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ABSTRACT

The proliferation of camera-enabled devices and large video
repositories has led to a diverse set of video analytics applica-
tions. These applications rely on video pipelines, represented
as DAGs of operations, to transform videos, process extracted
metadata, and answer questions like, “Is this intersection con-
gested?” The latency and resource efficiency of pipelines can
be optimized using configurable knobs for each operation
(e.g., sampling rate, batch size, or type of hardware used).
However, determining efficient configurations is challenging
because (a) the configuration search space is exponentially
large, and (b) the optimal configuration depends on users’
desired latency and cost targets, (c) input video contents
may exercise different paths in the DAG and produce a vari-
able amount intermediate results. Existing video analytics
and processing systems leave it to the users to manually
configure operations and select hardware resources.

We present Llama: a heterogeneous and serverless frame-
work for auto-tuning video pipelines. Given an end-to-end
latency target, Llama optimizes for cost efficiency by (a) cal-
culating a latency target for each operation invocation, and
(b) dynamically running a cost-based optimizer to assign con-
figurations across heterogeneous hardware that best meet
the calculated per-invocation latency target. This makes the
problem of auto-tuning large video pipelines tractable and
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allows us to handle input-dependent behavior, conditional
branches in the DAG, and execution variability. We describe
the algorithms in Llama and evaluate it on a cloud platform
using serverless CPU and GPU resources. We show that
compared to state-of-the-art cluster and serverless video an-
alytics and processing systems, Llama achieves 7.8× lower
latency and 16× cost reduction on average.
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1 INTRODUCTION

Video traffic is exploding in scale, predicted to account for
over 82% of all internet traffic by 2022 [6]. A myriad of do-
mains use video pipelines, with tens of video analytics and
processing operations, to extract meaningful information
from raw videos. For example, an AMBER Alert applica-
tion can leverage traffic cameras across a city to pinpoint
specific individuals and cars [7]. To do so, the application
uses a pipeline to first detect frames with people and/or
cars, and then match them to specific individuals’ faces and
car descriptions, respectively. As video analytics research
continues to flourish, we expect a perpetual proliferation
of emerging domains that depend on video pipelines, such
as smart cities [20, 42, 45, 78], surveillance analytics [23],
healthcare [44], and retail [19].
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The pervasive use of video analytics applications has led
to significant challenges. Video pipelines must meet a wide
range of latency, throughput, and cost targets to be practical
across applications. For example, a pipeline to detect cars
and people in a traffic feed should be tuned to be more cost
efficient for city traffic planners with relaxed latency targets,
while the same pipeline must be tuned to meet strict latency
targets for AMBER Alert responders [7]. Video analytics and
processing frameworks must tune pipeline operation knobs
(e.g., sampling rate, batch size, hardware target, and resource
allocation) to meet the unique latency or cost requirements
of diverse applications. However, automatically tuning these
knobs is difficult for the following reasons.
Operations exhibit performance variation across

heterogeneous hardware. Hardware accelerators (e.g.,
GPUs [27], FPGAs [37, 70], TPUs [47], and vision chips [2])
provide significant performance benefits for many pipeline
operations. Tuning knobs across these heterogeneous ac-
celerators can have a huge impact in the performance and
efficiency of video pipelines. We observed a 3.7× latency
variation by tuning CPU cores, GPU memory, and batch size
for operations in a representative AMBER Alert pipeline
processed using Scanner [61]. While recent research has
proposed mechanisms to tune operation knobs based on re-
source usage [42, 45, 73], they are limited to simple pipelines
and homogeneous hardware platforms. Furthermore, they
rely on hours to days of profiling for each new pipeline, video,
and latency target [18, 78].
Pipelines can have input-dependent execution flow.

An input video’s contents influence the execution flow of
a pipeline in two ways. First, the number of intermediate
outputs for an operation may depend on the frame being
processed. For the AMBER Alert pipeline, the object detector
operation will output a variable number of cropped people
and/or car images to be processed by subsequent operations.
Second, downstream operations may be conditionally exe-
cuted based on the intermediate output. For example, if there
are only people in a frame, no car classification is needed.
Consequently, tuning configuration knobs and resource allo-
cations dynamically based on video content is critical for per-
formance and efficiency. We found the static configurations
made by gg [35], a general purpose serverless framework,
degraded performance by as much as 57% for the AMBER
Alert pipeline. Some systems, such as VideoStorm [78] and
GrandSLAm [48], only support simple sequential pipelines
with deterministic flow.

