% of the cases – which is good – but the point estimates

are massively over-estimated. When K = 5, we see instead that when β1 = 0.10, the researcher

would, 6.2% of the time, reject the null in favor of β1 < 0, i.e., would infer the wrong sign. When

β1 = 0.20, the naive estimator happens to do better, but its power remains well below 100%. These

results further confirm that exclusion bias would often lead a researcher to misinterpret results if

only considering the inflation bias caused by reflection.

In Panel B we report the β̂1
ML

estimates obtained by using the ML estimator obtained using

the spreg Stata command (see Drukker et al. 2013). This estimator corrects for reflection bias –

but ignores exclusion bias. As anticipated, this estimator ‘shrinks’ the estimates of β1 to correct

for a multiplier effect – but it does not correct its sign. As a result, it still over-rejects the null

when it is true, (columns 1 and 4) and it occasionally rejects the null with the wrong sign (column

5).
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In Panel C we report estimates obtained using our algorithm described in the previous section.

We first report the MM estimator β̂1
Ref

obtained from our algorithm but erroneously assuming

that E[ϵ̈ ϵ̈′] = σ2
ϵ I. The β̂1

Ref
point estimates are very similar to those obtained with the ML

estimator in Panel B. Next we present results from our preferred estimator, namely, the average

β̂1
Corr

derived from model (5.2) with E[ϵ̈ ϵ̈′] given by (5.3). The β̂1
Corr

is centered around its true

value in all cases, albeit with a small downward bias. The next line shows the corrected p-values

obtained using the permutation method described earlier. We see that the method yields unbiased

inference when β1 = 0: p-values are centered on 0.50; and the probility of falsely rejecting the null

is around 5%. We also note in columns 2-3 and 5-6 that the estimator has high statistical power

when β1 ̸= 0, the only exception being column 5.

So far we have shown that our MM estimator is consistent and that applying permutation

inference to it yields consistent inference. This leaves open the question of whether the estimator is

efficient. To address this question, we present in Figure 4 simulations illustrating the power of our

MM estimator. The simulated model is of the form yil = β1GilYl+ δl+ ϵil where δl is the pool fixed

effect. There are no other regressors. We choose a moderate total sample size of 1000 observations,

divided into 50 pools of 20 observations each. Within each pool there are three groups of size 2,

three groups of size 3, and one group of size 5. We generate 100 samples of 1000 observations for

values of β1 ranging from -0.3 to 0.3 in increments of 0.1, and we estimate β̂Corr
1 for each of them.

We then use permutation inference and compare each estimate to the distribution of β̂Corr
1 under

the null of β1 = 0.15 This yields a p-value for each β̂Corr
1 estimate. Finally we calculate, for each

value of the true β1 separately, the proportion of the corresponding 100 simulated β̂Corr
1 estimates

that tests different from 0 with a p-value of 5% or better. This provides an approximation of the

power of rejecting β1 = 0 when the true β1 ̸= 0. As benchmark, we present the power of an OLS

univariate regression with the same sample size and the same standard deviation of the dependent

variable and the regressor.16 The simulations show that β̂Corr
1 achieves high power at values of

β1 larger than 0.1 in absolute value. They also show that the estimator out-performs the power

15This is achieved using 100 permutated samples to generate an approximation of the distribution of β̂Corr
1 under

the null of β1 = 0. To save computation time, the same permutated sample is used across the simulations.
16Power for the OLS univariate regressions are calculated using a Stata command of the form “power oneslope

0 -0.3, n(1000) sdy(1.063) sdx(0.793) alpha(0.05)”. To ensure comparability with our MM estimator, the
values of sdy and sdx are set equal to the average of the standard deviations of the pool de-meaned values of the
dependent variable and the peer effect variable in the corresponding MM simulations. Because of the magnification
effect induced by reflection, these standard deviations are larger for values of β1 further away from 0.
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of a univariate OLS with an equivalent sample size and variance of errors. This provides ample

reassurance that our proposed MM estimator works well under our maintained assumption of no

within-group correlated effect.

By performing permutation inference within selection pools, our inference method yields robust

inference equivalent to a wild bootstrap (e.g., Cameron et al. 2008). But, the method does not

accommodate heteroskedastic ϵ errors in the estimation of β̂Corr
1 itself. Borrowing from Liu (2017),

it may nonetheless be possible to generalize the approach to heteroskedastic errors by relying

on a root estimator instead. This would require considering a moment condition of the form

E[Ÿ GŸ ′] and using the consistent root of this equation to estimate peer effects when instruments

are not available. The advantage of using this approach is that E[ϵ̈Gϵ̈′] = 0 even if the errors

are heteroskedastic (continuing to rule out correlated effects within peers). Thus the estimator is

heteroskedasticity robust. Using this approach while correcting for exclusion bias is left for future

research. Thanks to an anonymous referee for making this suggestion.

6 Main empirical results

Having constructed a consistent estimator suitable for our data and having demonstrated that

it produces consistent point estimates and inference, we now apply it to model (2.1), which we

reproduce here for convenience:

yikl,t+1 = β1ȳ−ikl,t+1 + β2yiklt + β3ȳ−iklt + δl + ϵikl,t+1

Results for golfers using data from Guryan et al. (2009) are presented in Table 6. In this

empirical application, the outcome of interest is the golfer’s score in the tournament and the

coefficient of most interest is the endogenous peer effect in golfer score. To keep the estimation as

transparent as possible, we restrict our attention to the first round of each tournament and we drop

observations from the second round that could provide an additional source of identification – but

are potentially affected by what happened in the first round. The first column of the Table presents

the naive OLS-FE estimate β̂FE
1 . It suggests the presence of small positive but non-significant peer

effects. As expected, based on our simulation results, we observe a noticeable shrinkage (i.e.,

halving) of the estimated coefficient when we correct for reflection bias with the ML estimator
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β̂ML
1 implemented by Drukker et al. (2013) (column 2)17. Inference remains the same, though: no

evidence of peer effects. This means that someone expecting reflection bias to magnify the peer

effect coefficient would conclude to the absence of peer effects in these data. This is indeed the

conclusion reached by Guryan et al. (2009), who do not correct for exclusion bias when estimating

peer effects.

Our results presented in column 3 of Table 6 demonstrate, however, that this conclusion is

wrong. In column 3, we report the MM estimate β̂Corr
1 that corrects for both reflection and

exclusion bias. We now find a positive endogenous peer effect β̂Corr
1 that is significant at the

1% level. The magnitude of the coefficient is large: i’s performance increases by 5.5% of the

average performance of the two golfers in i’s group, conditioning on i’s own past performance and

that of the other two players in i’s group. Given the multiplier effect induced by reflection, the

total impact on performance is even larger. This suggests that emulation between players helps

performance in golf tournaments: when one player in a group plays better than predicted by his/her

own past performance, the other players in that group also tend to play better than their own past

performance predicts. The opposite holds as well: when a golfer in a group plays worse than normal,

this has a negative ripple effect on the other golfers in that group. Unsurprisingly, the golfer’s past

tournament performance is a strong predictor of current performance: β̂2 is large and significant.

More importantly, we also see that β̂3 is not significant and, if anything, is negative. This means

that being matched with a better or worse set of peers does not affect players’ performance in the

tournament. Emulation comes purely from play during the tournament, not from who golfers are

grouped with.

The right panel of Figure 5 provides a visual illustration of how the distributions of β̂Corr
1 and

β̂FE
1 compare to each other under the null of β1 = 0, i.e., no endogenous peer effects. We see

that the distribution of β̂FE
1 is centered well below 0 while the simulated distribution of β̂Corr

1

is correctly centered on β1 = 0. The Figure also illustrates how, as discussed in Section 3, it is

possible to test for the presence of endogenous peer effects by applying randomization inference

directly to the OLS-FE estimate. The Figure indeed shows that the randomized-inference p-value

of β̂FE
1 is around 0.008 and thus statistically significant. This approach, however, does not yield

17As illustrated in Table 5, our β̂1

Ref
MM estimator only correcting for reflection bias but not exclusion bias

performs very similarly to the ML estimator β̂ML
1 implemented by Drukker et al. (2013) and is therefore not

presented in Table 6 and Table 7.
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a point estimate for β1.
18 We also see that the simulated estimator β̂Corr

1 has a smaller variance

than β̂FE
1 under the null. This is because each β̂FE

1 estimate is magnified by reflection and thus

varies more across samples. In the left panel of Figure 5, we perform the same comparison under

the null, but this time between β̂FE
1 and the MM estimator β̂Ref

1 that accounts for reflection bias

but ignores exclusion bias. Under the null of β1 = 0, the simulated distribution of β̂Ref
1 is tighter

than the distribution of β̂FE
1 since reflection bias has been eliminated. But it is no longer centered

on 0 due to exclusion bias. This provides further confirmation that non-instrumental methods that

correct for reflection bias without also correcting for exclusion bias (e.g., Graham 2009, Rose 2017)

lead to incorrect point estimates when they include pool fixed effects.

Table 7 presents similar estimates for the student data of Fafchamps and Mo (2018). Results for

β̂Corr
1 are different to those we obtained for golfers: in this dataset, the point estimate is negative and

significant, indicating that endogenous peer effects are negative – suggesting for instance congestion

effects in computer usage. A similar conclusion would have been reached by using the naive β̂FE
1

or the reflection-corrected β̂ML
1 – a significantly negative peer effect – but the magnitude of this

effect would have been greatly overestimated: by more than twice with the reflection-corrected ML

estimator, and by nearly five times with the FE estimator. There exist situations, however, in which

β̂FE
1 is negative solely due to exclusion bias. In those cases, a researcher unaware of exclusion bias

would be led to the wrong inference, i.e., concluding that there are negative peer effects when there

are none. Figure 6 is similar to Figure 5: it shows that correcting for reflection bias alone yields

biased estimates under the null, while our estimator β̂Corr
1 has a distribution correctly centered on

the null.

Turning to the other coefficients, we again find that, as expected, the past math score of the

student is a strong and significant predictor of their future score: β̂2 is large and significant and,

amusingly, of same magnitude as in the golfer data. The fact that β̂2 is well below one indicates

strong reversion to the mean among our primary school student population. We also find some

evidence of positive exogenous peer effects: a pupil assigned to share a computer with a stronger

math student tends to learn slightly more from computer-assisted learning. The latter result is

reminiscent of what Fafchamps and Mo (2018) conclude in their own analysis, but the negative

18Since β̂FE
1 itself is negative, a hurried researcher unaware of exclusion bias may erroneously conclude that peer

effects are significantly negative, which is of course not the case.
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endogenous peer effect is a new result.

7 Concluding remarks

We have estimated endogenous and exogenous peer effects in two datasets with non-overlapping

peer groups: golfers in tournaments; and students in computer-assisted learning. In such data,

existing instrumental variable methods do not apply. Alternative estimation methods exist that do

not require instruments, but they fail to correct for one understudied but important source of bias

which we call ‘exclusion bias’. We derive a consistent estimator that corrects for this bias. Using

this novel method, we find positive peer effects in the first case – consistent with emulation between

golfers during the tournament – and negative peer effects in the other – consistent with congestion

or wasteful competition for the computer between students. These results differ markedly from

existing methods in terms of magnitude, significance, and inference.

