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Abstract. We show that the number of square-tiled surfaces of genus g, with

n marked points, with one or both of its horizontal and vertical foliations be-
longing to fixed mapping class group orbits, and having at most L squares,

is asymptotic to L6g−6+2n times a product of constants appearing in Mirza-

khani’s count of simple closed hyperbolic geodesics. Many of the results in this
paper reflect recent discoveries of Delecroix, Goujard, Zograf, and Zorich, but

the approach considered here is very different from theirs. We follow concep-
tual and geometric methods inspired by Mirzakhani’s work.
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1. Introduction

On any closed hyperbolic surface of genus two, the ratio of the number of sep-
arating versus non-separating simple closed geodesics of length ≤ L converges to
1/48 as L → ∞. This surprisingly precise result, together with generalizations to
arbitrary complete, finite volume hyperbolic surfaces, was proved by Mirzakhani in
[Mir08b]. Recently, in [DGZZ19], Delecroix, Goujard, Zograf, and Zorich proved
analogous counting results for square-tiled surfaces of finite type and a posteriori
related these results to Mirzakhani’s asymptotics by comparing explicit formulas
for the asymptotics of each counting problem. In particular, their work shows that
the ratio of the number of square-tiled surfaces of genus two having one horizontal
cylinder with separating versus non-separating core curve and at most L squares
converges to 1/48 as L→∞.
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The main goal of this paper is to establish a direct connection between these
results. The novelty of our approach is to use the parametrization of non-zero,
integrable, holomorphic quadratic differentials in terms of filling pairs of measured
geodesic laminations to establishing a direct connection between these counting
problems. A famous result of Hubbard, Masur, and Gardiner, which we recall as
Theorem 1.11 below, is also a crucial tool. This approach requires understanding
the stabilizers of the mapping class group actions associated to each counting prob-
lem and studying certain no escape of mass properties of related counting measures.

Main results. Let Sg,n be a connected, oriented, smooth surface of genus g with
n punctures and negative Euler characteristic. Let Modg,n be the mapping class
group of Sg,n. Let QMg,n be the moduli space of non-zero, integrable, holomorphic
quadratic differentials on Sg,n; points in QMg,n will be denoted by [(X, q)], where
X is a Riemann surface of genus g with n punctures and q is a non-zero, inte-
grable, holomorphic quadratic differential on X. Let QMg,n(Z) ⊆ QMg,n be the
subset of all square-tiled surfaces in QMg,n; see §2 for a definition. Every square-
tiled surface [(X, q)] ∈ QMg,n(Z) is horizontally and vertically periodic. The core
curves of the horizontal and vertical cylinders of [(X, q)] define integral muti-curves
γ1 := Re([(X, q)]) and γ2 := Im([(X, q)]) on X, respectively. Two multi-curves on
diffeomorphic surfaces are of the same topological type if there is a diffeomorphism
between the surfaces carrying one multi-curve to the other. The topological type of
a multi-curve γ on a surface diffeomorphic to Sg,n is its equivalence class [γ] with
respect to this equivalence relation.

Fix two integral multi-curves γ1 and γ2 on Sg,n. We are interested in the growth
as L→∞ of the quantity

(1.1) s(γ1, γ2, L) :=
∑

[(X,q)]∈QMg,n(Z),
Re([(X,q)])∈[γ1], Im([(X,q)])∈[γ2],

Area([(X,q)])≤L

1

#Aut([(X, q)])
,

where Aut([(X, q)]) denotes the group of all conformal automorphisms of X that
preserve q. More concretely, s(γ1, γ2, L) is the automorphism weighted count of
the number of square-tiled surfaces of area ≤ L (or equivalently, having at most L
squares), whose horizontal cylinders have core multi-curve of topological type [γ1],
and whose vertical cylinders have core multi-curve of topological type [γ2]. Notice
that s(γ1, γ2, L) is finite because there are only finitely many square-tiled surfaces
with area ≤ L.

One of the main results of this paper is the following theorem, which gives a
precise description of the growth of s(γ1, γ2, L) as L→∞.

Theorem 1.1. For any pair of integral multi-curves γ1 and γ2 on Sg,n,

lim
L→∞

s(γ1, γ2, L)

L6g−6+2n
=

c(γ1) · c(γ2)

22g−3+n · bg,n
,

where c(γ1), c(γ2) ∈ Q>0 are the frequencies of integral multi-curves on Sg,n of
topological type [γ1], [γ2] defined in (5.2) in [Mir08b] and bg,n ∈ Q>0 · π6g−6+2n is
the constant depending only on g and n defined in (3.4) in [Mir08b].
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Given an integral multi-curve γ on Sg,n, we are also interested in the growth
as L→∞ of the following quantity:

(1.2) s(γ, ∗, L) :=
∑

[(X,q)]∈QMg,n(Z),
Re([(X,q)])∈[γ],
Area([(X,q)])≤L

1

#Aut([(X, q)])
.

More concretely, s(γ, ∗, L) is the automorphism weighted count of the number of
square-tiled surfaces of area ≤ L whose horizontal cylinders have core multi-curve
of topological type [γ]. Just as in the case of s(γ1, γ2, L), s(γ, ∗, L) is finite because
there are only finitely many square-tiled surfaces with area ≤ L.

The same arguments used in the proof of Theorem 1.1 give the following result.

Theorem 1.2. For any integral multi-curve γ on Sg,n,

lim
L→∞

s(γ, ∗, L)

L6g−6+2n
=

c(γ)

22g−3+n
,

where c(γ) ∈ Q>0 is the frequency of integral multi-curves on Sg,n of topological
type [γ] defined in (5.2) in [Mir08b].

Consider the following normalization of the Masur-Veech volume of QMg,n,

mg,n := lim
L→∞

1

L12g−12+4n

∑
[(X,q)]∈QMg,n(Z),

Area([(X,q)])≤L2

1

#Aut([(X, q)])
.

Theorem 1.19 in [DGZZ16] shows that the horizontal and vertical cylinder de-
compositions of square-tiled surfaces are uncorrelated. This result together with
Theorem 1.2 give the following alternative version of Theorem 1.1.

Theorem 1.3. For any pair of integral multi-curves γ1 and γ2 on Sg,n,

lim
L→∞

s(γ1, γ2, L)

L6g−6+2n
=

c(γ1) · c(γ2)

24g−6+2n ·mg,n
,

where c(γ1), c(γ2) ∈ Q>0 are the frequencies of integral multi-curves on Sg,n of
topological type [γ1], [γ2] defined in (5.2) in [Mir08b].

Combining Theorems 1.1 and 1.3 gives the following formula for the Masur-
Veech volumes mg,n.

Corollary 1.4. For every g, n ∈ Z≥0 with 2− 2g − n < 0,

mg,n =
bg,n

22g−3+n
.
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Remark 1.5. Theorems 1.1, 1.2, and 1.3, and Corollary 1.4 reflect recent dis-
coveries of Delecroix, Goujard, Zograf, and Zorich; see [DGZZ19]. Their work
uses a completely different approach based on combinatorial methods which in-
volve counting square-tiled surfaces by using Kontsevich’s combinatorial formula
for ribbon graphs, see [Kon92], and a posteriori relating the asymptotics of such
count to Mirzakhani’s asymptotics for simple closed hyperbolic geodesics by consid-
ering Mirzakhani’s description of such asymptotics in terms of intersection numbers
of tautological line bundles over moduli spaces of Riemann surfaces. An alternative
version of Corollary 1.4 for the case n = 0 was previously proved by Mirzakhani in
[Mir08a].

Remark 1.6. Theorems 1.1, 1.2, and 1.3, and Corollary 1.4 remain true if
the automorphism factors in the definitions of s(γ1, γ2, L), s(γ, ∗, L), and mg,n are
replaced by

εg,n :=

 4 if (g, n) = (0, 4),
2 if (g, n) ∈ {(1, 1), (1, 2), (2, 0)},
1 if (g, n) /∈ {(0, 4), (1, 1), (1, 2), (2, 0)}

,

the number of automorphisms of a generic quadratic differential in QMg,n.

Remark 1.7. The importance of Theorems 1.1, 1.2, and 1.3 being stated in
terms of multi-curve frequencies rather than Thurston volumes is that explicit for-
mulas for computing such frequencies as a sum of Weil-Petersson volumes were
provided by Mirzakhani in [Mir08b].

Remark 1.8. If we define the constants bg,n following Mirzakhani’s conven-
tions in [Mir08a] rather than in [Mir08b], the powers of two in Theorem 1.1 and
Corollary 1.4 disappear.

Remark 1.9. There are several different conventions of what should be called
a square-tiled surface but they are all essentially equivalent; we consider the one
best adapted to our arguments. See [AEZ16] for other definitions.

Main tools. Arguably the most important tool used in this paper is the
parametrization of non-zero, integrable, holomorphic quadratic differentials on Sg,n
by their real and imaginary foliations. More precisely, let QTg,n be the Teichmüller
space of marked non-zero, integrable, holomorphic quadratic differentials on Sg,n
and letMLg,n be the space of measured geodesic lamination on Sg,n. Consider the
subset ∆ ⊆MLg,n×MLg,n of pairs of measured geodesic laminations that do not
fill Sg,n. The desired parametrization is given by the map

(1.3) h : QTg,n → MLg,n ×MLg,n −∆

which assigns to every marked non-zero, integrable, holomorphic quadratic differ-
ential on Sg,n its real and imaginary foliations interpreted as measured geodesic
laminations on Sg,n. Following the conventions of Lindenstrauss and Mirzakhani
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in [LM08], we refer to this map as the Hubbard-Masur map. For a discussion of
the following theorem see §2 in [Pap86] and §3 in [GM91].