Systems that use serverless platforms as their backend
(e.g., ExCamera [36], gg [35], PyWren [46], and Sprocket [22])
execute applications by using thousands of short-lived func-
tions [3, 5, 9]. The function-level resource allocation offered
by serverless platforms makes them an attractive option for
processing video pipelines, as they enable dynamic tuning

for each operation invoked. However, existing serverless
offerings lack support for heterogeneous hardware accel-
erators and application constraints such as latency targets.
Users must still manually, and perhaps exhaustively, explore
operation knobs and resource allocation options.

We present Llama, a video analytics and processing frame-
work that supports heterogenous hardware and automati-
cally tunes each operation invocation to meet diverse latency
targets for the overall pipeline. Llama is a full-fledged server-
less framework that provides a serverless experience to its
users: fine-grained billing and does not require users to ex-
press the resources or operation knob configurations needed
to meet their latency targets.
Llama is divided into two parts: an offline specification

phase, and an online optimization phase. The offline specifi-
cation phase allows users to specify their pipeline, and per-
forms a one-time, per-operation profiling that allows Llama
to automatically tune operation invocations as the pipeline
runs. Unlike existing systems [28], this profiling does not
need to be repeated as the pipeline or input video changes.
During the online phase, Llama leverages two key ideas

to meet diverse latency targets. First, Llama dynamically
computes how much time can be spent on each invocation
to meet the pipeline latency target (i.e., per-invocation la-
tency targets). By computing a per-invocation latency target,
Llama can dynamically explore the configuration space for
each invocation and adapt to performance volatility and
input-dependent execution flows. Second, Llama dynami-
cally runs a cost-based optimizer that determines the most ef-
ficient operation configuration that meets the per-invocation
target. To do so, Llama (a) uses early speculation and late
commit: a technique for choosing an initial operation knob
configuration during pipeline processing, and revisiting the
configuration right before execution, (b) leverages priority-
based commit to prioritize operations based on hardware
affinity and DAG dependencies, and (c) employs safe delayed
batching to batch operations for efficiency as long as doing
so does not violate per-invocation targets.

We deploy Llama on Google Cloud Platform with server-
less CPU and GPU backends and evaluate its efficiency and
ability to meet latency targets for five video analytics and
processing pipelines. By dynamically configuring operations
for both CPU and GPU based on pipeline latency targets,
Llama achieves on average 7.8× latency improvement and
16× cost reduction compared to four state-of-the-art clus-
ter and serverless video analytics and processing systems:
Nexus [63], Scanner [61], gg [35], and GrandSLAm [48].
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InferLine
[28]

GrandSLAm
[48]

VideoStorm
[78]

Focus
[42]

Nexus
[63]

Scanner
[61]

gg
[35]

Sprocket
[22] Llama

Performance targets Yes Yes Yes Yes Yes No No No Yes
Features General operations No No Yes No No Yes Yes No Yes

Traverse large configuration space Limited¶ Limited¶ Limited† Limited¶ Limited¶ No No No Yes
Handle input-dependent exec. flow No No No No Yes No Limited‡ No YesChallenges

Dynamically adjust resource alloc. Yes No Limited§ No Limited§ No Yes Yes Yes
Table 1: Comparison of existing video processing systems with Llama based on whether they (a) support performance targets

and general operations, and (b) address the challenges of meeting performance targets for general video pipelines. ¶Limited to

domain-specific knobs. †Large profiling overhead. ‡Cannot handle branching. §Limited to single hardware platform.

(a)
sequential

(b)
parallel

(c)
branching

if

else

Figure 1: Simple DAGs that

can be used to compose com-

plex video pipelines.

decode

preprocess

object-
detection

preprocess preprocess

face-recognition car-recognition

Figure 2: An AMBER Alert

pipeline that finds faces and

cars in a video.