We also make a methodological contribution. We first show that, with selection pool fixed

effects, a negative correlation in peer outcomes mechanically arises because individuals cannot be

their own peers. This exclusion bias can seriously affect point estimates and inference in standard

tests of random peer assignment and in the estimation of endogenous peer effects. The magnitude of

the bias is most prevalent in studies with large peer groups relative to the size of the peer selection

pool.

In contrast to exclusion bias, the widely-publicized reflection bias is little more than a multiplier

effect. It follows that, if exclusion bias did not exist and we are willing to assume zero correlated

effects within groups, inference about the presence of endogenous effects can be conducted using

OLS: the reflection bias simply magnifies OLS estimates of endogenous peer effects. In this paper,

however, we have shown that when the true peer effect is small and pool fixed effects are included,

the negative exclusion bias dominates the reflection bias, yielding an overall negative bias in OLS

estimates of peer effects. Hence if OLS yields an insignificant or even negative estimate of endoge-

nous peer effects, a researcher unaware of exclusion bias will conclude that (positive) peer effects

are absent and the issue is not worthy of further investigation. Because of this, we suspect that

many peer effect studies have never seen the light of day – creating a so-called ‘file drawer problem’.

The estimation method presented here is an alternative to the estimation of peer effects using
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instrumental variables. Methods that rely on network structure to identify suitable instruments

(e.g., Bramoulle et al. 2009, Di Giorgi et al. 2010, and Lee 2007) are unsuitable for mutually

exclusive peer groups. Even in network data when they are applicable, they can yield weak instru-

ments, especially when pool fixed effects are included. Because suitable instruments are hard to

find, many studies rely on OLS with pool fixed effects to test for the presence of peer effects. As

just noted, this approach often yields misleading inference due to the presence of exclusion bias.

Like Graham (2008) and Rose (2017), we offer an alternative estimation method that deals with

these shortcomings but does not rely on instrumentation – except that, unlike these authors, our

estimator is consistent because it corrects for exclusion bias. The method allows the inclusion of

selection pool fixed effects, but it assumes away correlated effects within peer groups. Whether

or not this assumption is reasonable depends on the specific context of the study. But even when

correlated effects cannot be ruled out on a priori grounds, researchers can still use the method as a

robustness check free of reflection and exclusion bias. More importantly, the method offers a way

of estimating endogenous peer effects when peer groups are mutually exclusive and have equal size,

in which case the instrumentation methods of Bramoulle et al. (2009), Di Giorgi et al. (2010), and

Lee (2007) all fail. There is an abundance of peer effect studies that have this data structure – most

notably the assignment of students to rooms, dorms, and study groups. Controlled experiments on

peer effects also often have a fixed-size, non-overlapping peer group structure. In all these cases,

our method is capable of offering a viable alternative for the estimation of endogenous peer effects.

The correction we propose for the particular case of non-overlapping peer groups can be applied

more generally to ML analysis of network data of any kind, as we demonstrate in Appendix B.4.

Exclusion bias is present in such data as well and, depending on the context, can be a source of

severe bias there as well. We suspect, for instance, that the ML estimator included in the Stata

spreg command implemented by Drukker et al. (2013) can easily be amended to incorporate a

correction for exclusion bias. This is left for future work.
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TABLES AND FIGURES

Table 1: An illustration of the permutation method
i k l yiklt ỹiklt

(1) (2) (3) (4) (5)

1 1 1 y111 y211

2 1 1 y211 y521

3 2 1 y321 y111

4 2 1 y421 y321

5 2 1 y521 y421

6 3 2 y632 y842

7 3 2 y732 y632

8 4 2 y842 y942

9 4 2 y942 y1052

10 5 2 y1052 y732

Figure 1: Histogram of α̂s1 under the null

Notes: This Figure shows the distribution of simulated α̂s1 using 1000 Monte Carlo replications with random assignment for
different group sizes K. We set N = 50 and L=20. Each histogram presents the frequency distribution of α̂s1 under the null.
Pool fixed effects are included in all regressions.
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Figure 2: Performance of the permutation test under the null
0
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Actual rejection rate Expected rejection rate

Notes: The Figure shows the simulated performance of a permutation test to evaluate whether α1 = 0 under the null hypothesis
of random assignment. The expected rejection rate is a 45 degree line. The actual performance of the test under the null is
simulated using 1000 Monte Carlo replications with N=50, L=20 and K=5. Pool fixed effects are included in each replication.
An actual rejection rate above the 45 degree line indicates over-rejection: the probability of rejecting the null of random
assignment is larger than the critical value of the test.

Table 2: Empirical applications: Testing for random peer assignment
Golfer data Student data

(1) (2)

Pool Fixed Effects OLS estimate α̂FE1 -0.126 -0.043
OLS p-value 0.000 0.023
Corrected p-value obtained using permutation method (Krackardt, 1988) 0.540 0.546

Number of observations 2517 2960
Number of selection pools 100 155
Group size 3 2

Notes: The golfer data are from Guryan et al. (2009) and the student data are from Fafchamps and Mo (2018). For

demonstration purpose, we restrict the golfer sample to the first tournament round, and to a random sub-set of N=100 out of

302 pools, making the overall sample size more comparable to the student application. We also focus on groups of size 3

(K = 3) which consist of 75% of all observations. We drop some observations which in the original dataset had erroneously

been assigned to one or more players from a different pool than the one assigned to them (6% of all observations). The

variable of interest in the golfer application is golf player’s measure of ability of skill (which is constructed based on lagged

test scores). For the student application, we drop a few observations for which we observed inconsistencies in the indication of

peers within a pair (16%). The variable of interest is the lagged math score of the students. All regressions include pool fixed

effects. In the golfer application the pool is the qualification category to which each player is assigned within each tournament.

In the student application the pool is the classroom. The corrected p-value for the MM estimate is obtained using the

permutation method, using 500 iterations.
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Table 3: Simulated exclusion bias with random peer assignment
L = 20 L = 50 L = 100

(1) (2) (3)

K = 2 Predicted plim[α̂1] -0.05 -0.02 -0.01

Average α̂1 -0.05 -0.02 -0.01

% of α̂1 = 0 rejected at 1% level 26% 10% 8%

% of α̂1 = 0 rejected at 5% level 43% 21% 18%

% of α̂1 = 0 rejected at 10% level 52% 29% 24%

K = 5 Predicted plim[α̂1] -0.25 -0.09 -0.04

Average α̂1 -0.26 -0.10 -0.04

% of α̂1 = 0 rejected at 1% level 75% 22% 9%

% of α̂1 = 0 rejected at 5% level 85% 38% 21%

% of α̂1 = 0 rejected at 10% level 89% 48% 31%

K = 10 Predicted plim[α̂1] -0.82 -0.22 -0.10

Average α̂1 -0.86 -0.25 -0.11

% of α̂1 = 0 rejected at 1% level 97% 42% 17%

% of α̂1 = 0 rejected at 5% level 99% 58% 27%

% of α̂1 = 0 rejected at 10% level 100% 65% 36%

Notes: The Table reports simulation results from 1000 Monte Carlo replications for different values of K and L. Each

simulation includes N × L = 1000 observations generated with a true α1 = 0. In each simulated sample s, coefficient α̂1 is

estimated using fixed effects at the level of the selection pool. The predicted plimN→∞[α̂1] is obtained using Proposition

1. The average α̂1 is the average of α̂1 estimates over all replications. The percentage of rejections is the proportion of

replications for which a standard t-test rejects the null that α1 = 0 for different critical levels of the test.
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Figure 3: Performance of the OLS estimator under the null

Notes: Figure shows for the OLS estimator the simulated performance of a standard t-test to evaluate whether β1 = 0 under the
null hypothesis of random assignment that it is true. The expected rejection rate is a 45 degree line. The actual performance
of the test under the null is simulated using 1000 Monte Carlo replications with N=50, L=20 and K=5. Pool fixed effects
are included in each replication. An actual rejection rate above the 45 degree line indicates over-rejection: the probability of
rejecting the null of random assignment is larger than the critical value of the test.

Table 4: Simulated exclusion bias with random peer assignment: Different sample sizes
N = 2, L = 50 N = 4, L = 50 N = 10, L = 50 N = 20, L = 50 N = 40, L = 50 N = 80, L = 50 N = 120, L = 50

(1) (2) (3) (4) (5) (6) (7)

K = 5 -0.14 -0.12 -0.10 -0.09 -0.09 -0.09 -0.09

K = 10 -0.46 -0.33 -0.25 -0.24 -0.23 -0.22 -0.22
Notes: The Table reports simulation results from 1000 Monte Carlo replications for different values of K and N. Each simulation
considers pool size L = 50, with Npools and considers observations generated with a true α1 = 0. In each simulated sample s,
coefficient α̂s1 is estimated using fixed effects at the level of the selection pool.
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Table 5: Correction reflection and exclusion bias in the estimation of endogenous peer effects -
Groups

K = 2 K = 5

(1) (2) (3) (4) (5) (6)

True β1 β1 = 0.00 β1 = 0.10 β1 = 0.20 β1 = 0.00 β1 = 0.10 β1 = 0.20

Panel A

β̂1
FE

-0.05 0.15 0.34 -0.27 -0.04 0.18

Mean of p-value of β̂1
FE

0.32 0.03 0.00 0.11 0.35 0.08

Proportion of p-value ≤ 0.05 18.4% 87.8% 100.0% 56.9% 6.2% 51.5%

Panel B

β̂1
ML

- Drukker et al (2013) -0.03 0.07 0.17 -0.13 -0.02 0.09

Mean of p-value of β̂1
ML

0.30 0.02 0.00 0.08 0.43 0.14

Proportion of p-value ≤ 0.05 21.2% 90.6% 100.0% 70.6% 11.0% 58.0%

Panel C

β̂1
Ref

- corrected for reflection bias only -0.02 0.07 0.16 -0.11 -0.01 0.09

β̂1
Corr

- corrected for reflection bias + exclusion bias 0.00 0.09 0.19 -0.01 0.09 0.18

Mean of p-value of β̂1
Corr

(using permutation method) 0.50 0.00 0.00 0.50 0.15 0.00

Proportion of p-value ≤ 0.05 4.0% 99.2% 100.0% 5.8% 49.9% 98.6%

Notes: Each column corresponds to a different Monte Carlo simulation over 1000 replications. We keep the number of observations in each

sample and number of selection pools constant at N=50 and L=20, but we vary β1 and group size K. Pool fixed effects are included throughout.

Row 1 and row 2 in Panel A report, respectively, the naive β̂1
FE

and its p-value obtained by regressing Yi on GiY and pool fixed effects. The

third row reports the proportion of times the simulated p-value is smaller or equal to 0.05. For column 1 and column 4 this statistic essentially

tells us what is the likelihood to make a type II error, that is, rejecting the null hypothesis when it is in fact true. For columns 2-3 and columns

5-6 this statistic essentially gives us the statistical power of the test. Panel B presents the equivalent results of a ML estimation following the

method described in Drukker et al (2013). The first row in Panel C presents the average of β̂1
Ref

estimates corrected for reflection bias but

ignoring exclusion bias. This is estimated using model (15) with E[εε′] = σ2
ε I. The second row reports the average β̂1

Corr
derived from model

(15) with E[εε′] given by (16). The last two rows show the corrected p-value for β̂1
Corr

obtained using the permutation method, as well as a

statistic on the distribution of simulated p- values computed in the same way as in Panel A.