Theorem 1.10. The Hubbard-Masur map h : QTg,n → MLg,n × MLg,n −
∆ is a mapping class group equivariant homeomorphism sending marked square-
tiled surfaces to pairs of filling integral multi-curves and sending area of quadratic
differentials to geometric intersection number of measured geodesic laminations.

Fix a measured geodesic lamination λ ∈ MLg,n. Let MLg,n(λ) ⊆ MLg,n be
the open subset of all measured geodesic laminations that together with λ fill Sg,n,
that is

MLg,n(λ) := {µ ∈MLg,n | (λ, µ) ∈MLg,n ×MLg,n −∆}.
Let Tg,n be the Teichmüller space of marked punctured complex structures on Sg,n
and p : QTg,n → Tg,n be the natural projection of the bundle of non-zero, integrable,
holomorphic quadratic differentials on Tg,n. The inverse of the Hubbard-Masur
map induces a Hubbard-Masur slice hλ : MLg,n(λ) → Tg,n given by the following
composition:

hλ : MLg,n(λ) → MLg,n ×MLg,n −∆ → QTg,n → Tg,n
µ 7→ (λ, µ) 7→ h−1(λ, µ) 7→ p(h−1(λ, µ)).

The following deep theorem, originally due to Hubbard and Masur in the case
n = 0, see [HM79], and extended by Gardiner and Masur to the case n > 0, see
[Gar87] and [GM91], is crucial to develop the material presented in this paper;
see [Ker80] for an alternative proof by Kerckhoff using Jenkins-Strebel differentials
and [Wol96] for an elementary proof by Wolf using harmonic maps.

Theorem 1.11. For every λ ∈MLg,n, the Hubbard-Masur slice hλ : MLg,n(λ)→
Tg,n is a Stab(λ)-equivariant homeomorphism.

Mirzakhani’s curve counting results in [Mir08b] are also an important tool in
this paper as they provide suitable vocabulary and play an important role in the
proof of Theorem 1.1. Let µThu be the Thurston measure on MLg,n. Given a
rational multi-curve γ on Sg,n and L > 0, consider onMLg,n the counting measure

(1.4) µLγ :=
1

L6g−6+2n

∑
α∈Modg,n·γ

δ 1
L ·α

.

The proof of Theorem 1.1 relies on the following measure convergence result, which
is Theorem 1.3 in [Mir08b].

Theorem 1.12. For any rational multi-curve γ on Sg,n,

lim
L→∞

µLγ =
c(γ)

bg,n
· µThu

in the weak-? topology, where c(γ) ∈ Q>0 is the frequency of integral multi-curves on
Sg,n of topological type [γ] defined in (5.2) in [Mir08b] and bg,n ∈ Q>0 · π6g−6+2n

is the constant depending only on g and n defined in (3.4) in [Mir08b].
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Sketch of proof of Theorem 1.1. Let γ1 and γ2 be integral multi-curves on Sg,n.
Using Theorem 1.10 we show that

s(γ1, γ2, L) =
∑

[β]∈MLg,n(γ1)/Stab(γ1),
β∈Modg,n·γ2,
i(γ1,β)≤L

1

#(Stab(γ1) ∩ Stab(β))
,

where i(·, ·) denotes the geometric intersection number of integral multi-curves and
where the stabilizers are taken with respect to the action of the mapping class group
on the set of all integral multi-curves on Sg,n. Consider the counting measures
µLγ2 on MLg,n defined in (1.4). Let µ̂Lγ2 be the local pushforward of the measure

µLγ2 |MLg,n(γ1) under the quotient map MLg,n(γ1) → MLg,n(γ1)/Stab(γ1). These
local pushforwards exist because the action of Stab(γ1) on MLg,n(γ1) is properly
discontinuous. This follows from Theorem 1.11 and the proper discontinuity of the
mapping class group action on Tg,n. Consider the subsets

B(γ1) := {λ ∈MLg,n(γ1) | i(γ1, λ) ≤ 1} ⊆ MLg,n,

B̂(γ1) := B(γ1)/Stab(γ1) ⊆MLg,n(γ1)/Stab(γ1).

Unraveling definitions we show that

s(γ1, γ2, L)

L6g−6+2n
= µ̂Lγ2(B̂(γ1)).

Theorem 1.12 implies µ̂Lγ2 →
c(γ2)
bg,n
· µ̂Thu in the weak-? topology as L→∞, where

µ̂Thu is the local pushforward of the measure µThu|MLg,n(γ1) under the quotient
map MLg,n(γ1) → MLg,n(γ1)/Stab(γ1). A no escape of mass argument using
Theorem 1.10 and period coordinates shows that

µ̂Lγ2(B̂(γ1))→ c(γ2)

bg,n
· µ̂Thu(B̂(γ1))

as L→∞. We deduce that

(1.5)
s(γ1, γ2, L)

L6g−6+2n
→ c(γ2)

bg,n
· µ̂Thu(B̂(γ1))

as L→∞. Clearly s(γ1, γ2, L) = s(γ2, γ1, L). As a consequence,

s(γ1, γ2, L)

L6g−6+2n
→ c(γ1)

bg,n
· µ̂Thu(B̂(γ2))

as L→∞. We deduce

µ̂Thu(B̂(γ1))

c(γ1)
=
µ̂Thu(B̂(γ2))

c(γ2)
.

As this holds for all integral multi-curves γ1 and γ2 on Sg,n, it follows that rg,n :=
µ̂Thu(B̂(γ))

c(γ) is a constant depending only on g and n and not on the integral multi-

curve γ. Explicit computations when γ is a pair of pants decomposition of Sg,n
show that rg,n = 1

22g−3+n . Theorem 1.1 then follows from (1.5).
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Remark 1.13. The explicit computation of µ̂Thu(B̂(γ)) when γ is a pair of
pants decomposition of Sg,n introduces a novel approach for computing Thurston
volumes by reducing to a lattice counting problem in Euclidean space through the
Dehn-Thurston parametrization of integral multi-curves on Sg,n. This computation
is presented in full detail in §4.

Survey of similar counting problems. The study of similar counting problems
in hyperbolic geometry can be traced back to Delsarte, Huber, and Selberg, who
showed that on any complete, finite volume, hyperbolic surface, the number of
primitive closed geodesics of length ≤ L grows asymptotically like eL/L as L→∞;
in particular, the asymptotic growth is independent of the topology of the surface.
This result is commonly known as the prime geodesic theorem. In his thesis, see
[Mar04] for an English translation, Margulis proved an analogous result for arbi-
trary compact Riemannian manifolds of strictly negative sectional curvaturature;
in this case the asymptotic growth is of the form ehL/hL, where h is the volume
entropy of the manifold. In [Mir08b], Mirzakhani proved that on any complete,
finite volume, hyperbolic surface, the asymptotic growth of the number of simple
closed geodesics of length ≤ L is polynomial, in constrast to exponential, of degree
which depends only on the topology of the surface. Moreover, Mirzakhani studied
the asymptotics of each mapping class group orbit separately, giving precise formu-
las in terms of Weil-Petersson volumes for the leading coefficient of the polynomial
describing the asymptotic growth of the number of simple closed curves of hyper-
bolic length ≤ L in a given mapping class group orbit. In [Riv12], Rivin extended
Mirzakhani’s results to closed curves with one self-intersection. In [Mir16], using
completely different methods, Mirzakhani showed that the same asymptotic growth
holds for the mapping class group orbit of any closed curve, without restrictions on
the number of intersections. Erlandsson, Parlier, and Souto, see [ES16], [Erl16],
and [EPS16], extended Mirzakhani’s results to general length functions of closed
curves, not only hyperbolic length, that extend to the space of geodesic currents;
see [EU18] for a unified discussion. More recently, Rafi and Souto, see [RS19],
proved analogous counting results for mapping class group orbits of arbitrary filling
geodesic currents. As part of the same work, a related lattice counting result for
mapping class group orbits of points in the Teichmüller space of marked hyper-
bolic structures on a closed, connected, oriented surface is proved. The counting
is considered with respect to the Thurston metric. An analogous lattice counting
problem for the Teichmüller metric instead of the Thuston metric was previously
studied by Athreya, Bufetov, Eskin, and Mirzakhani in [ABEM12].

Similar counting problems in complex analysis arised originally from compu-
tations of Masur-Veech volumes of strata of Abelian differentials. Such volumes
were first introduced and proved to be finite by Masur, in [Mas82], and Veech,
in [Vee82]. Their interest in such quantities originated from the study of inter-
val exchange transformations. In [EO01], Eskin and Okounkov, following ideas of
Kontsevich, Masur, and Zorich, provided formulas for computing Masur-Veech vol-
umes of strata of Abelian differentials by considering the relation of such quantities
with the asymptotic growth of the number of brached covers of a torus with fixed
ramification type as the degree of the cover tends to infinity. In [AEZ16], Athreya,
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Eskin, and Zorich computed Masur-Veech volumes of strata of quadradratic differ-
entials on genus zero surfaces by alternative methods, thus providing an explicit
expression for the leading term of the function counting associated pillowcase covers
when the degree of the cover tends to infinity. More recently, Delecroix, Goujard,
Zograf, and Zorich, see [DGZZ16], computed the absolute contribution of square-
tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any
ambient strata of Abelian differentials. In [DGZZ17], the same authors used the
results in [AEZ16] and [DGZZ16] to derive applications to asymptotic enumera-
tion of meanders. As pointed out in Remark 1.5, the forthcoming work [DGZZ19]
of the same authors proves many of the results in this paper by different methods.

Organization of the paper. In Section 2 we present the background material and
notation necessary to understand the proofs of Theorems 1.1 and 1.2. In Section
3 we present the proofs of Theorems 1.1 and 1.2 in full detail. In Section 4 we
compute the value of the constants rg,n that appear in the proof of Theorem 1.1
by considering the case of a pair of pants decomposition. In Section 5 we present
explicit examples.