2 BACKGROUND AND MOTIVATION

Applications define video pipelines as directed acyclic graphs
(DAGs), where vertices represent video analytics and pro-
cessing operations, while edges represent dataflow.
As described in literature [4, 32, 48], video pipelines can

be composed from three basic DAG patterns shown in Fig-
ure 1: (a) sequential, where each vertex has at most one
input and one output, (b) parallel, where multiple vertices
execute in parallel, and (c) branching, where the output of
a vertex, called branching vertex, conditionally determines
the next vertex to execute. For example, the AMBER Alert
pipeline [63, 78] for face and car recognition in Figure 2 be-
gins with a sequential path of decoding and preprocessing
operations, followed by a branching object detection oper-
ation. Depending on the output, people or cars are sent to
parallel face and car recognition operations, respectively.
Table 1 categorizes video analytics and processing sys-

tems based on two key features: (a) Their ability to specify
and meet performance targets. User-facing systems typically
require that the video pipeline meet a latency target, ideally
while minimizing resource usage (cost). For example, the
AMBER Alert pipeline needs to meet a strict latency tar-
get so that responders can take timely action. (b) Support
for general video operations. To compose video pipelines, a
user combines video operations (e.g., inference models, video
encoders, and image filters) with analytics operations that
process extracted metadata. For example, the AMBER Alert
pipeline will contain video decoding, object detection, face
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Figure 3: Execution latency on CPU (left) and GPU (right)

for a face detection pipeline that identifies unique faces in

a frame [50]. Latency varies up to 17.2× and 4× on CPU and

GPU, respectively.

recognition, and car model recognition. Some systems, such
as Scanner [61], VideoStorm [78], and gg [35], support gen-
eral video operations. Others, such as Focus [42], Nexus [63],
GrandSLAm [48], and InferLine [28] focus on one facet of
video pipelines (e.g., deep learning inference) and rely on
external services for other operations.

2.1 Challenges

Large configuration space. Pipeline operations offer a
variety of knobs that can be tuned to improve latency and
resource use. For example, many operations have knobs such
as batch size, sampling rate, and resolution. Other knobs se-
lect the hardware platform (e.g., CPU, GPU, TPU, etc.) and
set the resource allocation (e.g., CPU cores or GPU memory).
Determining configurations is challenging due to the expo-
nential growth in the configuration space with the number
of operations, knobs, and hardware platforms available.
As shown in Table 1, Scanner, gg, and Sprocket do not

auto-tune configurations knobs, putting the burden on the
user to statically specify good operation configurations. Fo-
cus, Nexus, GrandSLAm, and InferLine are domain-specific
to deep learning inference and are limited to configuring the
inference models used and the batch size. VideoStorm sup-
ports general knob configurations; however, it takes tens of
CPU hours to profile pipelines and requires re-profilingwhen
the pipeline, input video, or latency targets change [78].
Input-dependent execution flow. Input-dependent ex-
ecution flow occurs in two cases: First, inputs determine
the conditional path in branching pipelines. In the AMBER
Alert pipeline of Figure 2, a frame will only take the face
recognition path if object-detection finds a person in it.
Since a conditional path is not resolved until the branching
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operation finishes, provisioning resources and selecting con-
figurations to meet a pipeline’s latency target is challenging.
Existing systems either treat branching pipelines as parallel
ones (i.e., by executing all conditional branches) [28, 33, 61]
or do not support non-sequential pipelines [22, 48, 78].

Second, operations can produce a variable number of out-
puts, and thus a variable load for downstream operations. If
the number of intermediate outputs is unknown until the op-
eration is executed, determining the parallelism or resources
needed downstream to meet latency targets is difficult, es-
pecially if these operations are computationally expensive.
Figure 3 shows the latency for a pipeline that identifies the
unique faces in a frame depends on the number of unique
faces: 17.2× and 4× difference between 60 faces versus no
faces on a CPU and a GPU, respectively. Thus, the nonde-
terminism introduced by input-dependent behavior requires
systems to dynamically adapt to meet a pipeline’s latency
target [33]. Most existing video analytics and processing
systems do not account for input-dependent execution flow.
Dynamically adjusting resource allocation of opera-

tion invocations. As a pipeline executes, the degree of avail-
able parallelism depends on the various knob settings (e.g.,
batching) and the number of intermediate outputs. Many
existing systems require users to statically provision a clus-
ter, which limits the resources available to exploit paral-
lelism [33, 48] or leads to over-allocation and higher costs
when parallelism is low. Some systems periodically adjust
resources and bin pack requests as the load changes, but are
limited by how quickly hardware (e.g., GPUs) and VMs can be
loaded/unloaded [63]. Systems like gg [35] and Sprocket [22]
leverage serverless platforms [3, 5, 9] to dynamically allocate
resources for each operation invocation. However, serverless
platforms still require users to manually select hardware
types and configure knobs to meet latency targets.