34



Figure 4: Power curves

Notes: This Figure illustrates the power of the MM estimator relative to the OLS estimator. The simulated model is of the
form yil = βGilYl + δl + εil where δl is a pool fixed effect. There are no other regressors. We choose a moderate total sample
size of 1000 observations, divided into 50 pools of 20 observations each. Within each pool there are three groups of size 2, three
groups of size 3, and one group of size 5. We generate 100 samples of 1000 observations for values of β1 ranging from -0.3 to 0.3
in increments of 0.1, and we estimate β̂Corr1 for each of them. We then use permutation inference and compare each estimate to

the distribution of β̂Corr1 under the null of β1 = 0. This yields a p-value for each β̂Corr1 estimate. Finally we calculate, for each

value of the true β1 separately, the proportion of the corresponding 100 simulated β̂Corr1 estimates that tests different from 0
with a p-value of 5% or better. This provides an approximation of the power of rejecting β1 = 0 when the true β1 6= 0. As
benchmark, we present the power of an OLS univariate regression with the same sample size and the same standard deviation
of the dependent variable and the regressor.
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Table 6: Empirical application: Golfer data (Guryan et al, 2009)
FE ML (Drukker et al., 2013) MM - Correction reflection + exclusion bias

(1) (2) (3)

Endogenous peer effect β1 0.022 0.011 0.055***
(0.439) (0.575) (0.008)

Lagged own effect (β2) 0.480*** 0.480*** 0.481***
(0.000) (0.000) (0.000)

Exogenous peer effect (β3) -0.061 -0.056 -0.077
(0.598) (0.620) (0.559)

Sample size 2517 2517 2517
Number of selection pools 100 100 100
Group size 3 3 3

Notes: The golfer data are from Guryan et al (2009). For demonstration purpose, we restrict the golfer sample to the first tournament

round, and to a random sub-set of N=100 out of 302 pools, making the overall sample size more comparable to the student application. We

also focus on groups of size 3 (K = 3) which consist of 75% of all observations. We drop some observations which in the original dataset had

erroneously been assigned to one or more players from a different pool than the one assigned to them (6% of all observations). The

dependent variable is the golf player’s score and the lagged own effect is a measure of past performance based on lagged test scores. The

pool is the qualification category to which each player is assigned within each tournament. All regressions include pool fixed effects. p-values

are shown in pharentheses. The p-value for the MM estimates presented in columns (3) is obtained using randomization inference with 500

iterations. The MM estimator that only corrects for reflection bias and not exclusion bias is not shown here because it essentially identical

to the ML estimator reported in column (2).

Table 7: Empirical application: Student data (Fafchamps and Mo, 2018)
FE ML (Drukker et al., 2013) MM - Correction reflection + exclusion bias

(1) (2) (3)

Endogenous peer effect β1 -0.113*** -0.056*** -0.023**
(0.000) (0.000) (0.020)

Lagged own effect (β2) 0.478*** 0.477*** 0.477***
(0.000) (0.000) (0.000)

Exogenous peer effect (β3) 0.069*** 0.042** 0.027*
(0.000) (0.013) (0.081)

Sample size 2960 2960 2960
Number of selection pools 155 155 155
Group size 2 2 2

Notes: The student data are from Fafchamps and Mo (2018). We drop a few observations for which we observed inconsistencies in the

indication of peers within a pair (16%). The dependent variable of interest is the math score of the students. The pool is the classroom. All

regressions include pool fixed effects. p-values are shown in pharentheses. The p-value for the MM estimates presented in columns (3) is

obtained using randomization inference with 500 iterations. The MM estimator that only corrects for reflection bias and not exclusion bias

is not shown here because it essentially identical to the ML estimator reported in column (2).
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Figure 5: Simulated β̂FE1 , β̂Ref1 , and β̂Corr1 under H0 : β̂1 = 0 - Golfer data
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Notes: These Figures plot for the Guryan et al (2009) application the simulated distribution of the naive β̂FE1 under
the null of no endogenous peer effects (obtained after 500 repetitions of randomly reshuffling observations to different
peers through Monte Carlo simulations) and compares this distribution (i) in the left panel to the distribution of
simulated β̂Ref1 , i.e. the coefficient estimate which corrects for reflection bias but not for exclusion bias, and (ii) in
the right panel to the distribution of simulated β̂Corr1 , i.e. the coefficient estimate correcting for both reflection and
exclusion bias.
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Figure 6: Simulated β̂FE1 , β̂Ref1 , and β̂Corr1 under H0 : β̂1 = 0 - Student data
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Notes: These Figures plot for the Fafchamps and Mo (2018) application the simulated distribution of the naive β̂FE1

under the null of no endogenous peer effects (obtained after 500 repetitions of randomly reshuffling observations to
different peers through Monte Carlo simulations) and compares this distribution (i) in the left panel to the distribution
of simulated β̂Ref1 , i.e. the coefficient estimate which corrects for reflection bias but not for exclusion bias, and (ii) in
the right panel to the distribution of simulated β̂Corr1 , i.e. the coefficient estimate correcting for both reflection and
exclusion bias.
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ONLINE APPENDIX

A Intuition behind the methodology used in the paper

A.1 What is the source of exclusion bias?

Exclusion bias is a general phenomenon that is present in all data. For most estimation, it does

not matter. But in autocorrelated regression models, it does. We illustrate the intuition with a

series of simple examples.

We posit that an i.i.d. data generation process y with mean µ and variance s2 produces samples

of yi observations of size N . We denote the mean of yi in sample n as yn and the variance as s2
y.

We are interested in the sample correlation between any two observations yi and yj in sample n.

We claim that, on average across sample realizations, the sample correlation between yi and yj is

not 0 even though they are independently distributed. This arises from the definition of sample

correlation. It is similar in nature to the Nickel (1982) bias identified in time-series data.

To illustrate with the simplest example, let N = 2. In this case yn = y1+y2
2 , the sample variance

s2
y = (y1−yn)2+(y2−yn)2

2 and the sample autocorrelation rn = 2(y1−yn)(y2−yn)
(y1−yn)2+(y2−yn)2

. By the definition of

yn we have y1 − yn = −(y2 − yn). Let d = y1 − yn. Then:

rn =
−2d2

2d2
= −1

In other words, yi and yj have a non-zero sample correlation even though they are two realizations

of an i.i.d. process. This result generalizes to samples of any size that are divided into pools of size

L = 2 and pool-level fixed effects are included. This is because, with pool fixed effects, each pool

has a distinct mean yn and the formula above applies within each pool.

The idea can be generalized to selection pools of any size. To see this, we first note that the

sample correlation between any observation yi and the average of the remaining pool observations

y−i is negative. This results derives from the definition of the sample average of the pool yn: if

yi > yn, by construction y−i < yn – and vice versa. Hence if we select one observation yj 6=i from

sample n, then the expected sample correlation between yi and yj will be negative. This is because,

on average, yj < yn if yi > yn and vice versa.
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This can be shown formally as follows. By the definition of a sample mean, we have:

yn =
(L− 1)y−i + yi

L

Let d = yi − yn. Simple algebra yields y−i = yn − d
L−1 . It follows that the covariance between yi

and y−i is simply the covariance between d and − d
L−1 , and the correlation between them is:

rn|yn =
cov(yi, y−i)

sd(yi)sd(y−i)
=
−s2

y/(L− 1)

s2
y/(L− 1)

= −1

where covariance and variance are measured relative to pool mean yn. This intuition generalizes to

samples of any size that are divided into pools of size L and pool-level fixed effects are included.

The above algebra also demonstrates that the covariance between yi and y−i falls with pool size L

or, more generally, with the size of the sample if pool fixed effects are not included.

As the above examples illustrate, the negative sample correlation between sample observations

within a selection pool arises mechanically because observation yi is omitted or ’excluded’ from

the sample mean of the remaining observations in the pool. If it were not, this negative sample

correlation would disappear. It is for this reason that we call this negative correlation an exclusion

bias.

In the paper we generalize these examples to situations in which groups are formed within each

selection pool and we calculate the plim of the within-group covariance between observations.

A.2 What is the source of reflection bias?

To illustrate the nature of reflection bias, we use a simple example with the size of the group K = 2.

In this setting, it is straightforward to obtain an algebraic formula for the reflection bias. We start

by assuming away exclusion bias to conceptually distinguish the reflection bias from exclusion bias

later on. For simplicity, we assume that errors are homoskedastic and independently distributed.

The latter assumption is far from innocuous since it assumes away the presence of what Manski

(1993) calls correlated effects, that is, correlated errors between individuals belonging to the same

peer group.19 With this assumption, correlation in outcomes between members of the same peer

19As we show later, the model can easily accommodate FEs to capture correlated effects at the level of a cluster
or selection pool.
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group constitutes evidence of endogenous peer effects.

Following Moffit (2001), the estimating equations for any two individuals 1 and 2 in the same

group can be written as:

y1 = β0 + β1y2 + ε1

y2 = β0 + β1y1 + ε2

where 0 < β1 < 1, E[ε1] = E[ε2] = 0 and E[ε2] = σ2
ε . We estimate:

y1 = a+ by2 + v1 (A.1)

by OLS. Note that selection pool fixed effects are omitted. This means that exclusion bias disap-

pears as sample size increases. Using part 2 of Proposition 1, we can show that the magnitude of

the reflection bias is given by the following proposition:

Proposition 3: [Proof in Appendix C.5]: If E[ε1ε2] = 0 (i.e., there are no correlated effects),

the bias in model (A.1) is given by:

plimN→∞ [̂bOLS ] =
2β1

1 + β2
1

(A.2)

An immediate corollary is that plimN→∞ [̂bOLS ] = 0 iff β1 = 0, implying that the existence of

peer effects can be investigated by testing whether b = 0. Moreover, formula (A.2) can be solved

to recover an estimate of β1 from the naive b̂, yielding:20

β̂1
Ref

=
1−

√
1− b̂2

b̂
(A.3)

This demonstrates that identification can be achieved solely from the assumption of independence

of ε1 and ε2, without the need for instrument.

20The other root can be ignored because it is always > 1 and peer effects in a linear-in-means model cannot exceed
1. Furthermore, in the simple model presented here, the maximum value that b̂ can take is 1, which arises when
y1 and y2 are perfectly positively correlated. Similarly, the smallest value it can take is -1, which arises if they are
perfectly negatively correlated. It is thus impossible for the absolute value of b̂ to exceed 1, which guarantees the
generality of the formula.
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A.3 How do reflection bias and exclusion bias combine?

Exclusion bias arises when selection pool fixed effects are added to model (A.1) and the size L of

each selection pool is fixed. The estimated model is now y1 = a + by2 + δl + v1, which we rewrite

in deviation from the pool mean to eliminate the fixed effect δl:

ÿ1 = a+ bÿ2 + ε̈1 (A.4)

where the notation z̈ikl ≡ z− z̄l where z̄l is the sample mean of z in pool l. By applying Proposition

1, we have:

ρ ≡ plimN→∞SampleCorr(ε̈iklε̈jkl) = − 1

L− 1
(A.5)

Using this result, we can show that the size of the combined reflection and exclusion bias is as

follows:

Proposition 4: [Proof in Appendix C.6] The bias in model (A.4) is given by:

plimN→∞ [̂bFE ] =
2β1 + (1 + β2

1)ρ

1 + β2
1 + 2β1ρ

(A.6)

where ρ = − 1
L−1 .