Acknowledgments. The author would like to thank Alex Wright for suggesting
the problem discussed in this paper and for his constant support along the devel-
opment of this project. The author would also like to thank Steven Kerckhoff for
his invaluable advice, patience, and encouragement.

2. Background material

Notation. Let g, n ≥ 0 be integers such that 2 − 2g − n < 0. For the rest of
this paper, Sg,n will denote a connected, oriented, smooth surface of genus g with
n punctures (and negative Euler characteristic). For g ≥ 2 we will also use the
notation Sg := Sg,0. Throughout the rest of this paper, convergence of measures
will always be considered with respect to the weak-? topology.

Teichmüller and moduli spaces of Riemann surfaces. The Teichmüller space
of Sg,n, denoted Tg,n, is the space of all marked punctured complex structures on
Sg,n up to isotopy. More precisely, Tg,n is the space of pairs (X,φ), where X is a
punctured Riemann surface and φ : Sg,n → X is an orientation-preserving diffeo-
morphism, modulo the equivalence relation (X,φ1) ∼ (X,φ2) if and only if there
exists a conformal diffeomorphism I : X1 → X2 isotopic to φ2 ◦ φ−1

1 .

Let S ⊆ Sg be a subset of n points in Sg. By the removable singularity theorem,
we can think of points in Tg,n as triples (X,Σ, φ), whereX is a Riemann surface, Σ ⊆
X is a subset of n points in X, and φ : (Sg, S)→ (X,Σ) is an orientation preserving
differomorphism, modulo the equivalence relation (X1,Σ1, φ1) ∼ (X2,Σ2, φ2) if and
only if there exists a conformal diffeomorphism I : (X1,Σ1)→ (X2,Σ2) isotopic to
φ2 ◦ φ−1

1 through diffeomorphisms mapping Σ1 to Σ2.

By the uniformization theorem, Tg,n also parametrizes marked oriented, com-
plete, finite volume hyperbolic structures on Sg,n up to isotopy. More precisely, Tg,n



COUNTING SQUARE-TILED SURFACES WITH PRESCRIBED FOLIATIONS 9

is the space of pairs (X,φ), where X is an oriented, complete, finite volume hyper-
bolic surface and φ : Sg,n → X is an orientation-preserving diffeomorphism, modulo
the equivalence relation (X,φ1) ∼ (X,φ2) if and only if there exists an orientation-
preserving isometry I : X1 → X2 isotopic to φ2 ◦ φ−1

1 . Given [(X,φ)] ∈ Tg,n and
an essential simple closed curve γ on Sg,n, we will denote by `X(γ) the hyperbolic
length of the unique geodesic representative in the free-homotopy class of φ(γ) (the
marking φ is implicit in the notation).

We denote the mapping class group of Sg,n by Modg,n. The mapping class
group of Sg,n acts properly discontinuously on Tg,n by change of marking. The
quotient Mg,n := Tg,n/Modg,n is the moduli space of punctured complex struc-
tures on Sg,n.

The Weil-Peterson volume form. From the perspective of complex analy-
sis, the Teichmüeller space Tg,n can be endowed with a 3g − 3 + n dimensional
complex structure. This complex structure admits a natural Kähler Hermitian
structure. The associated symplectic form ωwp is called the Weil-Petersson sym-
plectic form. The Weil-Petersson volume form is the top exterior power vwp :=

1
(3g−3+n)!

∧3g−3+n
ωwp. The Weil-Petersson measure is the measure µwp induced by

the Weil-Petersson volume form on Tg,n. See [Hub16] for more details. In [Wol85],
Wolpert obtained the following expression for ωwp in terms of Fenchel-Nielsen co-

ordinates (`i, τi)
3g−3+n
i=1 ∈ (R>0 ×R)3g−3+n, commonly known as Wolpert’s magic

formula:

ωwp =

3g−3+n∑
i=1

d`i ∧ dτi.

The Weil-Petersson volume form vwp can then be expressed in terms of Fenchel-
Nielsen coordinates as

vwp =

3g−3+n∏
i=1

d`i ∧ dτi.

Quadratic differentials. Let X be a finite type punctured Riemann surface dif-
feomorphic to Sg,n. Let K be the canonical bundle of X; the holomorphic sections
of K are the holomorphic 1-forms of X. A quadratic differential q on X is a holo-
morphic section of the symmetric square K ∨ K. Quadratic differentials will be
denoted by (X, q), keeping track of the Riemann surface they are defined on. The
area of a quadratic differential is Area(X, q) :=

∫
X
|q|. We say (X, q) is integrable

if Area(X, q) < ∞. We denote by QD(X) the complex vector space of all inte-
grable, holomorphic quadratic differentials on X. An automorphism of a quadratic
differential (X, q) is a conformal diffeomorphism I : X → X such that I∗q = q. We
denote by Aut(X, q) the group of automorphisms of (X, q).

Alternatively, integrable, holomorphic quadratic differentials q on a Riemann
surface X diffeomorphic to Sg,n may be interpreted as meromorphic quadratic dif-
ferentials q′, i.e. meromorphic sections of the symmetric square of the canonical
bundle, extending q to X ′ ⊇ X, the closed Riemann surface diffeomorphic to Sg
obtained by filling in the punctures Σ′ ⊆ X ′ of X using the removable singular-
ity theorem, that are holomorphic outside of Σ′ and have at most simple poles at
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points of Σ′. Assume q′ is not identically zero. The zeros of q and the punctures
Σ′ ⊆ X ′ are the singularities of q′. Such a quadratic differential will be denoted
by (X ′,Σ′, q′), keeping track of the punctures Σ′, which we interpret as marked
points on X ′. If q′ has m unmarked singularities of orders a1, . . . , am and n marked
singularities of orders b1, . . . , bn, then 4g − 4 =

∑m
i=1 ai +

∑n
j=1 bj .

Given a triple (X,Σ, q) as above, the quadratic differential q induces a canon-
ical atlas of complex charts on X\Σ whose transition functions are of the form
z 7→ ±z + c, where c ∈ C is arbitrary; for this reason, we also refer to (X,Σ, q) as
a half-translation surface. In particular, q induces a canonical singular Euclidean
structure on X with singularities at Σ. A saddle connection on (X,Σ, q) is an Eu-
clidean geodesic segment on X joining two singularities and having no singularities
in its interior. A cylinder C on (X,Σ, q) is an isometrically embedded Euclidean
cylinder (R/cZ) × (0, h) in X whose boundary is a union of saddle connections.
The number c is the circumference of the cylinder and the number h is the height
of the cylinder. The direction of a cylinder is the direction of its boundary saddle
connections, considered as an element of RP1. The free homotopy class of the
closed curve (R/cZ) × {h2 } is the core curve of the cylinder. A half-transaltion
surface (X,Σ, q) is periodic in some direction if X is the union of the cylinders in
that direction together with their boundaries.

Square-tiled surfaces. A square-tiled surface is a half-translation surface that
admits a polygon representation P made up of finitely many unit area squares with
sides parallel to the axes of R2 = C. The number of squares in P corresponds to
the area of the square-tiled surface. Square-tiled surfaces are both horizontally and
vertically periodic.

Let (X,Σ, q) be a square-tiled surface. Let C1, . . . , Cn and D1 . . . , Dm be its
horizontal and vertical cylinders. Let h1, . . . , hn ∈ N and w1, . . . , wm ∈ N be the
heights of the horizontal and vertical cylinders. Let α1, . . . , αn and β1, . . . , βm be
the core curves of the horizontal and vertical cylinders. Consider the integral mul-
ticurves γ1 =

∑n
i=1 hi · αi and γ2 =

∑m
j=1 wj · βj on X. We say γ1 and γ2 are the

horizontal and vertical core integral multi-curves of (X,Σ, q).

Teichmüller and moduli spaces of quadratic differentials. Let QTg,n denote the
Teichmüller space of marked non-zero, integrable, holomorphic quadratic differ-
entials on Sg,n. More precisely, QTg,n is the set of triples (X, q, φ), where X is
a punctured Riemann surface, q is a non-zero, integrable, holomorphic quadratic
differential on X, and φ : Sg,n → X is an orientation-preserving diffeomorphism,
modulo the equivalence relation (X1, q1, φ1) ∼ (X2, q2, φ2) if and only if there exists
a conformal diffeomorphism I : X1 → X2 isotopic to φ2 ◦ φ−1

1 such that I∗q1 = q2.
The forgetful map QTg,n → Tg,n given by [(X, q, φ)] 7→ [(X,φ)] makes QTg,n into
a bundle over Tg,n; after incorporating the zero section, it is actually the complex
cotangent bundle of Tg,n.

Alternatively, let S ⊆ Sg be a subset of n points in Sg. Then QTg,n may be in-
terpreted as the Teichmüller space of marked non-zero, meromorphic quadratic dif-
ferentials on Sg, holomorphic outside of S, and having at most simple poles at points
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of S. More precisely, QTg,n is the set of tuples (X,Σ, q, φ), where X is a punctured
Riemann surface, Σ ⊆ X is a subset of n points in X, q is a non-zero, meromorphic
quadratic differential on X, holomorphic outside of Σ, and with at most simple
poles at points of Σ, and φ : (Sg,n, S)→ (X,Σ) is an orientation-preserving diffeo-
morphism, modulo the equivalence relation (X1,Σ1, q1, φ1) ∼ (X2,Σ2, q2, φ2) if and
only if there exists a conformal diffeomorphism I : (X1,Σ1)→ (X2,Σ2) isotopic to
φ2 ◦ φ−1

1 through diffeomorphisms mapping Σ1 to Σ2 and such that I∗q1 = q2. We
usually refer to QTg,n simply as the Teichmüller space of marked quadratic differ-
entials on Sg,n.