3 LLAMA DESIGN

Llama is a heterogeneous and serverless framework for auto-
tuning video analytics and processing pipelines. Llama’s
objective is to meet the overall pipeline latency target, while
minimizing cost (resource usage). As noted in Section 2,
input-dependent execution flow and resource volatility pre-
clude the use of static tuning approaches [33]. They also
preclude designing and calculating a globally-optimal solu-
tion a-priori or dynamically. Instead, Llama optimizes the
overall pipeline execution by iteratively and dynamically op-
timizing each operation invocation using themost up-to-date
information about the state of execution flow and resource
availability. Specifically, Llama (a) dynamically reduces the
pipeline target latency to per-operation invocation latency
targets, values that we call slack, and (b) continuously config-
ures each operation invocation to meet the slack at minimal

cost. Dynamically allotting slack ensures the pipeline latency
target is met without having to statically account for all pos-
sible conditional paths or sources of resource volatility in
serverless environments. It also allows Llama to revisit con-
figuration decisions as the resource environment evolves
or as input-dependent operations are run. Llama finds the
set of cost-efficient configurations for the entire pipeline
because it minimizes cost at each configuration assignment
subject to the overall latency target.

We address the challenges outlined in Section 2 as follows:
Traversing the large configuration space. Llama pro-
files and makes configuration decisions on a per-operation,
not per-pipeline basis. New operations undergo a short (sec-
onds to minutes), one-time profiling step independent of
the pipelines that include the operation. Operations are not
re-profiled as the pipeline composition, video, or latency
targets change. As the pipeline executes, Llama makes con-
figuration decisions for one operation invocation at a time,
reducing the exponential configuration space of an entire
pipeline to that of an individual operation.
Handling input-dependent execution flow. Llama uses
three techniques to meet latency targets despite the nonde-
terminism that stems from input-dependent behavior and
resource volatility (e.g., resource contention): (a) early specu-
lation and late commit selects an initial configuration deci-
sion as soon as an invocation is available, then revisits the
configuration right before execution, (b) priority-based com-
mit prioritizes operations based on their affinity to hardware
and their depth in the pipeline, and (c) safe delayed batching
waits for additional inputs for batching, as long as doing so
does not violate the invocation’s allotted slack.
Dynamically adjusting resource allocations. Making
per-invocation configuration decisions also allows Llama
to dynamically right-size resource allocations across hetero-
geneous serverless backends. Llama decides the hardware
type and resource sizing (e.g., GPU with 2GB of memory)
during dynamic configuration based on what is necessary to
meet the slack. Early speculation and late commit, as well
as priority-based commit, also allow Llama to balance re-
sources between operations.

3.1 Architecture

Llama uses an offline specification phase and an online opti-
mization phase (Figure 4). The specification phase has two
purposes. First, it allows the user to specify a pipeline with
multiple, general operations using an SDK. Second, it ex-
tracts the following information: a set of all possible se-
quential paths through the pipeline, and the latency and
resource footprint of each unique operation across possible
knob configurations. The pipeline specification and the ex-
tracted metadata are stored for use during the online phase.
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Figure 4: Llama’s architecture diagram.

"engine": "gpu",
"resource": "200MB",
"latency": "320ms",
"cost": "$3.413e-6",
"arguments": [ "image_blur", "<input0>", "<input1>",

"<output0>", "<output1> ],
"binary_name": "image_blur",
"batch_size": 2,
"num_inputs": 2,
"num_outputs": 2,
"resolution": 1920x1080,
"id": "image_blur_7"

Figure 5: Example configuration specification for one image

blurring configuration. Llama’s configuration specifications

allow for general operation knob configuration.

The online phase is triggered when users submit an input
video and a latency target to Llama. Llama executes the
pipeline by continuously generating and executing a set of
invocations for each operation as their input dependencies
are resolved. For example, if object-detection outputs a
frame taggedwith a person, a new invocation is generated for
the preprocess operation in the AMBER Alert pipeline (Fig-
ure 2). The online phase configures each invocation by first
estimating its slack. It then uses the respective operation’s
profiling data to determine the most efficient configuration
for completing the invocation within the allotted slack. The
process repeats until all pipeline invocations are executed.