We can take roots of formula (A.6) to obtain a consistent estimate β̂1
Corr

as: 21

β̂1
Corr

=
1− b̂ρ−

√
1 + b̂2ρ2 − b̂2 − ρ2

b̂− ρ
(A.7)

21There are two roots, but one of them is larger than one and can thus be ignored as a realistic value for β1. Indeed,
in a linear-in-means such as the one here, β1 > 1 implies an explosive solution for the y1 and y2 system of equation,
i.e., y1 = ∞ = y2 – or possibly a corner solution (not modeled here). As long as the researcher observes interior
values of y, we can ignore the β1 > 1 root as plausible value.
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Table A.1: Bias in the estimation of endogenous peer effects - K = 2
K = 2; L = 20; N = 500

(1) (2) (3) (4)

True β1 Predicted

plim(b̂FE)

Monte Carlo average

of b̂FE

Monte Carlo averrage

of b̂Corr

0.00 -0.06 -0.06 0.00

0.01 -0.04 -0.04 0.01

0.02 -0.02 -0.02 0.02

0.03 0.01 0.01 0.03

0.04 0.03 0.03 0.04

0.05 0.05 0.05 0.05

0.06 0.07 0.07 0.06

0.07 0.09 0.09 0.07

0.08 0.11 0.11 0.08

0.09 0.12 0.12 0.09

0.10 0.14 0.14 0.10

Notes: Each row of the Table corresponds to a different Monte Carlo simulation. The first

column gives the value of β1 used to generate each simulated sample. The second column

gives the predicted plim(b̂) from formula (12) in the text. The third column reports the

average value of the estimated b̂ over 100 Monte Carlo replications with N=500, L=20 and

K=2. Pool fixed effects are included in all regressions. Column (4) shows the average of the

corrected b̂ over the same Monte Carlo replications.

We present in Table A.1 calculations based on formulas (A.6) and (A.7) and simulation of b̂FE

over 100 replications to illustrate the magnitude of the reflection and exclusion bias for various values

of β1 and for N = 500, L = 20 and K = 2.22 Column 1 presents the true β1 in the data generation

process. Column 2 shows the plim of b̂FE as predicted using our formula (A.6) and column 3 shows

the simulated value of the same. Column 4 presents the consistent estimate obtained using formula

(A.7). Comparison of columns 2 and 3 in the Table shows clearly that formula (A.6) works very

well in predicting the magnitude of the estimation bias. Moreover, we observe that, when the true

β1 is zero or small, the total predicted bias is dominated by the exclusion bias and is thus negative.

As β1 increases, the reflection bias takes over and leads to coefficient estimates that over-estimate

the true β1. What is striking is that the combination of reflection bias and exclusion bias produces

coefficient estimates that diverge dramatically from the true β1, sometimes under-estimating it and

sometimes over-estimating it. The direction of the bias nonetheless has a clear pattern that can be

summarized as follows:

22We use a large sample size of N × L= 10, 000 to show convergence of the simulation results to the predicted
values. Given that each replication takes a long time for such a large sample, we restrict the number of replications
to 100 in this exercise, which is sufficient to illustrate this point for samples of size N × L= 10, 000.
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1. If β1 = 0, then plimN→∞ [̂bFE ] = ρ < 0 which is the size of the exclusion bias.

2. It is possible for plimN→∞ [̂bFE ] to be negative even though β1 > 0. This arises when ρ is

large in absolute value, for instance if L = 20 and K = 2 as in Table 10.

3. Since the exclusion bias is always negative, b̂FE > 0 can only arise if β1 > 0. It follows that,

in this model, a positive b̂FE unambiguously indicates the presence of peer effects.

Finally, column 4 in Table A.1 illustrates how in this simple case where formula K = 2 the estimator

derived using formula (A.7) correctly estimates β1.

A.4 Empirical example

Given that K = 2 in the student data in Fafchamps and Mo (2018) - described in Section 2 in

the paper - we can use formulas (A.3), (A.6) and (A.7) to obtain exact predictions about the plim

of b̂FE1 , b̂Ref1 and b̂Corr1 under the null in this empirical application. These predictions are shown

in Table (A.2) and compared to the means of the simulated distributions of β̂FE1 , β̂Ref1 and β̂Corr1

shown in Figure 6 in the main body of this paper. As predicted by (A.6) β̂FE1 is centered around

-0.059 (considering an average pool size of 18 in this dataset) instead of being centered around the

true β1 = 0. Under the null, formula (A.3), predicts β̂Ref1 to be centered around -0.029, which is

close to the average of -0.026 obtained by the simulations shown in Figure 6 of the paper. Similarly,

by applying formula (A.7), we expect β̂Corr1 to be centered on zero. The simulation average of β̂Corr1

is 0.001. Notwithstanding small differences due to Monte Carlo approximation error, the simulation

results are strikingly similar to the values predicted by our formulas.

Table A.2: Mean β̂FE1 , β̂Ref1 , and β̂Corr1 under H0 : β1 = 0 - Student data

β̂FE1 β̂Ref1 β̂Corr1

Prediction Simulation Prediction Simulation Prediction Simulation
(1) (2) (3) (4) (5) (6)

Mean -0.059 -0.058 -0.029 -0.026 0.000 0.001
Notes: This Table compares for the Fafchamps and Mo (2018) application (where K = 2) the mean

of the simulated β̂FE1 , β̂Ref1 and β̂Corr1 , to the exact predictions made by formulas (A.3), (A.6) and

(A.7)about the plim of β̂FE1 , β̂Ref1 and β̂Corr1 under the null of no endogenous peer effects.
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A.5 Why can’t we allow group-level correlated effects in our model? Or can we?

Drukker and Prucha (2013) have developed a Stata command spreg that allows for spatial aucorre-

lation and correlated effects shared by nearby observations. The reason why the two are separately

identified is because spatial autocorrelation spreads through the entire data while correlated effects

are only shared locally between a group of observations and do not, by themselves, spread outside

that group.

To illustrate with a simple example, imagine that the data are placed at regular intervals on a

line, and calculate the sample autocorrelogram. This graph shows the sample correlation between

all pairs of observations that are distance 1 from each other, then the sample correlation between all

pairs that are distance 2 from each other, and so on. If the underlying data generation process only

includes spatial autocorrelation, the spatial autocorrelogram has the usual declining exponential

shape. In contrast, if the DGP only includes local correlated effects, the spatial autocorrelogram

has a spike at distance 1 and zero otherwise. It is this difference in spatial correlation that allows

spreg to estimate both effects. This logic extends to network data, in which case distance is the

network distance between two observations. Autocorrelated effects spread through each network

component while correlated effects remain local.

When the network data takes the form of non-overlapping groups, peer effects remain confined

within that group – which forms its own component. This means that the network autocorrelogram

can only be estimated for network distance 1, i.e., members of the same group. It follows that, in

this case, network autocorrelation (i.e., endogenous peer effects) and correlated effects (i.e., group-

level random effects) cannot be distinguished from each other since they both generate a distance

1 correlation and thus are observationally equivalent.

This reasoning also applies to IV approaches to network autocorrelation that rely on friends-

of-friends for identification (e.g., Bramoulle et al. 2009; Lee et al. 2021): when peer groups are

non-overlapping, there are no friends-of-friends and thus no instruments. The estimation approach

we propose in the paper can, however, be extended to network data with overlapping peer groups,

in which case both network autocorrelation and correlated effects can, in principle, be separately

identified, even without instruments. We believe that the spreg command of Drukker and Prucha

could similarly be modified to incorporate exclusion bias, a point on which we will be communicating
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shortly with the authors.

B Extensions

B.1 A variable transformation to address exclusion bias in tests of random peer

assignment

One alternative way to circumvent exclusion bias in standard tests of random peer assignment is

to net out the asymptotic exclusion bias using the results from Proposition 1. Specifically, we can

use formula (4.1) – or its extension to cases of varying group and pool sizes that is provided in

Proposition 2 – to transform the dependent variable in model (3.1) so as to obtain a consistent

point estimate of the true β1 under the null. To this effect, we apply OLS to estimate:

ỹiklt = α1ȳ−iklt + δl + εiklt (B.1)

where ỹiklt ≡ yiklt − ρȳ−iklt with ρ ≡ plimN→∞[α̂FE1 ] given by formula (4.1).23 Random peer

assignment is verified by testing whether α̂FE1 = 0 in model (B.1) using OLS standard errors

clustered at the pool level. As illustrated by simulation results presented in the bottom right panel

of Figure 1, only when standard errors are clustered by selection pool does the method yield correct

inference. We should point out that regression model (B.1) does not yield a consistent estimate of

α1 when the true α1 6= 0 – more about this in Section 5.

23Under the null of α1 = 0, this transformed model is obtained as follows: xiklt =
(
α1 + plimN→∞[α̂FE1 ]

)
x̄−iklt +

δl + εiklt ⇔ xiklt − plimN→∞[α̂FE1 ]x̄iklt = α1x̄−iklt + δl + εiklt. It immediately follows that plimN→∞[α̃FE1 ] = α1

where α̃FE1 denotes the estimate obtained from estimating (B.1).
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Figure A.1: Performance of the corrected model with different standard error estimators
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Notes: Figure shows for different estimators the simulated performance of a standard t-test to evaluate whether α1 = 0 under
the null hypothesis of random assignment that it is true. The upper two panels show this for the ‘naive’ model (1) for different
standard error estimators: One without clustering at the selection pool level (left) and one with standard errors clustered at
the selection pool level (right). Using model (3) with a corrected dependent variable, the bottom two panels show the results
without (left) and with (right) clustering of standard errors at the selection pool level. The expected rejection rate is a 45
degree line. The actual performance of the test under the null is simulated using 1000 Monte Carlo replications with N=50,
L=20 and K=5. Pool fixed effects are included in each replication. An actual rejection rate above the 45 degree line indicates
over-rejection: the probability of rejecting the null of random assignment is larger than the critical value of the test.

If the model contains regressors wiklt other than those shown in equation (B.1), these regressors

first need to be partialled out. In practice, this means doing the following. First, express yiklt and

ȳ−iklt in deviation from their selection pool mean, i.e., let y̌iklt ≡ yiklt− 1
Lk

∑
jk∈l yjklt and ˇ̄y−iklt ≡

ȳ−iklt− 1
Lk

∑
jk∈l ȳ−jklt. Do the same for the other regressors, i.e., let w̌iklt = wiklt− 1

Lk

∑
jk∈l wjklt.

Second, regress the demeaned y̌iklt on w̌iklt and keep the residuals, which we denote as ûiklt.

Similarly regress ˇ̄y−iklt on w̌iklt and keep the residuals, which we denote as v̂−iklt. We then apply

model (B.1) to the residuals, i.e., we construct ˜̂uiklt ≡ ûiklt − ρv̂−iklt as above and we regress ˜̂uiklt

on v̂−iklt. This yields the correct test for random peer assignment in the presence of additional

regressors.