The space QTg,n has a natural stratification induced by the order of singulari-
ties. Each connected components of every stratum of QTg,n has a natural complex
structure induced by period coordinates. Marked square-tiled surfaces in QTg,n will
be denoted by QTg,n(Z), as they correspond to integer points in period coordinates;
we also refer to them as the integer points of QTg,n.

The mapping class group Modg,n acts properly discontinuously on QTg,n by
change of marking. The quotient QMg,n := QTg,n/Modg,n is the moduli space of
non-zero, integrable, holomorphic quadratic differentials on Sg,n. We usually refer
to QMg,n simply as the moduli space of quadratic differentials on Sg,n. Square-tiled
surfaces in QMg,n will be denoted by QMg,n(Z). Given any [(X, q)] ∈ QMg,n,
there is a natural bijection between Aut(X, q) and the Modg,n-stabilizer of any
point [(X, q, φ)] covering [(X, q)] under the quotient map QTg,n → QMg,n.

Measured geodesic laminations and singular measured foliations. A geodesic
lamination λ on a complete, finite volume hyperbolic surface X diffeomorphic to
Sg,n is a set of disjoint simple, complete geodesics whose union is a compact subset
of X. A measured geodesic lamination is a geodesic lamination carrying an in-
variant transverse measure fully supported on the lamination. We can understand
measured geodesic laminations by lifting them to a universal cover H2 → X. A
non-oriented geodesic on H2 is specified by a set of distinct points on the boundary
at infinity ∂∞H2 = S1. It follows that measured geodesic laminations on diffeomor-
phic hyperbolic surfaces may be compared by passing to the boundary at infinity
of their universal covers. Thus, the space of measured geodesic laminations on
X depends only on the underlying topological surface Sg,n. We denote the space
of measured geodesic laminations on Sg,n by MLg,n. It can be topologized by
embedding it into the space of geodesic currents on Sg,n. By taking geodesic repre-
sentatives, integral multi-curves on Sg,n can be interpreted as elements of MLg,n;
we denote them byMLg,n(Z) and refer to them as the integer points ofMLg,n. For
more details on the theory of measured geodesic laminations see [Bon88], [Bon01],
and 8.3 in [Mar16].

Given two essential simple closed curves γ1 and γ2 on Sg,n, their geometric
intersection number i(γ1, γ2) is the minimum number of intersections among all
transverse free-homotopy representatives of γ1 and γ2. Geometric intersection num-
ber can be extended by homogeneity and continuity to a pairing on MLg,n, which
we still refer to as geometric intersection number. More precisely, there is a unique
continuous, symmetric, bilinear form i : MLg,n×MLg,n → R≥0 which agrees with
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geometric intersection number on essential simple closed curves. For a proof see
[Bon88].

We denote by MFg,n the space of singular measured foliations on Sg,n up to
isotopy and Whitehead moves. There is a natural correspondence between singular
measured foliations and measured geodesic laminations. Indeed, one can define a
homeomorphism MFg,n → MLg,n by straightening the leaves of singular mea-
sured foliations to obtain measured geodesic laminations. In particular, it makes
sense to talk about intersection numbers and integer points MFg,n(Z) ⊆ MFg,n
of singular measured foliations. For more details on the theory of singular mea-
sured foliations see 11.2.2 in [FM12] and Exposé 5 in [FLP12]. For more details
on the correspondence between singular measured foliations and measured geodesic
laminations see [Lev83].

The Thurston measure. The space of measured geodesic laminations MLg,n
admits a 6g − 6 + 2n dimensional piecewise integral linear structure induced by
train track charts; see §3.1 in [PH92] for more details. The integer points of this
structure are precisely the integral multi-curves MLg,n(Z) ⊆ MLg,n. For each
L > 0, consider the counting measure µL on MLg,n given by

(2.1) µL :=
1

L6g−6+2n

∑
γ∈MLg,n(Z)

δ 1
L ·γ

.

As L→∞, this sequence of counting measures converges to a non-zero, locally finite
measure µThu on MLg,n called the Thurston measure. This measure is Modg,n-
invariant and belongs to the Lebesgue measure class. It also satisfies the follow-
ing scaling property: µThu(t · A) = t6g−6+2n · µThu(A) for every measurable set
A ⊆MLg,n and every t > 0.

Train track charts also induce a Modg,n-invariant symplectic form ωThu on
MLg,n called the Thurston symplectic form. For more details on the definition of

ωThu see §3.2 in [PH92]. The top exterior power vThu := 1
(3g−3+n)!

∧3g−3+n
ωThu

is called the Thurston volume form. In [Mas85], Masur showed that the action
of Modg,n on MLg,n is ergodic with respect to µThu. As a consequence, µThu is
the unique, up to scaling, Modg,n-invariant measure on MLg,n in the Lebesgue
measure class. It follows that the measure induced by the Thurston volume form
on MLg,n is a multiple of µThu. Moreover, see [MT19] for a detailed proof, the
scaling factor relating these measures can be computed explicitely.

Proposition 2.1. If νThu denotes the measure induced by the Thurston volume
form on MLg,n, then

νThu = 22g−3+n · µThu.

The Hubbard-Masur map. Let Re, Im: QTg,n →MLg,n be the maps that assign
to every marked non-zero, integrable, holomorphic quadratic differential in QTg,n
its real and imaginary foliations interpreted as element of MLg,n. These maps are
Modg,n-equivariant, so they induce maps Re, Im : QMg,n → MLg,n/Modg,n on
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quotients. Let ∆ ⊆MLg,n ×MLg,n be the closed subset

∆ := {(λ, µ) ∈MLg,n ×MLg,n | ∃α ∈MLg,n : i(λ, α) + i(µ, α) = 0}.
The Hubbard-Masur map introduced in (1.3) is then given by

h : QTg,n → MLg,n ×MLg,n −∆
[(X, q, φ)] 7→ (Re([(X, q, φ)]), Im([(X, q, φ)]))

.

Counting measures on Re−1(λ). Let λ ∈ MLg,n be arbitrary. The subset

Re−1(λ) ⊆ QTg,n inherits a stratification from the one on QTg,n. Relevant coordi-

nates on connected components of strata of Re−1(λ) are obtained by considering
the real parts of period coordinates on the corresponding connected components of
strata of QTg,n; we refer to such coordinates as real period coordinates. For every

L > 0, consider the counting measure mL
Re−1(λ)

on Re−1(λ) given by

(2.2) mL
Re−1(λ) :=

1

L6g−6+2n

∑
[(X,q,φ)]∈Re−1(λ),

Im([(X,q,φ)])∈ 1
L ·MLg,n(Z)

δ[(X,q,φ)].

Notice that the set

{[(X, q, φ)] ∈ Re−1(λ) | Im([(X, q, φ)]) ∈MLg,n(Z)}

corresponds to points in Re−1(λ) whose real period coordinates are integral and
that scaling the real period coordinates of [(X, q, φ)] ∈ Re−1(λ) by 1/L is equiv-
alent to scaling Im([(X, q, φ)]) ∈ MLg,n by 1/L. It follows that, as L → ∞, the
counting measures mL

Re−1(λ)
converge to a non-zero, locally finite, Lebesgue class

measure mRe−1(λ) on Re−1(λ). The same ideas also show that the principal stratum

of Re−1(λ) is a full measure (open) subset of Re−1(λ). As the measures mL
Re−1(λ)

are Stab(λ)-invariant, it follows that mRe−1(λ) is Stab(λ)-invariant as well.

Measure theory of properly discontinuous group actions. Let X be a locally
compact, Hausdorff, second countable topological space endowed with a properly
discontinuous action of a group G. Notice X/G is also a locally compact, Hausdorff,
second countable topological space. Let π : X → X/G be the associated quotient
map. As the action of G on X is properly discontinuous, we can cover X by open
sets U invariant under the action of finite subgroups Γ < G such that gU ∩ U = ∅
for all g ∈ G−Γ. The quotient map restricts to π|U : U → U/Γ ⊆ X/G. Open sets
U/Γ ⊆ X/G of this form will be refered to as well covered. Given a locally finite,
G-invariant Borel measure µ on X, there is a canonical local pushforward measure
π∗µ on X/G defined in the following way.

Definition 2.2. The local pushforward π∗µ is the unique locally finite Borel
measure on X/G satisfying the following property: If U/Γ ⊆ X/G is a well covered
open set, then (π∗µ)|U/Γ = 1

#Γ · (π|U )#(µ|U ), where (π|U )#(µ|U ) denotes the usual

pushforward of the measure µ|U under the map π|U .

Restriction to open sets and taking local pushforward are continuous operations
between spaces of locally finite Borel measures endowed with the weak topology.
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Suppose that µ is a locally finite, G-invariant Borel measure on X of the form

µ =
∑
x∈A

w(x) · δx,

where A ⊆ X is a G-invariant, discrete, closed subset of X and w : A → R≥0 is a
G-invariant function. Then the local pushforward π∗µ is given by

(2.3) π∗µ =
∑

[x]∈A/G

1

#Stab(x)
· w(x) · δ[x].

Growth of the number of simple closed hyperbolic geodesics. We briefly review
Mirzakhani’s curve counting results in [Mir08b]. Given a hyperbolic surface X ∈
Mg,n and a rational multi-curve γ on X, consider the counting function

(2.4) s(X, γ, L) := #{α ∈ Modg,n · γ | `X(α) ≤ L}.