3.2 Specification phase

Application Interface. Users specify pipeline operations,
dependencies between operations, and conditional flow us-
ing the Llama SDK. Llama provides a library of operations
(e.g., decode and face recognition). Each operation consists
of a binary executable, indexed by its SHA256 hash, and a
configuration specification file that contains configuration op-
tions and performance statistics for the operation. Users can
optionally bring their own operations by providing an exe-
cutable and a configuration template that specifies tunable
knobs (e.g., hardware type, batch size, or number of filters),
the ranges for each knob, and the granularity of this range
(e.g., batch size increasing by powers of 2). The Operation-
Profiler uses these inputs in a one-time profiling step to

generate a configuration specification. The operation and
configuration specification are then added into the Metadata
Store and re-used across pipelines without further profiling.
Operation-Profiler. The Operation-Profiler collects perfor-
mance and resource statistics for each operation. Using the
operation executable and configuration template as inputs,
it first enumerates all possible configurations specified by
the template, then executes a short profiling step using one
or more sample frames for each configuration (depending on
the batch size). Statistics such as latency and resource foot-
print (e.g., peak memory utilization) are collected and stored
as configuration specification file entries. The frame content
does not affect these statistics (recall that input-dependent
execution flow manifests between operations). Since slack
calculation (Section 4.1) is only dependent on the relative per-
formance of operation invocations across the pipeline, the
Operation-Profiler designates a reference configuration for
each operation to provide a measure of relative performance.
We chose the smallest CPU configuration (1-core, batch-1)
for each operation’s reference configuration. During run-
time, operation invocation performance that differs from
its profiled value, due to resource contention or profiling
inaccuracy, is managed by leveraging feedback (Section 3.3).

An example configuration specification for an image blur-
ring operation is shown in Figure 5. As shown, the config-
uration specification is structured so arbitrary operation-
and hardware-specific configuration knobs can be described
by users, and dynamically configured during runtime. This
enables Llama to support general operations and arbitrary
video pipelines for a myriad of applications.
Pipeline-Decomposer. To enable the online phase to dy-
namically compute slack, the Pipeline-Decomposer performs
a one-time decomposition of the pipeline into all possible se-
quential paths in the pipeline. To do so, it performs amodified
depth-first search on the pipeline DAG to enumerate all paths
from the input operation (i.e., operation with no upstream
dependencies) to an output operation (i.e., an operation with
no downstream dependencies). It then emits an intermediate
representation of the decomposed paths into the Metadata
Store. For example, the AMBER Alert pipeline in Figure 2 is
decomposed into the two sequential paths ending in face-
recognition and car-recognition, respectively.

3.3 Online phase

Manager. Llama’s Manager takes video inputs and la-
tency targets and orchestrates the entire pipeline execution,
maintaining execution state and generating new invocations.
Whenever an invocation completes, the Manager records
the invocation’s runtime statistics (i.e., latency, cost, and
configuration) and the location of intermediate outputs. The
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Figure 6: Configurator diagram.

runtime statistics are used to update the configuration pro-
files obtained from the Operation-Profiler via a feedback
loop. We use an exponential smoothing algorithm to update
the profiling; other algorithms can be incorporated as well.
The intermediate outputs are then used to resolve any con-
ditional branches. The Manager then spawns invocations
for downstream operations once all dependencies have been
resolved. These invocations are then sent to the Configurator.
Configurator. To meet the overall pipeline latency target,
the Configurator (Figure 6) decides (a) how much slack to
allot to an operation invocation, and (b) what the most ef-
ficient configuration is to meet the slack. The Configurator
works with the Scheduler to keep track of available resources
at a serverless backend as it makes configuration decisions.
Scheduler. After the Configurator has configured an invo-
cation’s knobs, the invocation is sent to the Scheduler for
execution. The Scheduler executes the configured invoca-
tions on the hardware platform specified by the Configu-
rator. This includes creating and managing the necessary
backend connections, mitigating stragglers, and handling
invocation failures (Section 4.5). When an invocation suc-
cessfully returns, the Scheduler provides the Manager with
the invocation metadata and output results.

4 TARGET LATENCY-AWARE

CONFIGURATION

Input-dependent execution flow and backend resource
volatility require the Configurator to dynamically determine
each operation invocation’s most efficient knob configura-
tions. The Configurator is divided into two parts. The Logic
Plane (a) determines how much slack can be spent on its
invocation, and (b) uses a cost-based optimizer to select a
configuration to meet that slack. The Data Plane manages
configured operations in queues prior to their execution. Fig-
ure 6 presents how each of the key techniques discussed in
this section is integrated into the Configurator.