The above method works when formula (4.1) can be calculated, that is, when peer assignment is
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to mutually exclusive groups. It does not apply to peer assignment to partially overlapping groups,

or to a position in a network. In such cases randomization inference can be used instead (e.g.,

Fisher 1925).

B.2 Avoiding exclusion bias

B.2.1 Exogenous peer effects

When estimating exogenous peer effects, it is possible to eliminate the exclusion bias by using

control variables. To illustrate, we use the peer structure used in the golf tournament studied

by Guryan et al. (2009). Many random pairing experiments, such as the random assignment of

students to rooms or to classes, have a similar structure.

At t + 1 golfers participating to tournament l are assigned to a peer group k with whom they

play throughout the tournament. The performance of golfer i in tournament l is written as yikl,t+1.

The researcher has information on the performance of each golfer i in past golf tournaments. This

information is denoted as yiklt. The researcher wishes to test whether the performance of golfer i

in tournament l depends on the past performance of the golfers i is paired with. The researcher’s

objective is thus to estimate coefficient β1 in a regression of the form:

yikl,t+1 = β0 + β1ȳ−iklt + δl + εikl,t+1 (B.2)

where ȳ−iklt denotes the average past performance of i’s assigned peers. A key difference with the

models discussed earlier is that here ȳ−iklt is calculated using the past performance of peers in other

tournaments, before being assigned to be i’s peers. Because of exclusion bias, ȳ−iklt is mechanically

negatively correlated with yiklt due to the presence of pool fixed effects. Since i’s past performance

is correlated with i’s unobserved talent, we expect yiklt to be positively correlated with yikl,t+1.

This generates a negative correlation between ȳ−iklt and the omitted variable yiklt which is part of

the error term. The result is a negative bias for β1 in regression (B.2).

The example suggests an immediate solution: include yiklt as additional regressor to eliminate

the exclusion bias:

yikl,t+1 = β0 + β1ȳ−iklt + β2yiklt + δl + εikl,t+1
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where yiklt serves as control variable. This is the approach adopted, for instance, in Munshi (2004).

A similar reasoning applies if the researcher wishes to test the influence of the pre-existing

characteristics of peers x̄−iklt on i’s subsequent outcome yikl,t+1 and includes pool fixed effects.24

Here too the pre-existing characteristics of peers are negatively correlated with i’s pre-existing

characteristic xiklt. Hence if the researcher fails to control for xiklt and xiklt is positively correlated

with yikl,t+1, then estimating a model of the form:

yikl,t+1 = b0 + b1x̄−iklt + δl + uikl,t+1

will result in a negative exclusion bias.25 This bias can be corrected by including xiklt as control,

as done for instance in Bayer et al. (2009):

yikl,t+1 = b0 + b1x̄−iklt + b2xiklt + δl + uikl,t+1

If the researcher does not have data on yiklt or xiklt, it may be possible to reduce the exclusion

bias by including individual characteristics of i as control variables to soak up some of the omitted

variable bias. How successful this approach can be depends on how strongly individual charac-

teristics predict yiklt or xiklt, as the case may be. Simulations (not reported here) indicate that

the reduction in exclusion bias is sizable when control variables collectively predict much of the

variation in yikl,t+1 (e.g., a correlation of 0.8). The improvement is negligible when the correlation

is small (e.g., 0.2).

B.2.2 Endogenous peer effects

When estimating endogenous peer effects, the use of instrumental variables can – under certain

conditions – eliminate exclusion bias. One case that is particularly relevant in practice is when

the researcher uses the peer average of a variable z to instrument peer effects, but also includes

zi in the regression. To illustrate this formally, let us assume that the researcher has a suitable

instrument z̄−ikl for ȳ−ikl. For instance, z̄−ikl may be the peer group average of a characteristic z

24As discussed in Proposition 1 Part 3, even if the researcher does not include pool fixed effects, there is still an
exclusion bias if the pool size L is small enough.

25If xiklt is negatively correlated with yikl,t+1 then the exclusion bias is positive, i.e., b1 is estimated to be less
negative than it is.
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known not to influence yikl, e.g., because this characteristic has been assigned experimentally. If

z̄−ikl is informative about ȳ−ikl, then zikl should be informative about yikl as well. For this reason,

zikl is often included in the estimated regression as well. In this case, the first and second stages of

this 2SLS estimation strategy can be written as follows:

ȳ−ikl = π0 + π1z̄−ikl + π2zikl + δl + vikl (B.3)

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + δl + εikl (B.4)

where E(ziklεikl) = 0, E(εikl) = 0 and ˆ̄y−ikl = π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l is the fitted value from the

first-stage regression.26

Since such 2SLS strategies eliminate the negative exclusion bias, they yield peer effect estimates

that are larger – i.e., more positive – than OLS estimates. This counter-intuitive finding is often

attributed to classical measurement error or some other cause (e.g., Goux and Maurin 2007, Halliday

and Kwak 2012, De Giorgi et al. 2010, de Melo 2014, Brown and Laschever 2012, Helmers and

Patnam 2012, Krishnan and Patnam 2012, Naguib 2012). The removal of the negative exclusion

bias by instrumentation offers an alternative, mechanical explanation.

The above examples serve to illustrate that for 2SLS to effectively eliminate exclusion bias, it

is necessary to control for i’s own value of the instrument zikl in equation (B.3). This condition is

satisfied, for instance, by the estimation strategies employed by Bramoulle et al. (2009), Di Giorgi

et al. (2010) or Lee (2007). Any instrumentation method that fails to do so suffers from exclusion

bias in the same way and for the same reason as OLS.

26Expanding the second-stage 2SLS equation and replacing the fitted values by the above expression, it is straight-
forward to show that cov(ˆ̄y−ikl, εikl|zikl) = 0 and therefore that β̂2SLS

1 does not suffer from exclusion bias. Indeed
we have:

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + δl + εikl

= β0 + β1(π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l) + β2zikl + δl + εikl (B.5)

If yikl and zikl are correlated (i.e., if β2 6= 0), we expect z̄−ikl to be mechanically correlated with yikl because

z̄−ikl =

[∑N
K
s=1

∑K
j=1 zjs

]
−zikl

L−1
+ ũikl, where ũikl ≡ z̄−ikl − z̄−il. Since equation (B.5) controls for zikl directly, this

mechanical relationship is prevented from generating an exclusion bias.
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B.3 Application to time series autoregressive models

The methodological approach proposed in this paper can be applied to autoregressive models other

than those operating on network or group data. We illustrate this with a time series autoregressive

model with fixed effects of the form:

xit = β1xit−1 + δi + εit (B.6)

where T is small and N is large. Here T serves the same role as L in peer effect models: it is the

size of the pool from which peers (here, the t− 1 neighbor of t) are drawn. Such models are known

to suffer from bias (Nickell 1981) and various instrumentation strategies have been proposed to

estimate them (e.g., Arellano and Bond 1991, Arellano and Bover 1995, Blundell and Bond 1998).

Using an approach similar to Proposition 1, the asymptotic bias in β1 under the null can easily

be derived as:

Proposition 5: When the true β1 = 0, estimates of β1 in model (B.6) satisfy:

plimN→∞( ˆβFE1 ) = − 1

T − 1
= ρ (B.7)

See Appendix C.7 for a proof. Interestingly, the limit given by formula (B.7) is the same as that

given by Proposition 1 Part 1 for K = 2 and it is equal to the value of ρ in equation (A.5). Formula

(B.7) shows how large the Nickell bias is at the null: for T = 3, the shortest panel for which

instruments exist, the plim of β̂1 under the null of β1 = 0 is -0.5; for T = 10, the asymptotic bias

under the null is still −0.111.27

The good news is that the different approaches proposed here also work for model (B.6). For

instance, if the researcher is solely interested in testing whether β1 = 0, this is easily achieved by

creating a variable x̃it ≡ xit − ρxit−1 and regressing it on xit−1, as indicated in equation (B.1).

The MM estimation model (5.2) can similarly be used by setting network matrix G to have 1’s

immediately to the left of the diagonal, and 0’s everywhere else, so as to pick the lagged value

of the dependent variable in lieu of the ’average of peers’. Everything we said about inference

27See Nickel (1981) and Arellano (2003) for simulations of the bias when β1 6= 0. As an aside, there seems to be a
sign error in equation (13) of Nickel’s paper: the last term should have a minus sign instead of a plus sign. If this
error and its impact of subsequent equation (16) are corrected, the formula for the Nickel bias when ρ = 0 is identical
to our equation (B.7), except that the number of time periods T in Nickel (1981) is equal to T − 1 in our notation.
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applies as well. While this approach allows the estimation of β1 in model (B.6) without recourse to

instruments, it does impose the fairly strict requirement that errors εit be i.i.d. within each pool,

which precludes autocorrelated errors.

B.4 Network data

Until now we have considered situations in which peers form mutually exclusive groups, i.e., such

that if i and j are peers and j and k are peers, then i and k are peers as well. Exclusion bias

also arises when peers form more general networks, i.e., such that i and k need not be peers. To

illustrate this, let us consider the canonical case examined in Section 5.1 and assume that individuals

in selection pool l are randomly assigned peers within that pool. The only difference with Section

5.1 is that we no longer restrict attention to mutually exclusive peer groups but allow links between

peers to take an arbitrary (including directed or undirected) network shape within each pool l.

Partially overlapping groups and mutually exclusive groups of unequal size can be handled in the

same manner.

The approach developed to estimate general group models with uncorrelated errors can be

applied to network data virtually unchanged. Equation (5.2) remains the same. Formally let

gijl = 1 if i and j in selection pool l are peers, and 0 otherwise. We follow convention and set

gii = 0 always. The network matrix in pool l is written Gl = [gijl] and G is a block diagonal matrix

of all Gl matrices.

To estimate network models in levels, we use G directly. If the model we wish to estimate is

linear-in-means, let nil denote the number of peers (or degree) or i. The value of nil typically differs

across individuals. Let us define vector Ĝil as a vector formed by dividing i’s row of Gl by nil, i.e.:

Ĝil = [
gi1l
nil

, ...,
giLl
nil

]

where, as before, L denotes the size of the selection pool.28 The average outcome of i’s peers can

then be written as ĜilYl where Yl is the vector of all outcomes in selection pool l. The peer effect

28To illustrate, let L = 4 and assume that individual 1 has individuals 2 and 4 as peers. Then ĝil = [0, 1
2
, 0, 1

2
].
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model that we aim to estimate is:

Yil = βĜilYl + γXil + δĜilXl + λl + εil (B.8)

Let’s define Ĝl as the Ll × Ll matrix obtained by stacking all Ĝil in pool l. Similarly define Ĝ as

the block-diagonal matrix of all Ĝl matrices. After expressing Y and X in deviation from their

pool mean to eliminate λl, the linear-in-means network autoregressive model can thus be written

in matrix form as:

Ÿ = βĜŸ + γẌ + δĜẌ + ε̈ (B.9)

As in the previous section, equation (5.2) combined with (A.5), (5.3) and (5.5) can be used

to estimate structural parameters β, γ, δ and σ2. It is intuitively clear that exclusion bias affects

model (B.8) as well: individual i is still excluded from the selection pool of its own peers and, in the

presence of selection pool fixed effects, this continues to generate a mechanical negative correlation

between i’s outcome and that of its peers. The same asymptotic formula is used to substitute for

parameter ρ as before. Pre- and post-multiplying matrix E[ε̈ ε̈′] by (I − βĜ)−1 in expression (5.2)

picks the relevant off-diagonal elements of B to construct the needed correction for exclusion bias.