In words, s(X, γ, L) is the number of rational multi-curves on X of topological
type [γ] and hyperbolic length ≤ L. The following result, which is Theorem 1.1 in
[Mir08b], describes the growth of the counting function s(X, γ, L) as L→∞.

Theorem 2.3. For any hyperbolic surface X ∈ Mg,n and any rational muti-
curve γ on X,

lim
L→∞

s(X, γ, L)

L6g−6+2n
= nγ(X),

where nγ : Mg,n → R>0 is a continuous, proper function.

For every X ∈ Tg,n, consider the compact subset BX ⊆MLg,n given by

BX := {λ ∈MLg,n | `X(λ) ≤ 1}.

Consider the continuous map

B : Tg,n → R>0

X 7→ µThu(BX)
.

Let µ̂wp be the local pushforward of the Weil-Petersson measure µwp on Tg,n under
the quotient map Tg,n →Mg,n. In [Mir08b], the following integral, relevant in the
statements of theorems that follow, is proved to be finite, and moreover, a positive
rational multiple of π6g−6+2n:

bg,n :=

∫
Mg,n

B(X) dµ̂wp.

To every rational multi-curve γ on Sg,n one can associate a positive rational
number c(γ) ∈ Q>0 in the following way. Consider the integral

P (L, γ) :=

∫
Mg,n

s(X, γ, L) dµ̂wp.

Mirzakhani’s Weil-Petersson integration techniques in [Mir07] are applied in
[Mir08b] to show that P (L, γ) is a polynomial of degree 6g − 6 + 2n, closely
related to the Weil-Petersson volume polynomial of the moduli space of bordered
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Riemann surfaces homeomorphic to the surface with boundary obtained by cutting
S along γ. Let c(γ) be the leading coefficient of this polynomial, that is

c(γ) := lim
L→∞

P (L, γ)

L6g−6+2n
.

Explicit formulas for computing c(γ) as a sum of Weil-Petersson volumes are given
in [Mir08b]. In particular, it is proved that c(γ) ∈ Q>0. Notice that c(γ) depends
only on the topological type of γ. We will refer to c(γ) as the frequency of multi-
curves on Sg,n of topological type [γ].

The following result, which is Theorem 1.2 in [Mir08b], describes the de-
pendence of the function nγ : Mg,n → R>0 in Theorem 2.3 with respect to the
hyperbolic structure X ∈ Mg,n and the rational multi-curve γ on Sg,n; it is a di-
rect consequence of Theorem 1.12.

Theorem 2.4. For any hyperbolic surface X ∈ Mg,n and any rational muti-
curve γ on X,

nγ(X) =
c(γ) ·B(X)

bg,n
.

3. Proofs of main results

Proof of Theorem 1.1. We now present the proof of Theorem 1.1 in full detail.
Let γ1 and γ2 be two integral multi-curves on Sg,n. Recall the definition of the
function s(γ1, γ2, L) in (1.1). It is convenient to write s(γ1, γ2, L) as

s(γ1, γ2, L) =
∑

[[(X,q,φ)]]∈QTg,n/Modg,n,
Re([(X,q,φ)])∈Modg,n·γ1, Im([(X,q,φ)])∈Modg,n·γ2,

Area([(X,q,φ)])≤L

1

#Stab([(X, q, φ)])
,

where Stab([(X, q, φ)]) is the stabilizer of the marked quadratic differential [(X, q, φ)]
∈ QTg,n with respect to the action of Modg,n on QTg,n. To better understand
s(γ1, γ2, L) we relate it to a counting problem on MLg,n by using the Hubbard-
Masur map. It follows from Theorem 1.10 that

s(γ1, γ2, L) =
∑

[(α,β)]∈(MLg,n×MLg,n−∆)/Modg,n,
α∈Modg,n·γ1, β∈Modg,n·γ2,

i(α,β)≤L

1

#(Stab(α) ∩ Stab(β))
,

where Stab(α) and Stab(β) are the stabilizers of the multi-curves α and β with
respect to the Modg,n action on MLg,n. In this sum it is enough to consider
equivalence classes of pairs of the form (γ1, β) ∈ MLg,n ×MLg,n − ∆ with β ∈
Modg,n · γ2 and i(γ1, β) ≤ L. Notice that [φ] ∈ Modg,n identifies the pairs (γ1, β)
and (γ1, β

′) if and only if [φ].β = β′ and φ ∈ Stab(γ1). In particular, it is enough
to consider the action of Stab(γ1) instead of the action of the whole mapping class
group Modg,n. Recall that by definition β ∈ MLg,n(γ1) if and only if (γ1, β) ∈
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MLg,n ×MLg,n −∆. With all these considerations in mind we get

(3.1) s(γ1, γ2, L) =
∑

[β]∈MLg,n(γ1)/Stab(γ1),
β∈Modg,n·γ2,
i(γ1,β)≤L

1

#(Stab(γ1) ∩ Stab(β))
.

Once in this setting we can use Mirzakhani’s curve counting techniques as
follows. Recall the definition of the counting measures µLγ2 on MLg,n in (1.4).

Theorem 1.12 shows that µLγ2 →
c(γ2)
bg,n
· µThu as L → ∞. As MLg,n(γ1) ⊆ MLg,n

is open, µLγ1 |MLg,n(γ1) → c(γ1)
bg
· µThu|MLg,n(γ1) as L → ∞. The following lemma,

which is a direct consequence of Theorem 1.11, is crucial to pass to the quotient
MLg,n(γ1)/Stab(γ1).

Lemma 3.1. The action of Stab(γ1) on MLg,n(γ1) is properly discontinuous.

Proof. Theorem 1.11 provides a Stab(γ1)-equivariant homeomorphism
MLg,n(γ1) → Tg,n. The group Stab(γ1) acts properly discontinously on Tg,n be-
cause the whole mapping class group Modg,n does so. We deduce that the action
of Stab(γ1) on MLg,n(γ1) is properly discontinuous. �

The measures µLγ2 |MLg,n(γ1) and µThu|MLg,n(γ1) on MLg,n(γ1) are Stab(γ1)-
invariant because they are the restriction of Modg,n-invariant measures to a Stab(γ1)-
invariant set. Following Definition 2.2 we construct the local pushforwards µ̂Lγ2 and
µ̂Thu of these measures under the quotient mapMLg,n(γ1)→MLg,n(γ1)/Stab(γ1).
As taking local pushforward is a continuous operation, we deduce the following:

Proposition 3.2. For any pair of integral multi-curves γ1 and γ2 on Sg,n,

µ̂Lγ2 →
c(γ2)

bg,n
· µ̂Thu

as L→∞.

Consider the subsets

B(γ1) := {λ ∈MLg,n(γ1) | i(γ1, λ) ≤ 1} ⊆ MLg,n(γ1),

B̂(γ1) := B(γ1)/Stab(γ1) ⊆MLg,n(γ1)/Stab(γ1).

The following proposition brings us back to our original counting problem.

Proposition 3.3. For any pair of integral multi-curves γ1 and γ2 on Sg,n and
any L > 0,

s(γ1, γ2, L)

L6g−6+2n
= µ̂Lγ2(B̂(γ1)).
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Proof. Following (2.3) and (3.1) we have

µ̂Lγ2(B̂(γ1)) =
1

L6g−6+2n

∑
[β]∈MLg,n(γ1)/Stab(γ1),

β∈Modg,n·γ2

1

#(Stab(γ1) ∩ Stab(β))
· δ[β](B̂(γ1))

=
1

L6g−6+2n

∑
[β]∈MLg,n(γ1)/Stab(γ1),

β∈Modg,n·γ2,
i(γ1,β)≤L

1

#(Stab(γ1) ∩ Stab(β))

=
s(γ1, γ2, L)

L6g−6+2n
. �

From Proposition 3.3 it follows that to prove Theorem 1.1 it is enough to prove
the following result.

Proposition 3.4. For any pair of integral multi-curves γ1 and γ2 on Sg,n,

µ̂Lγ2(B̂(γ1))→ c(γ2)

bg,n
· µ̂Thu(B̂(γ1))

as L→∞.

Let us finish the proof of Theorem 1.1 assuming Proposition 3.4 is true.

Proof of Theorem 1.1. It follows from Propositions 3.3 and 3.4 that

(3.2)
s(γ1, γ2, L)

L6g−6+2n
→ c(γ2)

bg,n
· µ̂Thu(B̂(γ1))

as L→∞. As s(γ1, γ2, L) = s(γ2, γ1, L), we also have that

s(γ1, γ2, L)

L6g−6+2n
→ c(γ1)

bg,n
· µ̂Thu(B̂(γ2))

as L→∞. We deduce

µ̂Thu(B̂(γ1))

c(γ1)
=
µ̂Thu(B̂(γ2))

c(γ2)
.

As this holds for all integral multi-curves γ1 and γ2 on Sg,n, it follows that rg,n :=
µ̂Thu(B̂(γ))

c(γ) is a constant depending only on g and n and not on the integral multi-

curve γ. Explicit computations when γ is a pair of pants decomposition of Sg,n
show that rg,n = 1

22g−3+n . The details of such computations are presented in Section
4. Theorem 1.1 then follows from (3.2). �

It remains to prove Proposition 3.4. Using the scaling properties of the Thurston

measure one can check that µ̂Thu(∂B̂(γ1)) = 0. Yet we cannot directly apply Port-
manteau’s Theorem, see for instance Proposition 1.3.8 in [Mar16], to conclude

from Proposition 3.2 that µ̂Lγ2(B̂(γ1)) → c(γ2)
bg,n

· µ̂Thu(B̂(γ1)) as L → ∞ because

B̂(γ1) ⊆MLg,n(γ1)/Stab(γ1) is not compact. To prove such convergence we show
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the following no escape of mass property holds.