Algorithm 1 Operation invocation slack allotment
1: 𝑝𝑎𝑡ℎ𝑠 ← A set of all sequential paths in the pipeline
2: 𝑡 ← elapsed time
3: 𝑡𝑎𝑟𝑔𝑒𝑡 ← pipeline latency target
4: procedure ComputeSlack(𝑜𝑝, 𝜆)
5: 𝑠𝑙𝑎𝑐𝑘𝑠 = {}
6: for all {𝑝𝑎𝑡ℎ ∈ 𝑝𝑎𝑡ℎ𝑠 | 𝑜𝑝 ∈ 𝑝𝑎𝑡ℎ} do
7: 𝑝𝐿𝑎𝑡 = RemainingPathLatency(𝑜𝑝, 𝑝𝑎𝑡ℎ)
8: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑡 − 𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔𝑇𝑖𝑚𝑒 (𝜆))
9: 𝑝𝑆𝑙𝑎𝑐𝑘 = (𝑜𝑝.𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐿𝑎𝑡 ()/𝑝𝐿𝑎𝑡 ) × 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒

10: 𝑠𝑙𝑎𝑐𝑘𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑆𝑙𝑎𝑐𝑘)
11: return𝑚𝑖𝑛 (𝑠𝑙𝑎𝑐𝑘 ∈ 𝑠𝑙𝑎𝑐𝑘𝑠)

4.1 Determining an invocation’s slack

Given a user-specified pipeline latency target, the Configura-
tor first needs to compute a slack for each operation invoca-
tion. Existing systems (e.g., GrandSLAm [33] and Fifer [40])
statically determine each operation invocation’s slack by as-
suming a linear pipeline with predictable invocations and la-
tencies (i.e., no nondeterminism). Our insight is to instead dy-
namically calculate each operation invocation’s slack, which
we subsequently use to select the best invocation configu-
ration (Section 4.2). Doing so across invocations efficiently
meets the pipeline latency target.
Llama calculates an operation invocation’s slack using

Algorithm 1. Given an invocation of operation 𝑜𝑝 and a con-
figuration’s backend 𝜆 (e.g., a GPU cluster or a commercial
serverless offering), ComputeSlack begins by finding every
sequential path through the DAG containing 𝑜𝑝 (Line 6). It
then estimates the latency to complete the path, starting
at 𝑜𝑝 , using the reference configuration for each operation
(Section 3.2). By using the reference configuration’s latency,
Llama avoids a causal dilemma of needing a configuration
to compute slack, and needing a slack to select a configura-
tion. The operation invocation’s slack for that path is then
determined based on the remaining time (Line 8), factoring
in estimated queueing time at 𝜆, weighted by the relative
latency of 𝑜𝑝 to the remaining path (Line 9). The final slack
for an invocation of 𝑜𝑝 on 𝜆 is then the minimum slack value
over all possible execution paths of 𝑜𝑝 , which accounts for
all input-dependent branch resolutions (Line 11). We discuss
how Llama reclaims overly-conservative slack next.

4.2 Navigating the configuration space

Since slack is calculated for each operation invocation,
Llama can quickly evaluate configurations in a smaller per-
operation, not per-pipeline, configuration space. After cal-
culating the invocation’s slack for each available serverless
backend 𝜆 (Algorithm 1), Llama applies the objective func-
tion shown in Equation 1 for all possible configurations 𝑥 of
𝑜𝑝 using the invocation slack corresponding to the serverless
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hardware backend 𝜆(𝑥) targeted by 𝑥 . 𝑅(𝑥) is the set of re-
sources requested by 𝑥 , and 𝑅𝑡𝑜𝑡𝑎𝑙 (𝜆(𝑥)) is the resource limit
of 𝜆(𝑥). 𝐿(𝑥) is the estimated latency to run configuration
𝑥 . 𝐶 (𝑥) is the estimated cost to run configuration 𝑥 , and is
computed as a weighted product of 𝑅(𝑥) and 𝐿(𝑥) Figure 5
shows an example of 𝑥 for a GPU cluster, in which 𝑅(𝑥) is
resource (200MB), 𝐿(𝑥) is latency (320ms), and 𝐶 (𝑥) is cost
($3.413e-6). Here, 𝑅𝑡𝑜𝑡𝑎𝑙 (𝜆(𝑥)) would be the total aggregate
GPU memory available in the cluster. 𝐵(𝑥) is the batch size
of configuration 𝑥 , and 𝛼 is a tunable weight.