Estimation proceeds using the same iterative algorithm as described above.

We illustrate this approach for network data in Table A.3. We generate each adjacency matrix

Ĝl as a Poisson random network with linking probability p. In other words, p is the probability that

a link exists between any two individuals i and j within the same pool. When p = 0.1 and L = 20,

each individual has two peers on average; when p = 0.25 (0.5) each individual has on average 5 (10)

peers, respectively. Table A.3 provides simulation results and shows how our suggested method of

moments correction method is able to correct the estimate of β1 to be close to the true β1.
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Table A.3: Correction bias in the estimation of endogenous peer effects - Networks
p = 0.10 p = 0.25

(1) (2) (3) (4) (5) (6)

True β1 β1 = 0.00 β1 = 0.10 β1 = 0.20 β1 = 0.00 β1 = 0.10 β1 = 0.20

Panel A
β̂FE1 -0.09 0.08 0.25 -0.26 -0.09 0.10

Mean of p-value of β̂FE1 0.18 0.18 0.00 0.03 0.32 0.26

Proportion of p-value ≤ 0.05 51.1% 41.7% 99.9% 88.8% 27.9% 36.3%

Panel B
β̂Corr1 - correction for reflection bias + exclusion bias 0.00 0.10 0.19 0.00 0.09 0.19

Mean of p-value of β̂Corr1 (using permutation method) 0.51 0.04 0.00 0.50 0.18 0.01

Proportion of p-value ≤ 0.05 6.3% 88.9% 100.0% 4.9% 47.3% 96.5%

Notes: Each column corresponds to a different Monte Carlo simulation over 1000 replications. We keep the number of observations in each

sample and selection pool constant at N=50 and L=20, but we vary β1 and the linking probability p. Pool fixed effects are included throughout.

Row 1 and row 2 in Panel A report, respectively, the naive β̂1
FE

and its p-value obtained by regressing Yi on GiY and pool fixed effects. The

third row reports the proportion of times the simulated naive p-value is smaller or equal to 0.05. For column 1 and column 4 this statistic

essentially tells us what is the likelihood to make a type II error, that is, rejecting the null hypothesis when it is in fact true. For columns 2-3 and

columns 5-6 this statistic essentially gives us the statistical power of the test. The first row in Panel B presents the average of β̂1
Corr

correcting

for reflection bias and exclusion bias. The last two rows show the corrected p-value obtained using the permutation method and a statistic

related to the power of the permutation inference method (similarly computed as in Panel A).

The permutation method can be adapted to correct p-values for this case as well. To recall, we

want to simulate the counterfactual distribution of β̂1 under the null hypothesis of zero peer effects.

In contrast with Section A.3, peers are no longer selected by randomly partitioning individuals

into groups within pools, but rather by randomly assigning peers within pools. In practice, we

keep the network matrices in each selection pool unchanged but we change who is linked to whom.

This approach is known in the statistical sociology literature as Quadratic Assignment Procedure

or QAP and was introduced by Krackhardt (1988).

To implement this approach within pool l, we scramble matrix Gl in the following way. Say the

original ordering individual indices in l is {1, ..., i, ..., j, ..., L}. We generate a random reordering

(k) of these indices, e.g., {j, ..., 1, ..., L, ..., i}. We then reorganize the elements of Gl according to

this reordering to obtain a counter-factual network matrix G
(k)
l . To illustrate, imagine that i has

been mapped into k and j into m. Then element gijl of matrix Gl becomes element gkml in matrix

G
(k)
l . We then use this matrix to compute the average peer variable ĝ

(k)
il yl. For each reordering

(k) we estimate model (B.8) and obtain a counter-factual estimate β̂
(k)
1 corresponding to the null

hypothesis of zero peer effects. We then use the distribution of the β̂
(k)
1 ’s as approximation of the

distribution of β̂1 under the null of zero peer effects.

In Table A.3. we compare the p-values obtained from the naive model and the permutation

approach applied to model (B.8). We find that the performance of the estimation method in the
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network case is comparable to what it was in the peer group case.

C Proofs of propositions

The notation is as follows. In a sampled population Ω, each individual i ∈ Ω is randomly assigned

to a group of Ki people. Let Πi ⊆ Ω be the pool of people from which i’s (Ki− 1) peers are drawn

at random. When the pool Πi is the entire sample, Πi = Ω. The pool Πi can also be a subset of

the sample of size Li, with Πi ⊂ Ω. Section C.1 deals with cases with multiple peer selection pools,

i.e., Πi ⊂ Ω (Part 1 of Proposition 1). Section C.2 deals with Πi = Ω (Part 2 of Proposition 1).

Section C.3 discusses the magnitude of the exclusion bias in small samples (Part 3 of Proposition

1). These first three sections focus on cases with a constant pool size L and peer group size K.

Sections C.4, C.5, C.6, and C.7 prove Propositions 2, 3, 4 and 5, respectively.

C.1 Proof of Proposition 1 part 1: Multiple peer selection pools of fixed size L and

peer groups of fixed size K

Let the sampled population Ω be partitioned into N distinct pools of size L. Individuals in each

pool are partitioned into mutually exclusive groups of size K – which implies that L is an integer

multiple of K. Each individual is assigned a realization of a random variable y with the following

data generating process:

yiklt = δl + εiklt (C.1)

where yiklt is the value of y for individual i in group k of pool l at time t, δl is a pool fixed effect,

and εiklt is an i.i.d. random variable with mean 0 and variance σ2
ε .

To test random peer assignment on these data, the researcher estimates regression (3.1), repro-

duced here:

yiklt = α1ȳ−iklt + δl + εiklt (C.2)

where ȳ−iklt is the sample mean of yiklt for individuals other than i who are in the same group k

as i, i.e.:

ȳ−iklt =

[∑K
j=1 yjklt

]
− yiklt

K − 1

In what follows we omit subscript t to improve clarity. Regression (C.2) can be expressed in
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deviation from the pool mean so as to eliminate the pool fixed effect δl:

yikl − ȳl = β1(ȳ−ikl − ȳl) + (εikl − ε̄l) (C.3)

where ȳl is the pool sample mean of yikl, ε̄l is the pool sample mean of εikl, and we have used the

fact that the pool sample mean of ȳ−ikl is ȳl.

We note that, by construction, ȳl ≡ δl + ε̄l. It follows that the demeaned regressor ȳ−ikl − ȳl is

mechanically correlated with the demeaned error term εikl− ε̄l, resulting in a bias in the estimation

of α1 using equation (C.3). This problem has long been noted in the estimation of autoregressive

models with fixed effects and need not be further discussed here. In that literature, the proposed

solution has been to first-difference regression (C.2) and instrument yikl with lagged values. This

approach does not apply here since peer effects are reflexive.

In the rest of this section, we derive a formula for the asymptotic bias of α1 for our specific

case of a constant pool and group size. This bias is present even when the true α1 = 0, leading to

incorrect inference when using model (C.3) to test random peer assignment. We start by defining

uikl ≡ ȳ−ikl − ȳ−il where ȳ−il is the sample mean of yikl for individuals other than i who are in the

same pool l as i, i.e.:

ȳ−il ≡

[∑ L
K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1
(C.4)

With this new notation, ȳ−ikl = ȳ−il+uikl and equation (C.3) can be rewritten as:

yikl− ȳl = α1


[∑ L

K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1
+ uikl −


[∑ L

K
s=1

∑K
j=1 yjsl

]
− ȳl

L− 1

− ūl
+εikl− ε̄l (C.5)

where ūl is the pool sample mean of uikl and is identically 0 by construction. The above equation

thus simplifies to:

yikl − ȳl = α1

(
ȳl − yikl
L− 1

+ uikl − ūl
)

+ εikl − ε̄l (C.6)

If we define the notation z̈ ≡ z − z̄l , for z = y, ε, u, we can further simplify equation (C.3) as:

ÿ = α1

(
−ÿ
L− 1

+ ü

)
+ ε̈ (C.7)
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from which it is immediately apparent that the regressor used to identify α1 is mechanically corre-

lated with the error term since it contains the dependent variable itself.

Next we apply the standard formula for calculating the plim of the OLS estimator for α1, which

takes the following form :

plimN→∞
(
α̂FE1

)
= α1 +

cov
(
−ÿ
L−1 + ü, ε̈

)
var

(
−ÿ
L−1 + ü

) (C.8)

where α̂FE1 stands for the fixed effect estimator obtained using regression (C.7). Since α1 = 0 by

construction, we can write:

plimN→∞
(
α̂FE1

)
=

cov
(
−ÿ
L−1 , ε̈

)
+ cov (ü,ε̈)

var
(
−ÿ
L−1

)
+ 2cov

(
−ÿ
L−1 , ü

)
+ var (ü)

(C.9)

With some algebra, equation (C.9) will now enable us to calculate the asymptotic value of the

bias in α̂FE1 . We start by noting that, since ūl ≡ 0 by construction, we have:

cov (ü, ε̈) = E (üε̈) = E [(uikl − ul) (εikl − εl)]

= E (uiklεikl)− E (uiklε̄l) = 0 (C.10)

by definition of the average. Similarly we can write:

var (ü) = var (uikl − ūl) = σ2
u (C.11)

To tackle the three remaining terms in equation (C.9), we start by transforming equation (C.7) to

obtain an expression for − ÿ
L−1 . By simple manipulation of equation (C.7), we obtain:

[
L− 1 + α1

L− 1

]
ÿ = α1ü+ ε̈

which leads to:

− ÿ

L− 1
=

−α1ü

L− 1 + α1
− ε̈

L− 1 + α1
(C.12)
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Next we note that: 
E (εiklε̄l) =

E(ε2ikl)
L = σ2

ε
L

var (ε̄l) = var
(∑L

i=1 εikl
L

)
=

∑L
i=1 var(εikl)

L2 = Lσ2
ε

L2 = σ2
ε
L

(C.13)

from which we obtain

var (ε̈) = σ2
ε − 2

σ2
ε

L
+
σ2
ε

L
=

(L− 1)σ2
ε

L
(C.14)

Using the facts that E(ε̈) = E(εikl − ε̈l) = 0 and that α1 = 0 by assumption, and combining

these with equations (C.10), (C.14), and (C.12), we obtain:

cov

(
−ÿ
L− 1

, ε̈

)
= E

[[
−ÿ
L− 1

− E
(
−ÿ
L− 1

)]
ε̈

]
= E

[
−ε̈ε̈
L− 1

]
=
−var(ε̈)
L− 1

= −σ
2
ε

L
(C.15)

This gives the value of the first term in the numerator of equation (C.9).