Proposition 3.5. For every ε > 0 there exists a compact subset Kε ⊆ B̂(γ1)
with the following properties:

(1) c(γ2)
bg,n
· µ̂Thu(∂Kε) = 0.

(2) c(γ2)
bg,n
· µ̂Thu(B̂(γ1)\Kε) < ε.

(3) µ̂Lγ2(B̂(γ1)\Kε) < ε for all big enough L > 0.

We refer to the situation described in Proposition 3.5 as there being no escape

of mass in B̂(γ1) for the measures µ̂Lγ2 →
c(γ2)
bg,n
· µ̂Thu. Let us finish the proof of

Proposition 3.4 assuming Proposition 3.5 is true.

Proof of Proposition 3.4. Fix ε > 0. Let Kε ⊆ B̂(γ1) be a compact subset
as in Proposition 3.5. As Kε ⊆MLg,n(γ1)/Stab(γ1) is compact with µ̂Thu(∂Kε) =

0, Proposition 3.2 and Portmanteau’s theorem imply µ̂Lγ2(Kε) → c(γ2)
bg,n
· µ̂Thu(Kε)

as L → ∞. Let L > 0 be big enough so that | c(γ2)
bg,n
· µ̂Thu(Kε) − µ̂Lγ2(Kε)| < ε and

µ̂Lγ2(B̂(γ1)\Kε) < ε. The triangle inequality yields∣∣∣∣ c(γ2)
bg,n
· µ̂Thu(B̂(γ1))− µ̂Lγ2(B̂(γ1))

∣∣∣∣ ≤ 3 · ε.

As ε > 0 was arbitrary, this finishes the proof. �

No escape of mass. To prove Proposition 3.5 we move back into the realm of
quadratic differentials, where we use period coordinates to reduce our problem to a
lattice counting argument in Euclidean space. Let us first reduce to a no escape of
mass problem for simpler measures. Recall the definition of the counting measures
µL onMLg,n in (2.1). By definition µL → µThu as L→∞. As restriction to open
sets is a continuous operation, µL|MLg,n(γ1) → µThu|MLg,n(γ1) as L → ∞. Let

µ̂L be the local pushforward of the measure µL|MLg,n(γ1) under the quotient map
MLg,n(γ1) → MLg,n(γ1)/Stab(γ1). As taking local pushforward is a continuous
operation, µ̂L → µ̂Thu as L → ∞. As µ̂Lγ2 ≤ µ̂L, it is enough for our purposes to

prove there is no escape of mass in B̂(γ1) for the measures µ̂L → µ̂Thu.

Recall the definition of the counting measures mL
Re−1(γ1)

on Re−1(γ1) in (2.2).

By definition mL
Re−1(γ1)

→ mRe−1(γ1) as L → ∞. Let m̂L
Re−1(γ1)

and m̂Re−1(γ1)

be the local pushforwards of these measures under the quotient map Re−1(γ1) →
Re−1(γ1)/Stab(γ1). As taking local pushforward is a continuous operation,
m̂L

Re−1(γ1)
→ m̂Re−1(γ1) as L→∞. Consider the subsets

D(γ1) := {[(X, q, φ)] ∈ Re−1(γ1) | Area([(X, q, φ)]) ≤ 1} ⊆ Re−1(γ1),

D̂(γ1) := D(γ1)/Stab(γ1) ⊆ Re−1(γ1)/Stab(γ1).
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By Theorem 1.10, the inverse of the Hubbard-Masur map induces a Stab(γ1)-
equivariant homeomorphism MLg,n(γ1) → Re−1(γ1) sending geometric intersec-
tion number with γ1 to area of quadratic differentials. In particular, such map
sends B(γ1) to D(γ1). Moreover, by definition, such map sends µL|MLg,n(γ1) to

mL
Re−1(γ1)

and µThu|MLg,n(γ1) to mRe−1(γ1). Our problem then translates to show-

ing there is no escape of mass in D̂(γ1) for the measures m̂L
Re−1(γ1)

→ m̂Re−1(γ1).

To avoid marking issues we do one further translation, moving our problem
into QMg,n. For this purpose the following lemma is very useful.

Lemma 3.6. The quotient map QTg,n/Stab(γ1)→ QMg,n restricts to a home-

omorphism from Re−1(γ1)/Stab(γ1) onto Re−1([γ1]).

Proof. The restriction is clearly continuous, open, and surjective. It only
remains to check it is injective. Suppose [(X1, q1, φ1)], [(X2, q2, φ2)] ∈ Re−1(γ1)
satisfy [(X1, q1)] = [(X2, q2)] in QMg,n. By definition, there exists a conformal

diffeomorphism I : X1 → X2 such that I∗q1 = q2. Let [ϕ] := [φ−1
2 ◦I ◦φ1] ∈ Modg,n.

The action of the mapping class [ϕ] on QTg,n sends [(X1, q1, φ1)] to [(X2, q2, φ2)].
Moreover, [ϕ] ∈ Stab(γ1). This proves the restriction is injective. �

For every L > 0, let νL be the counting measure on Re−1(Modg,n ·γ1) given by

νL :=
1

L6g−6+2n

∑
[(X,q,φ)]∈Re−1(Modg,n·γ1),

Im([(X,q,φ)])∈ 1
L ·MLg,n(Z)

δ[(X,q,φ)].

Using real period coordinates one can check that the measures νL converge as
L→∞ to a non-zero, locally finite measure ν on Re−1(Modg,n ·γ1) which coincides
with Lebesgue measure on real period coordinates. Let ν̂L and ν̂ be the local push-
forwards of these measures under the quotient map Re−1(Modg,n·γ1)→ Re−1([γ1]).
As taking local pushforward is a continuous operation, ν̂L → ν̂ as L→∞. Consider
the subsets

E(γ1) := {[(X, q, φ)] ∈ Re−1(Modg,n · γ1) | Area([(X, q, φ)]) ≤ 1},

Ê(γ1) := E(γ1)/Modg,n ⊆ Re−1([γ1]).

By Lemma 3.6, our problem translates to showing there is no escape of mass in

Ê(γ1) for the measures ν̂L → ν̂, i.e. for every ε > 0 we look for a compact subset

Kε ⊆ Ê(γ1) with the following properties:

(1) ν̂(∂Kε) = 0.

(2) ν̂(Ê(γ1)\Kε) < ε.

(3) ν̂L(Ê(γ1)\Kε) < ε for all big enough L > 0.

A nice feature of working in Re−1([γ1]) is that we can do cut and paste operations
on polygon representations without worrying about marking issues.

We now introduce our candidate Kε sets. Let Kε ⊆ Ê(γ1) be the set of all
quadratic differentials in the principal stratum of Re−1(γ1) having area ≤ 1 and
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γ1

Figure 1. Example of a quadratic differential in the principal
stratum of Re−1([γ1]) ⊆ QM2,0 for a (non-separating) simple
closed curve γ1 in S2,0.

whose horizontal saddle connections have length ≥ ε. To show the sets Kε satisfy
the desired properties we work in real period coordinates. To this end we begin by
showing it is enough to consider finitely many real period coordinate charts.

Lemma 3.7. The set Re−1([γ1]) is covered by the image under the quotient
map Re−1(Modg,n · γ1) → Re−1([γ1]) of finitely many real period coordinate chart
domains.

Proof. Let r be the number of connected components of the topological multi-
curve underlying the integral multi-curve γ1. Any point [(X,Σ, q)] ∈ Re−1([γ1])
admits a polygon representation P given by r horizontal parallelograms with sin-
gularities on their vertices, singularities on their top and bottom edges, and whose
non-horizontal edges are identified by translations without negation. See Figure
1 for an example when γ1 is a simple closed curve. Notice that, up to changing
the length of the saddle connections on the boundary of the parallelograms, there
are only finitely many polygon representations P of this kind. Indeed, the num-
ber of singularities of a non-zero quadratic differential on Sg,n is bounded above
by 4g − 4 + 2n, the number of ways one can place these singularities on the top
and bottom edges of r parallelograms is finite, and the number of ways one can
identify the resulting saddle connections on the boundary of the parallelograms
is finite. In other words, Re−1([γ1]) is covered by the image under the quotient
map Re−1(Modg,n · γ1) → Re−1([γ1]) of the domain of finitely many real period
coordinate charts. �

It is enough then to restrict our attention to a single one of the real period
coordinate charts described in the proof of Lemma 3.7. Let P be a polygon repre-
sentation as above, representing quadratic differentials in an open subset U of the
principal stratum S of Re−1(Modg,n · γ1). To simplify vocabulary, we will make
no distinction between P and the parallelograms in P; in particular, when making
reference to the boundary of P we will be refering to the boundary of the par-
alellograms in P. Real period coordinates define a map U → W from the open
subset U ⊆ S to an open subset W ⊆ V of a vector subspace V ⊆ Rk of dimension
6g − 6 + 2n. This map assigns to every point in U the value of the real part of the
saddle connections on the boundary of P, oriented counterclockwise. The subspace
V ⊆ Rk describes the natural integral linear equations these real parts must satisfy
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ρ

α

β

γ1

(a) Polygon representation.

Re(ρ)

Re(α)

1

ε

1
2

(b) Real period coordinate chart.

Figure 2. No escape of mass property in the real period coordi-
nate chart (b) associated to the polygon representation (a), repre-
senting a flat pillowcase in the principal stratum of Re−1(γ1) ⊆
QT4,0. The blue region covers Kε and the gray region covers

Ê(γ1)\Kε.

to yield actual polygon representations.