𝑜𝑏 𝑗 (𝑥, 𝑠𝑙𝑎𝑐𝑘) =
{
𝐶 (𝑥)/𝐵(𝑥) 𝐿(𝑥) < 𝑠𝑙𝑎𝑐𝑘
𝐶 (𝑥)
𝐵 (𝑥) + 𝛼

(𝐿 (𝑥)∗𝑅 (𝑥))
(𝐵 (𝑥)∗𝑅𝑡𝑜𝑡𝑎𝑙 (𝜆 (𝑥)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Intuitively, this objective function evaluates the monetary
cost to run 𝑥 when there is a feasible slack. If slack cannot be
met (e.g., if the user submits an unachievably low target), the
cost function weighs in favor of potentially more expensive
configurations that achieve a higher throughput. 𝛼 sets the
balance between cost and throughput, with high values of 𝛼
set to meet the slack at all costs, while lower values of 𝛼 may
leverage more cost-efficient configurations potentially at
the expense of exceeding slack. The configuration objective
function is independent of the input video or overall pipeline.
Users who wish to optimize for a different metric (e.g.,

minimal latency subject to a cost budget) can add their own
objective function to Llama. Furthermore, since 𝑅 is spe-
cific to each backend (e.g., concurrent invocation limits, GPU
memory, or CPU cores), Llama supports heterogeneous back-
ends (e.g., serverless GPUs or on-premise clusters). Llama
also supports 𝑅(𝑥) being multiple resources. In this case, 𝑥
is a vector (e.g., CPU cores and memory). To optimize for
these resources, Llama can (a) combine the resources into
one normalized scalar unit (similar to Amazon’s EC2 Com-
pute Unit [1]), (b) use multi-objective optimization to jointly
evaluate the resources, or (c) separately evaluate each re-
source with the objective function and aggregate (e.g., sum)
the objective function outputs.

Since conditional flowwill not always resolve to the worst-
case path, the allotted slack may result in a configuration
with a lower-than-necessary latency. However, since each in-
vocation is configured separately and dynamically, future in-
vocations will recover efficiency from earlier mis-predictions.

4.3 Revisiting configuration decisions

To manage invocations that cannot be run concurrently due
to limited backend parallelism, Llama locally queues invo-
cations and accounts for the queueing time when allotting
slack (Line 9 in Algorithm 1). The queueing time depends
on 𝑥𝑖 : the selected configuration of each queued invocation
𝑖 (i.e., it is not sufficient to use the number of queued oper-
ation invocations as a measure of wait time [33, 66]). Thus,

invocations need to be assigned a configuration before they
are queued. However, the initial configuration 𝑥𝑖 is often
made many seconds before it is actually invoked, leading
to sub-optimal configurations for three reasons. (a) Invoca-
tions queued in front of 𝑖 may experience execution times
that vary from the profiled values. This can occur due to
resource contention or input-dependent execution flow. (b)
The estimated latency for 𝑥𝑖 may be updated via feedback
while it is queued. (c) The number of invocations queued
behind 𝑖 may quickly grow (e.g., many completed object-
detection invocations may output a large number of car-
recognition and face-recognition invocations); thus, 𝑥𝑖
should be chosen to ensure upstream invocations can meet
their slack. Hence, by the time a queued invocation is ready
to run, its selected configuration needs to be revisited to
determine if it is still the right configuration.

To solve this, Llama leverages a novel technique inspired
by late binding [25, 52, 53, 60, 67] that we call early specu-

lation and late commit. With early speculation and late
commit, Llama maintains two queues per serverless back-
end 𝜆: an unbounded speculative queue (𝑆𝑄 [𝜆]) and a small,
bounded commit queue (𝐶𝑄 [𝜆]) set to hold enough invoca-
tions to saturate 𝜆. Once an invocation 𝑖 is ready to execute,
the Configurator uses Algorithm 1 to assign it a slack and
uses Equation 1 to select a speculative configuration. The
configured invocation is then put into the appropriate specu-
lative queue, thus enabling Llama to estimate the queueing
time at each backend. Once 𝑖 reaches the head of the specula-
tive queue, as prior invocations are executed, Llama revisits
the configuration of 𝑖 by using Algorithm 1 and Equation 1
again. It then commits the configuration into the appropriate
commit queue. Doing so mitigates the queueing challenges
we noted above by delaying binding an invocation to a final
configuration for as long as possible. This provides Llama
withmaximum flexibility and themost up-to-date state about
pipeline dataflow and performance at each backend.
With early speculation and late commit, Llama can esti-

mate the queueing time using Equation 2 for each serverless
backend 𝜆 based on each configured invocation 𝑖 in its queues.
𝐿(𝑥𝑖 ) and𝑅(𝑥𝑖 ) are the estimated latency of, and resources re-
quested by 𝑥𝑖 , respectively. 𝑅𝑡𝑜𝑡𝑎𝑙 (𝜆(𝑥𝑖 )) is the total amount
of resources or concurrency limit at the serverless backend
specified by the configuration 𝑥𝑖 .