Next, we use equation (C.10) and (C.12) to get the value of the middle term in the denominator

of (C.9):

2cov

(
−ÿ
L− 1

, ü

)
= −2

E(üε̈)

L− 1
= 0 (C.16)

For the first term in the denominator of (C.9), we again use equation (C.12) to get:

var

(
−ÿ
L− 1

)
= var

(
− ε̈

L− 1

)
=

σ2
ε

L(L− 1)
(C.17)

Summarizing these different results, we can write the numerator and denominator of (C.8) as

follows:

cov(
−ÿ
L− 1

+ ü, ε̈) = −σ
2
ε

L
(C.18)

var(
−ÿ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+ σ2

u (C.19)
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We now need an expression for σ2
u. Recall that uikl ≡ ȳ−ikl − ȳ−il. Therefore:

σ2
u = V ar(u) = V ar [ȳ−ikl − ȳ−il] = V ar


[∑K

j=1 yjkl

]
− yikl

K − 1
−

[∑ L
K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1


= V ar

(L− 1)
[(∑K

j=1 yjkl

)
− yikl

]
(L− 1)(K − 1)

−
(K − 1)

[(∑K
j=1 yjkl

)
− yik

]
(L− 1)(K − 1)

−
∑ L

K
s 6=k

∑K
j=1 yjsl

L− 1


= V ar

(L−K)
[(∑K

j=1 yjkl

)
− yikl

]
(L− 1)(K − 1)

−
∑ L

K
s 6=k

∑K
j=1 yjsl

L− 1


Using var(yikl) = σ2

ε and the assumption that yikl is i.i.d., we obtain the following relationship

between σ2
u and σ2

ε :

σ2
u =

(L−K)2(K − 1)

(L− 1)2(K − 1)2
σ2
ε +

(L−K)

(L− 1)2
σ2
ε =

(L−K)

(L− 1)(K − 1)
σ2
ε < ε2ε (C.20)

Substituting this into equation (C.19) the denominator of (C.8) can be written:

var(
−ÿ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+

(L−K)

(L− 1)(K − 1)
σ2
ε

=
(K − 1) + (L−K)L

L(L− 1)(K − 1)
σ2
ε

Combining these results we get:

plimN→∞
(
α̂FE1

)
=

(−σ2
ε
L )

(K−1)+(L−K)L
L(L−1)(K−1) σ2

ε

= − (L− 1)(K − 1)

(K − 1) + (L−K)L
(C.21)

which is obviously negative. This proves the first part of Proposition 1.

C.2 Proposition 1 part 2: one single peer selection pool Πi = Ω and N = 1

We now turn to the second part of Proposition 1 when peers are randomized at the level of the

sampled population Ω and there is a single peer selection pool Πi = Ω and N = 1. In this case,

the estimated regression does not include pool fixed effects δl.

21



The first part of Proposition 1 (summarized by formula (4.1) and derived in Section C.1) states

that the magnitude of the exclusion bias depends on the size of the peer selection pool L: for a given

peer group size K, a larger pool size is associated with a smaller exclusion bias. From the same

formula (4.1) it immediately follows that as L converges to infinity, the exclusion bias converges to

zero. Formally, if Πi = Ω, then

plimL→∞
(
α̂OLS1

)
= 0 (C.22)

However, in samples that are small relative to the peer group size K, the magnitude of the exclusion

bias can be large, even when there is only one peer selection pool Πi = Ω.

C.3 Proposition 1 Part 3: Small sample exclusion bias

Formula (C.21) only holds in the limit, that is, for large sample sizes N. The computation of E(α̂FE1 )

that applies in small sample sizes is not as straightforward, because E

[
samplecov( −ÿL−1

+ü,ε̈)
samplevar( −ÿL−1

+ü)

]
6=

E[samplecov( −ÿL−1
+ü,ε̈)]

E[samplevar( −ÿL−1
+ü)]

. We can however use a Taylor expansion to sign the bias.

Stuard and Ord (1998) and Elandt-Johnson and Johnson (1980) have shown that for two random

variables R and S, where S either has no mass at 0 (discrete) or has support [0,∞), a Taylor

expansion approximation for E[A/B] is as follows:

E

(
R

S

)
' µR
µS
− Cov(R,S)

µ2
S

+
V ar(S)µR

µ3
S

In our application R = SampleCov
(
−ÿ
L−1 + ü, ε̈

)
, S = SampleV ar

(
−ÿ
L−1 + ü

)
, µR is the mean of

R and µS is the mean of S. The first term, µR
µS

, is expression (C.21). We know from equation

(C.18) and equation (C.19) that µR < 0 and µS > 0. While an expression for Cov(R,S) is harder

to derive, simulation results indicate that Cov(R,S) < 0. Given that V ar(S) > 0, it follows that:

E
[
α̂FE1 |L

]
< plimN→∞

[
α̂FE1

]
(C.23)

a finding that is also confirmed through numerous simulations. Hence, we see that for a given size

of the selection pool L and a given size of the peer group K, the negative exclusion bias shrinks

from below towards its plim as sample size N × L increases.
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C.4 Proof of Proposition 2

The first part of the proof presents a simple formula for aggregating correlation coefficients across

sub-samples. The second part applies the formula to the case where pool size and group size vary

across pools but group size is the same within each pool. Part 3 examines the case where pool size

if fixed but group sizes vary within pools. The last part concludes the proof by combining all cases

within a single formula.

An elegant formula for aggregating correlation coefficients can be found in an early paper by

Dunlap (1937), which we reproduce here. The author posits that the researcher has calculated

correlation coefficients between z and c – and other simple statistics like their mean and variance

– separately for two samples of sizes m and n from the same data generating process. Not having

a computer at his disposal, the researcher wishes to calculate the correlation coefficient of the

combined sample from these already calculated statistics. The solution is the following formula:

rzy =
mszmscmrzmcm +mδm∆m + nsznscnrzncn + nδn∆n√

m(s2
zm + δ2

m) + n(s2
zn + δ2

n)
√
m(s2

cm + ∆2
m) + n(s2

cn + ∆2
n)

(C.24)

where: the two subsamples are indexed by m and n, respectively; rab denotes the correlation

coefficient between a and b; sa denotes the standard deviation of a; δs denotes the difference

between the sample means of zs and z; and ∆s denotes the difference between the sample means

of cs and c. The formula naturally generalizes to more than two sub-samples. We also note that,

in univariate regressions of c on z, the following relationship holds:

α1 = rzc
sc
sz

To apply the formula to our setting, imagine that we have two sub-samples m and n from the

same data generating process (3.1). Within each sub-sample, pool and group sizes are constant.

But they vary across the two sub-samples. From Proposition 1 we know the plim of α̂1 for each of

the two sub-samples with pool fixed effects is:

plimN→∞[α̂1m] = − (Lm − 1)(Km − 1)

(Lm −Km)Lm + (Km − 1)
(C.25)
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plimN→∞[α̂1n] = − (Ln − 1)(Kn − 1)

(Ln −Kn)Ln + (Kn − 1)
(C.26)

We wish to know the plim of α̂1 for the combined sample. To achieve this, we apply the formula

(C.24). To remove the pool fixed effects, we start by transforming the regression model (3.1) into

its pool de-meaned version (C.7) from the proof of part 1 of Proposition 1, which we reproduce

here for convenience:

ÿs = α1s

(
−ÿs
L− 1

+ üs

)
+ ε̈s (C.27)

where s = {m,n}. For notational simplicity, let us define xs ≡ ÿs and let zs ≡ −ÿs
L−1 + üs. Further

let rs stand for the correlation between cs and zs. Since (C.27) is a univariate regression, it follows

that:

plimα̂1s = rs
scs
szs

which establishes a formal link with formula (C.24). By construction, the means of ÿs and üs are

0, and thus the means cs and zs are 0 in each pool, implying that δm = 0 = δn and ∆m = 0 = ∆n.

We thus have:

√
m(s2

zm + δ2
m) + n(s2

zn + δ2
n) =

√
ms2

zm + ns2
zn

=

√∑
m

z2
m +

∑
n

z2
n = (m+ n)1/2sz

and similarly: √
m(s2

cm + ∆2
m) + n(s2

cn + ∆2
n) = (m+ n)1/2sc

where sz and sc are the standard deviations of z and c in the full sample.

Since rzmcm = szm
scm

plimα̂1m and rzncn = szn
scn
plimα̂1n, we can now rewrite formula (C.24) as

follows:

plimα̂1 =
sc
sz

ms2
zmplimα̂1m + ns2

znplimα̂1n

(m+ n)szsc

=
m

m+ n

s2
zm

s2
z

plimα̂1m +
n

m+ n

s2
zn

s2
z

plimα̂1n (C.28)

Equations (C.25) and (C.26) provide values for plimα̂1m and plimα̂1n. A formula for s2
zm was
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derived in Proposition 1, part 1:

s2
zm ≡ V ar(

−ÿ
Lm − 1

+ ü) =
(Km − 1) + (Lm −Km)Lm
Lm(Lm − 1)(Km − 1)

σ2
ε

A similar formula holds for s2
zn :

s2
zn =

(Kn − 1) + (Ln −Kn)Ln
Ln(Ln − 1)(Kn − 1)

σ2
ε

Furthermore we have, by the definition of the variance:

s2
z =

m

m+ n
s2
zm +

n

m+ n
s2
zn

Since the unknown variance term σ2
ε cancels out from the

s2zm
s2z

and
s2zn
s2z

ratios, we do not need it

in order to calculate plimα̂1. As in (C.24), the above reasoning naturally generalizes to multiple

sub-samples. This completes the second part of the proof.

We now turn to the case when group size varies within pools. We start by assuming all pools

have the same mix of group sizes. As in part 2, we regard each set of groups of a given size k as a

sub-sample of the whole pool. Let p and q be the number of individual observations in each sub-

sample. Under the null hypothesis of α1 = 0 and the maintained assumption of random assignment

of peers, each sub-sample can be regarded as a representative random sample. Hence the plim

formula (C.8) of Proposition 1 part 1 applies to each of them independently. It follows that the

plim’s of α̂1 are given by the formula from Proposition 1 part 1:

plimN→∞[α̂1p] = − (L− 1)(Kp − 1)

(L−Kp)L+ (Kp − 1)
(C.29)

plimN→∞[α̂1q] = − (L− 1)(Kq − 1)

(L−Kq)L+ (Kq − 1)
(C.30)

We now apply (C.24) to derive the plim of the regression coefficient obtained from pooling the two

sub-samples p and q. As in part 2, δp = 0 = δq and ∆p = 0 = ∆q. Hence equation (C.28) applies

as well:

plimα̂1 =
p

p+ q

s2
zp

s2
z

plimα̂1p +
q

p+ q

s2
zq

s2
z

plimα̂1q
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where:

s2
zp =

(Kp − 1) + (L−Kp)L

L(L− 1)(Kp − 1)
σ2
ε

s2
zq =

(Kq − 1) + (L−Kq)L

L(L− 1)(Kq − 1)
σ2
ε

s2
z =

p

p+ q
s2
zp +

p

p+ q
s2
zq

This formula holds within each pool.