Let ρi denote the non-horizontal saddle connections on the boundary of P. A
priori, to cover all of Re−1([γ1]) under the quotient map Re−1(Modg,n · γ1) →
Re−1([γ1]), we may think that we need to consider all possible values Re(ρi) ∈ R,
but, as we are working on Re−1([γ1]), doing cut and paste operations on polygon
representations yields the same quadratic differential, so we can actually restrict
ourselves to the case where |Re(ρi)| is bounded above by the width of the paralel-
logram corresponding to ρi. Taking this restriction into account, in the chart in

consideration, the preimage under the quotient map of the set Ê(γ1) is a bounded
set. Indeed, the condition Area([(X, q)]) ≤ 1 is a linear inequality in real period
coordinates which forces the width of each paralellogram in P, and in particular the
absolute value of the real part of each horizontal saddle connection on the bound-
ary of P, to be ≤ 1. Similarly, the preimage of Kε is described by the additional
condition that the absoute value of the real part of the horizontal saddle connec-
tions on the boundary of P be ≥ ε. It follows that Kε is compact and satisfies

ν̂(∂Kε) = 0. Moreover, the preimage of Ê(γ1)\Kε is a bounded set, whose bound-
ary has Lebesgue measure zero, and whose Lebesgue measure is arbitrarily small
for small values of ε > 0. A standard lattice counting argument in Euclidean space
finishes the proof. For an example see Figure 2.

Proof of Theorem 1.2. Let γ be an integral multi-curve on Sg,n. The same
approach as above can be used to study the growth of the function s(γ, ∗, L) de-
fined in (1.2) as L → ∞. One only needs to replace the counting measures µLγ2 in

the arguments above by the counting measures µL. As µL → µThu when L → ∞,
Theorem 1.2 follows.
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4. Computing Thurston volumes

For the rest of this section let N := 3g−3+n and P := {γ1, . . . , γN} be a pants

decomposition of Sg,n. We compute rg,n := µ̂Thu(B̂(P))
c(P) . We refer to µ̂Thu(B̂(P)) as

the Thurston volume of P.

Dehn-Thurston coordinates. The following theorem, originally due to Dehn and
rediscovered by Thurston in the context of measured foliations, gives an explicit
parametrization of the set of integral multi-curves on Sg,n in terms of their inter-
section numbers mi and their twisting numbers ti with respect to the curves γi in
P. See §1.2 in [PH92] for details.

Theorem 4.1. There is a parametrization of MLg,n(Z) by an additive semi-
group Λ ⊆ (Z≥0 × Z)N . The parameters (mi, ti)

N
i=1 ∈ (Z≥0 × Z)N belong to Λ if

and only if the following conditions are satisfied:

(1) For each i = 1, . . . , N , if mi = 0 then ti ≥ 0.
(2) For each complementary region R of Sg,n\P, the parameters mi whose

indices correspond to curves γi of P bounding R add up to an even number.

We refer to any parametrization as in Theorem 4.1 as a set of Dehn-Thurston
coordinates ofMLg,n(Z) adapted to P and to the corresponding additive semigroup
Λ ⊆ (Z≥0 × Z)N as the parameter space of such parametrization. For any set of
Dehn-Thurston coordinates adapted to P, the action of the full right Dehn twist
along γi onMLg,n(Z) can be described in such coordinates as ti 7→ ti+mi, leaving
the other parameters constant. Dehn-Thurston coordinates will be extemely useful

for computing the Thurston volume µ̂(B̂(P)).

Stabilizers of pants decompositions. Let Stab(P) be the stabilizer of P with
respect to the Modg,n action on MLg,n. It is a well known fact, see for instance
[Wol09] and [Wol], that Stab(P) is generated by:

(1) Full right Dehn twists along all curves γi in P.
(2) Half right Dehn twists along some curves γj in P.
(3) Finitely many finite order elements.

Let [φ] ∈ Stab(P) be a mapping class which does not fix every isotopy class of
simple closed curves on Sg,n. For any set of Dehn-Thurston coordinates adapted
to P, one can check that the integral multi-curves stabilized by such mapping class
correspond to an additive semigroup of positive codimension of the associated pa-
rameter space Λ ⊆ (Z≥0 × Z)N .

It may be the case that some mapping class [φ] ∈ Modg,n fixes every isotopy
class of simple closed curves on Sg,n. The normal subgroup Kg,n CModg,n of all
such mapping classes has cardinality

(4.1) εg,n :=

 4 if (g, n) = (0, 4),
2 if (g, n) ∈ {(1, 1), (1, 2), (2, 0)},
1 if (g, n) /∈ {(0, 4), (1, 1), (1, 2), (2, 0)}

.



COUNTING SQUARE-TILED SURFACES WITH PRESCRIBED FOLIATIONS 23

See 3.4 in [FM12] for details.

It will be convenient for our purposes to consider the subgroup Stab∗(P) <
Stab(P) generated by all full right Dehn twists along the curves γi of P. Notice
that [Stab(P) : Stab∗(P)] <∞.

Thurston volumes of pair of pants decompositions. We compute µ̂Thu(B̂(P))
by reducing to a lattice counting problem on MLg,n which we solve by consid-
ering Dehn-Thurston coordinates adapted to P. It is convenient to work in the
intermediate cover described in the following diagram:

MLg,n(P)

MLg,n(P)/Stab∗(P)

MLg,n(P)/Stab(P )

p

.

Let µ̃Thu be the local pushforward of the measure µThu|MLg,n(P) under the quo-
tient map MLg,n(P) → MLg,n(P)/Stab∗(P). The following proposition relates
the measures µ̂Thu and µ̃Thu.

Proposition 4.2. Let p#µ̃Thu be the usual pushfoward of the measure µ̃Thu

under the quotient map p : MLg,n/Stab∗(P )→MLg,n/Stab(P ). Then

p#µ̃Thu = [Stab(P) : Stab∗(P)] · µ̂Thu.

Proof. Let Ωg,n(P) ⊆MLg,n(P) be the subset of all λ ∈ MLg,n(P) satisfy-
ing the following conditions:

(1) Stab(λ) ∩ Stab(P) = Kg,n.
(2) Stab(λ) ∩ Stab∗(P) = {1}.

As Kg,n CModg,n, it follows that Ωg,n(P) is Stab(P)-invariant. Using Thurston’s
parametrization of MLg,n, see for instance 8.3.9 in [Mar16], one can check that
Ωg,n(P) is an open, full measure subset of MLg,n(P). In particular, it is enough
for our purposes to work on Ωg,n(P).

As local pushforwards are defined locally, we can restrict our attention to a
single well covered open set of the form U/Kg,n ⊆ Ωg,n(P)/Stab(P). Let A ⊆ U
be an arbitrary measurable set. By definition,

µ̂(A/Kg,n) =
1

εg,n
· µ(A).

Notice p−1(U/Kg,n) can be written as a disjoint union of [Stab(P) : Stab∗(P)]/εg,n
images under the quotient map MLg,n(P) → MLg,n(P)/Stab∗(P) of Stab(P)-
translates of U . Each one of these images is a well covered open set of the form



24 FRANCISCO ARANA–HERRERA

W/{1} ⊆ MLg,n(P)/Stab∗(P) for some Stab(P)-translate W of U . In particular,

p#µ̃Thu(A/Kg,n) =
[Stab(P) : Stab∗(P)]

εg,n
· µ(A).

We deduce

p#µ̃Thu(A/Kg,n) = [Stab(P) : Stab∗(P)] · µ̂(A/Kg,n).

As A ⊆ U was an arbitrary measurable set, this finishes the proof. �

Consider the subset

B̃(P) := B(P)/Stab∗(P) ⊆MLg,n(P)/Stab∗(P).

It follows directly from Proposition 4.2 that

µ̃Thu(B̃(P)) = [Stab(P) : Stab∗(P)] · µ̂Thu(B̂(P)).

Recall the definition of the counting measures µL on MLg,n in (2.1). Re-
call that by definition µL → µThu as L → ∞. As restriction to open sets is a
continuous operation, µL|MLg,n(P) → µThu|MLg,n(P) as L→∞. Let µ̃L be the lo-

cal pushforward of the measure µL|MLg,n(P) under the quotient mapMLg,n(P)→
MLg,n(P)/Stab∗(P). As taking local pushforward is a continuous operation, µ̃L →
µ̃Thu as L→∞. Following the same no escape of mass arguments as in the previous

section, we deduce µ̃L(B̃(P))→ µ̃Thu(B̃(P)) as L→∞.

LetMLg,n(Z,P) :=MLg,n(Z)∩MLg,n(P). Notice Stab∗(P)∩Stab(α) = {1}
for all α ∈MLg,n(Z,P). From (2.3) it follows that

µ̃L :=
1

L6g−6+2n

∑
[α]∈MLg,n(Z,P)/Stab∗(P)

δ 1
L ·[α].

From this we deduce

µ̃L(B̃(P)) =
#{[α] ∈MLg,n(Z,P)/Stab∗(P) | i(α,P) ≤ L}

L6g−6+2n
.

We now wish to count the number of points in the set

ĨL := {[α] ∈MLg,n(Z,P)/Stab∗(P) | i(α,P) ≤ L}.

Considering Dehn-Thurston coordinates adapted to P with parameter space Λ ⊆
(R≥0 ×R)N , this is the same as counting the number of points in the set

IL :=


(mi, ti)

N
i=1 ∈ Λ mi > 0, ∀i = 1, . . . , N,

0 ≤ ti < mi, ∀i = 1, . . . , N,∑N
i=1mi ≤ L.

 .

It follows that

lim
L→∞

µ̃L(B̃(P)) = lim
L→∞

#IL
L6g−6+2n

.