We can now combine variation in group size within pools with variation in pool sizes to obtain

the following over-arching formula for an arbitrary combination of group and pool sizes. Each

group k of size nk and pool size Lk is regarded as a distinct subsample with its own plimα̂1 and

s2
zk

defined as before as:

plimN→∞[α̂1k] = − (Lk − 1)(Kk − 1)

(Lk −Kk)Lk + (Kk − 1)

s2
zk

=
(Kk − 1) + (Lk −Kk)Lk
Lk(Lk − 1)(Kk − 1)

where, for simplicity, we have dropped σ2
ε from the definition of s2

zk
since it cancels out in the final

formula for plim(α̂1). The definition of s2
z generalizes to:

s2
z =

∑
k

nk
M
s2
zk

where M ≡
∑

k nk stands for the total number of observations in the estimation sample. The

generalized formula for the plim of the pooled α̂1 can be written

plimα̂1 =
∑
k

nk
M

s2
zk

s2
z

plimα̂1k

This concludes the proof.

Table A.4 and Table A.5 confirm the accuracy of the formula in Proposition 2 through a set of

simulations, particularly for large sample sizes (as expected).
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Table A.4: Simulated exclusion bias with random peer assignment: Varying peer group sizes
Small sample Large sample

(1) (2) (3) (4) (5) (6)

Simulation parameters:
Number of pools (N) 20 20 20 100 100 100

Group size 1 (K1) 2 2 5 2 2 5
Number of groups of size K1 10 10 6 10 10 6

Group size 2 (K2) 5 10 10 5 10 10
Number of groups of size K2 6 3 2 6 3 2

Pool size 50 50 50 50 50 50
Total sample size 1000 1000 1000 5000 5000 5000

Plim of α̂1 from Proposition 2 -0.038 -0.045 -0.115 -0.038 -0.045 -0.115
Mean of α̂s1 over 100 simulations -0.040 -0.045 -0.154 -0.038 -0.046 -0.115

Notes: The Table reports simulation results from 100 Monte Carlo replications for varying peer group

compositions. For example, column (1) considers pools with 10 peer groups of size 2 and 6 peer groups of size 5.

Each simulation considers pools of fixed size L = 50 and considers observations generated with a true α1 = 0. In

each simulated sample s, coefficient α̂s1 is estimated using fixed effects at the level of the selection pool. Columns

(1)-(3) present results for simulations considering 20 selection pools (1000 observations). Columns (4)-(6) present

results for simulations considering 100 selection pools (5000 observations).

Table A.5: Simulated exclusion bias with random peer assignment: Varying pool sizes
Small sample Large sample

(1) (2) (3) (4) (5) (6)

Simulation parameters:
Pool size 1 (L1) 20 20 50 20 20 50

Number of pools of size L1 10 10 10 40 60 60
Peer group size K1 2 2 10 2 2 10

Pool size 2 (L2) 40 30 20 40 30 20
Number of pools of size L2 30 20 20 120 120 120

Peer group size K2 10 5 2 10 5 2
Total sample size 1400 800 900 5600 4800 5400

Plim of α̂1 from Proposition 2 -0.136 -0.094 -0.070 -0.136 -0.094 -0.071
Mean of α̂s1 over 100 simulations -0.132 -0.103 -0.063 -0.135 -0.094 -0.073

Notes: The Table reports simulation results from 100 Monte Carlo replications for varying peer selection pool

sizes. For example, column (1) considers samples with 10 pools of 10 observations and 30 pools of 40 observations.

The first set of pools contains peer groups all of size 2 and the latter set of pools contains peer groups all of size

10. Each simulation considers observations generated with a true α1 = 0. In each simulated sample s, coefficient

α̂s1 is estimated using fixed effects at the level of the selection pool. Columns (1)-(3) present results for simulations

considering a relatively small number of observations. Columns (4)-(6) present results for simulations considering

a relatively large number of observations.
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C.5 Proof of Proposition 3

To recall, we have, in each group:

y1 = β0 + β1y2 + ε1

y2 = β0 + β1y1 + ε2

where 0 < β1 < 1, E[ε1] = E[ε2] = 0 and E[ε2] = σ2
ε . Solving this system of simultaneous linear

equations yields the following reduced forms:

y1 =
β0(1 + β1)

1− β2
1

+
ε1 + β1ε2

1− β2
1

y2 =
β0(1 + β1)

1− β2
1

+
ε2 + β1ε1

1− β2
1

which shows that y1 and y2 are correlated even if ε1 and ε2 are not – this is the reflection bias.

None of the ε’s from other groups enter this pair of equations since we have assumed no spillovers

across groups. We have E[y1] = E[y2] = β0(1+β1)
1−β2

1
≡ y. If ε1 and ε2 are independent from each

other, E[ε1ε2] = 0 and we can write:

E[(y1 − y)2] = E

[(
ε1 + β1ε2

1− β2
1

)2
]

= σ2
ε

1 + β2
1

(1− β2
1)2

The covariance between y1 and y2 is given by:

E[(y1 − y)(y2 − y)] = E

[(
ε1 + β1ε

1− β2
1

)(
ε2 + β1ε1

1− β2
1

)]
=

2β1σ
2
ε

(1− β2
1)2

where we have again used the assumption that E[ε1ε2] = 0. The correlation coefficient r between

y1 and y2 is thus:

r =
E[(y1 − y)(y2 − y)]

E[(y1 − y)2]
=

2β1

1 + β2
1

We estimate a model of the form:

y1 = a+ by2 + v1 (C.31)
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Since equation (C.31) is univariate, we have b̂ = r̂
σy1
σy2

= r̂ since σy1 = σy2 . Hence it follows that:

plimN→∞ [̂bOLS ] =
2β1

1 + β2
1

6= β1

C.6 Proof of Proposition 4

We have shown in Appendix A that, starting from Proposition 1 with K = 2, if we regress ε̈ikl on

ε̈ikl, the regression coefficient converges to:

ρ ≡ plimN→∞SampleCorr(ε̈iklε̈jkl) = − 1

L− 1
(C.32)

We can now calculate the covariance between y1 and y2 that results from the combination of both

the reflection bias and the exclusion bias. The variance and covariance of y are now:

plimN→∞[(ÿ1 − ÿ)2] =
σ2
ε (1 + β2

1 + 2β1ρ)

(1− β2)2

plimN→∞[(ÿ1 − ÿ)(ÿ2 − ÿ)] =
σ2
ε (2β1 + (1 + β2

1)ρ)

(1− β2
1)2

Equipped with the above results, we can now derive an expression for the combined reflection and

exclusion bias in model (A.1). As before, we use the fact that b̂FE = SampleCov[(ÿ1−ÿ)(ÿ2−ÿ)]

SampleV ar[(ÿ1−ÿ)2]
. Simple

algebra yields:

plimN→∞ [̂bFE ] =
2β1 + (1 + β2

1)ρ

1 + β2
1 + 2β1ρ

(C.33)

C.7 Proof of Proposition 5

Let the sampled population Ω be partitioned into N distinct pools of size T . Observations in each

pool refer to a given individual i and are ordered chronologically by t = {1, ...T}. Each individual

observation is assigned a realization of a random variable x with the following data generating

process:

xit = δi + εit (C.34)

where xit is the value of x for individual i at time t, δi is an individual fixed effect, and εit is an i.i.d.

random variable with mean 0 and variance σ2
ε . Note that here the individual index i corresponds
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to the pool index l in the network data. Under the null, the variance of xit is the same as the

variance of εit and the two variables are perfectly correlated.

To test whether variable xit is autoregressive, the researcher estimates the following regression:

xit = β1xit−1 + δi + εit (C.35)

where xit−1 is the lagged value of xit. Note that the above regression is estimated using observations

t = {2, ...T} on variable xit while observations t = {1, ..., T − 1} of xit are used for regressor.

Regression ((C.35)) can be expressed in deviation from the individual mean so as to eliminate the

individual fixed effect δl:

xit − x̄i = β1(xit−1 − x̄′i) + (εit − ε̄i) (C.36)

where x̄i is the pool sample mean of xit, x̄
′
i is the pool sample mean of xit−1, and ε̄l is the pool

sample mean of εit. Specifically we have:

x̄i =
1

T − 1

T∑
t=2

xit

x̄′i =
1

T − 1

T−1∑
t=1

xit

ε̄i =
1

T − 1

T∑
t=2

εit

When T is large, x̄i ' x′i but when T is small the difference matters. We can rewrite the demeaned

model more concisely as:

ẍit = β1ẍ
′
it + ε̈it (C.37)

The plimN→∞(β̂FE1 ) is thus:

plimN→∞

(
β̂FE1

)
= β1 +

cov (ẍ′it, ε̈it)

var (ẍ′it)
(C.38)

We now derive an expression for cov (ẍ′, ε̈); it is not equal to 0, implying a systematic bias in

β̂FE1 . The basic reason is that observations for ẍ′, ε̈ overlap except for observation 1, which only
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appears in ẍ′, and observation T, which only appears in ε̈. To simplify the algebra, we use equation

C.35 to replace x with ε throughout. We have:

x̄i = δi +
1

T − 1

T∑
t=2

εit

x̄′i = δi +
1

T − 1

T−1∑
t=1

εit

ε̄i =
1

T − 1

T∑
t=2

εit

ε̄′i =
1

T − 1

T−1∑
t=1

εit

ẍ′it = εit−1 −
1

T − 1

T−1∑
t=1

εit

ε̈it = εit −
1

T − 1

T∑
t=2

εit

By construction we have that E(εit) = 0, E(ε2it) = σ2
e , and, by independence of the errors,

E(εitεis) = 0 for all s 6= t. By extension, E(ε̈it) = 0 and E(ẍ′it) = 0 as well. We also note that the

variance of a sample means ε̄i and ε̄′i is simply σ2
e

T−1 . Hence we have:

cov
(
ẍ′it, ε̈it

)
= E(ẍ′itε̈it) = E(εit−1 −

1

T − 1

T−1∑
t=1

εit)(εit −
1

T − 1

T∑
t=2

εit)

= E(εit−1εit −
εit−1

T − 1

T∑
t=2

εit −
εit

T − 1

T−1∑
t=1

εit +
1

(T − 1)2
(
T−1∑
t=1

εit)(
T∑
t=2

εit))

= −2(T − 2)σ2
e

(T − 1)2
+

T − 2

(T − 1)2
σ2
e = − T − 2

(T − 1)2
σ2
e

The first term on the second line drops out because errors are iid across observations by as-

sumption. Regarding the second term, for observation 2 the cross-term E( εit−1

T−1

∑T
t=2 εit) = 0 since

εi1 does not appear in
∑T

t=2 εit. Similarly for observation T in the cross-term E( εit
T−1

∑T−1
t=1 εit) = 0.

Hence, over T − 1 observations, these cross-terms are equal to σ2
e

T−1 only T − 2 times. Hence, in

expectations, each cross-term is equal to σ2
e

T−1 only T−2
T−1 of the time.
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Turning to the denominator, we have:

var
(
ẍ′it
)

= E(εit−1 −
1

T − 1

T−1∑
s=1

εis)(εit−1 −
1

T − 1

T−1∑
s=1

εis)

= E(ε2it−1 − 2
ε2it−1

T − 1
+

1

(T − 1)2
(
T−1∑
s=1

ε2is))

=
T − 2

T − 1
σ2
e

It follows that:

plim
(
β̂FE1

)
= − 1

T − 1
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