Notice that the additive semigroup Λ ⊆ (Z≥0×Z)N has index 22g−3+n. Indeed,
there is one even condition imposed on Λ for every complementary region of Sg,n−P,



COUNTING SQUARE-TILED SURFACES WITH PRESCRIBED FOLIATIONS 25

of which there are 2g − 2 + n in total, and one of these conditions is redundant.
Standard lattice counting arguments in Euclidean space show that

lim
L→∞

#IL
L6g−6+2n

=
Leb(A1)

22g−3+n
,

where Leb(A1) is the standard Lebesgue measure of the set A1 ⊆ (R≥0 × R)N

given by

A1 :=


(xi, yi)

N
i=1 ∈ (R≥0 ×R)N xi > 0, ∀i = 1, . . . , N,

0 ≤ yi < xi, ∀i = 1, . . . , N,∑N
i=1 xi ≤ 1.

 .

Putting everything together we get

µ̂Thu(B̂(P)) =
Leb(A1)

[Stab(P) : Stab∗(P)] · 22g−3+n
.

Frequencies of pair of pants decompositions. Mirzakhani’s Weil-Petersson inte-
gration techniques in [Mir07] can be used as in [Mir08b] to show that

c(P) =
Leb(A1)

[Stab(P) : Stab∗(P)]
.

Conclusion. From the computations above we deduce the following result.

Theorem 4.3. For all g, n ∈ Z≥0 with 2− 2g − n < 0,

rg,n =
1

22g−3+n
.

5. Examples

The examples that follow are based on the work [Mir08b] of Mirzakhani.

Genus 2 with no punctures. Simple closed curves on S2,0 are of one of two
possible topological types: separating or non-separating. The frequency of sepa-
rating simple closed curves γ1 on S2,0 is given by c(γ1) = 1

27648 . The frequency of

non-separating simple closed curves γ2 on S2,0 is given by c(γ2) = 1
576 . By Theorem

1.2, it follows that

lim
L→∞

s(γ1, ∗, L)

s(γ2, ∗, L)
=
c(γ1)

c(γ2)
=

1

48
.

Roughly speaking, square-tiled surfaces in QM2,0 with one horizontal cylinder and
many squares have a 1 in 49 chance of having separating horizontal core curve.

Analogously, by Theorem 1.1, it follows that

lim
L→∞

s(γ1, γ1, L)

s(γ2, γ2, L)
=
c(γ1)2

c(γ2)2
=

1

2304
.

Roughly speaking, square-tiled surfaces in QM2,0 with one horizontal cylinder, one
vertical cylinder, and many squares are 2304 times more likely to have separating
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horizontal and vertical core curves rather than non-separating ones.

Genus 0 with punctures. Let γi be a simple closed curve on S0,n that cuts the
surface into two disks, one with i punctures and the other one with n− i punctures.
For simplicity, assume 2 < 2i < n. The frequency of simple closed curves on S0,n

of topological type [γi] is given by

c(γi) =
1

2n−4(i− 2)!(n− i− 2)!(2n− 6)
.

By Theorem 1.1, it follows that

lim
L→∞

s(γi, ∗, L)

s(γj , ∗, L)
=
c(γi)

c(γj)
=

(
n−4
i−2

)(
n−4
j−2

) .
Genus g with no punctures. Let γi be a simple closed curve on Sg,0 that cuts the

surface into two pieces, one of genus i and the other of genus g − i. For simplicity,
assume 2 < 2i < g. The frequency of simple closed curves on Sg,0 of topological
type [γi] is given by

c(γi) =
1

23g−424gi!(g − i)!(3i− 2)!(3(g − i)− 2)!(6g − 6)

By Theorem 1.1, it follows that

lim
L→∞

s(γi, ∗, L)

s(γj , ∗, L)
=
c(γi)

c(γj)
=

(
g
i

)(
3g−4
3i−2

)(
g
j

)(
3g−4
3j−2

) .
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(2016), no. 6, 1311–1386, With an appendix by Jon Chaika. MR 3592359
[Bon88] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent.

Math. 92 (1988), no. 1, 139–162. MR 931208
[Bon01] , Geodesic laminations on surfaces, Laminations and foliations in dynamics,

geometry and topology (Stony Brook, NY, 1998), Contemp. Math., vol. 269, Amer.

Math. Soc., Providence, RI, 2001, pp. 1–37. MR 1810534

[DGZZ16] Vincent Delecroix, Elise Goujard, Peter Zograf, and Anton Zorich, Square-tiled sur-
faces of fixed combinatorial type: equidistribution, counting, volumes of the ambient
strata, arXiv e-prints (2016), arXiv:1612.08374.

[DGZZ17] , Enumeration of meanders and Masur-Veech volumes, arXiv e-prints (2017),
arXiv:1705.05190.

[DGZZ19] , Masur-Veech volumes, frequencies of simple closed geodesics and intersection

numbers of moduli spaces of curves, arXiv e-prints (2019), arXiv:1908.08611.
[EO01] Alex Eskin and Andrei Okounkov, Asymptotics of numbers of branched coverings of

a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145
(2001), no. 1, 59–103. MR 1839286

[EPS16] Viveka Erlandsson, Hugo Parlier, and Juan Souto, Counting curves, and the stable

length of currents, arXiv e-prints (2016), arXiv:1612.05980.
[Erl16] Viveka Erlandsson, A remark on the word length in surface groups, arXiv e-prints

(2016), arXiv:1608.07436.



COUNTING SQUARE-TILED SURFACES WITH PRESCRIBED FOLIATIONS 27

[ES16] Viveka Erlandsson and Juan Souto, Counting curves in hyperbolic surfaces, Geom.

Funct. Anal. 26 (2016), no. 3, 729–777. MR 3540452

[EU18] Viveka Erlandsson and Caglar Uyanik, Length functions on currents and applications
to dynamics and counting, arXiv e-prints (2018), arXiv:1803.10801.

[FLP12] Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston’s work on sur-

faces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012,
Translated from the 1979 French original by Djun M. Kim and Dan Margalit.

MR 3053012

[FM12] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathe-
matical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125

[Gar87] Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Ap-

plied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987, A Wiley-
Interscience Publication. MR 903027

[GM91] Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller
space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209–237. MR 1099913

[HM79] John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math.

142 (1979), no. 3-4, 221–274. MR 523212
[Hub16] John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and

dynamics. Vol. 2, Matrix Editions, Ithaca, NY, 2016, Surface homeomorphisms and

rational functions. MR 3675959
[Ker80] Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19

(1980), no. 1, 23–41. MR 559474

[Kon92] Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix
Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758

[Lev83] Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983),

no. 2, 119–135. MR 683752
[LM08] Elon Lindenstrauss and Maryam Mirzakhani, Ergodic theory of the space of mea-

sured laminations, Int. Math. Res. Not. IMRN (2008), no. 4, Art. ID rnm126, 49.
MR 2424174

[Mar04] Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer

Monographs in Mathematics, Springer-Verlag, Berlin, 2004, With a survey by Richard
Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by Valentina

Vladimirovna Szulikowska. MR 2035655

[Mar16] Bruno Martelli, An Introduction to Geometric Topology, arXiv e-prints (2016),
arXiv:1610.02592.

[Mas82] Howard Masur, Interval exchange transformations and measured foliations, Ann. of

Math. (2) 115 (1982), no. 1, 169–200. MR 644018
[Mas85] , Ergodic actions of the mapping class group, Proc. Amer. Math. Soc. 94

(1985), no. 3, 455–459. MR 787893
[Mir07] Maryam Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces

of bordered Riemann surfaces, Invent. Math. 167 (2007), no. 1, 179–222. MR 2264808

[Mir08a] , Ergodic theory of the earthquake flow, Int. Math. Res. Not. IMRN (2008),
no. 3, Art. ID rnm116, 39. MR 2416997

[Mir08b] , Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann.

of Math. (2) 168 (2008), no. 1, 97–125. MR 2415399
[Mir16] Maryam Mirzakhani, Counting Mapping Class group orbits on hyperbolic surfaces,

arXiv e-prints (2016), arXiv:1601.03342.

[MT19] Leonid Monin and Vanya Telpukhovskiy, On normalizations of Thurston measure on
the space of measured laminations, arXiv e-prints (2019), arXiv:1902.04533.

[Pap86] Athanase Papadopoulos, Geometric intersection functions and Hamiltonian flows on

the space of measured foliations on a surface, Pacific J. Math. 124 (1986), no. 2,
375–402. MR 856170

[PH92] R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics
Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770

[Riv12] Igor Rivin, Geodesics with one self-intersection, and other stories, Adv. Math. 231

(2012), no. 5, 2391–2412. MR 2970452
[RS19] Kasra Rafi and Juan Souto, Geodesic currents and counting problems, Geom. Funct.

Anal. 29 (2019), no. 3, 871–889. MR 3962881



28 FRANCISCO ARANA–HERRERA

[Vee82] William A. Veech, Gauss measures for transformations on the space of interval ex-

change maps, Ann. of Math. (2) 115 (1982), no. 1, 201–242. MR 644019

[Wol] Ute Wolf, The action of the mapping class group on the pants complex,
http://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-

class-group-on-the-pants-complex.pdf.

[Wol85] Scott Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer.
J. Math. 107 (1985), no. 4, 969–997. MR 796909

[Wol96] Michael Wolf, On realizing measured foliations via quadratic differentials of harmonic

maps to R-trees, J. Anal. Math. 68 (1996), 107–120. MR 1403253
[Wol09] Ute Wolf, Die aktion der abbildungsklassengruppe auf dem hosenkomplex, Ph.D. the-

sis, 2009.

Department of Mathematics, Stanford University, 450 Jane Stanford Way, Stan-
ford, CA 94305-2125, USA

Email address: farana@stanford.edu

http://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-pants-complex.pdf
http://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-pants-complex.pdf

	1. Introduction
	2. Background material
	3. Proofs of main results
	4. Computing Thurston volumes
	5. Examples
	References