𝑄𝑆𝑄 [𝜆],𝐶𝑄 [𝜆] =
∑︁

𝑖∈{𝑆𝑄 [𝜆],𝐶𝑄 [𝜆] }
𝐿(𝑥𝑖 )

𝑅(𝑥𝑖 )
𝑅𝑡𝑜𝑡𝑎𝑙 (𝜆(𝑥𝑖 ))

(2)

Intuitively, the queueing time is the sum of each 𝑥𝑖 ’s pro-
filed configuration latency, weighted by 𝑥𝑖 ’s requested re-
sources (to account for parallel execution). The cumulative
queueing time over 𝑆𝑄 [𝜆] and 𝐶𝑄 [𝜆] is then used in Com-
puteSlack. 𝑆𝑄 [𝜆] is included when committing configured
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invocations to account for invocations queued behind 𝑖 . We
do not incorporate future operations’ queueing time, since
dynamicity and the need to assign a configuration to each
downstream operation can result in inaccurate estimates.

4.4 Inter-operation prioritization

4.4.1 Challenges.
The Configurator’s decisions described in Section 4.2 assume
per-operation invocation decisions can be made indepen-
dently of each other. However, Llama also needs to reason
about the relationship between operations and their invoca-
tions for the following reasons:
When to batch invocations. As pipeline dataflow pro-
gresses, there can be moments when an operation may have
fewer invocations available than the most efficient configura-
tion’s batch size. For example, if a pipeline contains a slower
face detection operation followed by a faster blurring oper-
ation, the blur operation’s invocations will likely drain the
speculative queue faster than it can build up. In such cases,
executing upstream operations first yields a larger batch size,
amortizing RPC and I/O overheads. However, waiting for
upstream operation invocations to complete their execution
may result in a slack violation.
Under-allotting slack due to incorrect profiling. As
described in Section 4.1, slack allotted to an invocation is
a function of the reference configuration’s profiled latency
for downstream operations. Furthermore, a configuration’s
latency is updated using a feedback loop after execution
(Section 3.3). However, slack can be under-allotted to oper-
ation invocations if the reference configuration latency is
significantly shorter than its actual latency, and the feedback
loop is not closed early on during pipeline execution. This is
especially problematic for longer pipelines, and for pipelines
with the last operation’s invocations needing a longer slack
than the rest. Thus, it is beneficial to prioritize invocations
by pipeline depth early in the pipeline’s execution so that
feedback can update all reference configurations.
Affinity of operations to heterogeneous hardware.

While prioritizing invocations by pipeline depth can help
prevent under-allotting slack, the issue of prioritizing opera-
tion invocations on particular hardware platforms remains.
For example, consider the case in which both an object-
detection and face-recognition invocation must be con-
figured. Assume that while both operations run faster on a
GPU, face-recognition benefits more from acceleration
and observes a larger latency reduction. Resource limits
force the two invocations to split their decision between
𝜆𝐶𝑃𝑈 and 𝜆𝐺𝑃𝑈 . Committing object-detection’s invoca-
tion first forces face-recognition’s invocation to choose
𝜆𝐶𝑃𝑈 . However, the better decision is to assign the CPU
to object-detection and the GPU to face-recognition.

The relative benefit of running operation invocations on a
particular hardware platform (i.e., its hardware affinity) must
be incorporated into configuration decisions.
4.4.2 Our solution.
Llama addresses these challenges using safe delayed batch-

ing and priority-based commit, implemented in conjunc-
tion with early speculation and late commit.
Safe delayed batching. Safe delayed batching addresses
the challenge of waiting for additional invocations to batch.
During both early speculation and late commit, if Llama
determines the most cost-efficient configuration that meets
slack has a batch size larger than the number of invocations
available for a given operation (using Equation 1), it waits
until more invocations arrive to assign a configuration. It
does so safely — only if there are enough upstream invoca-
tions and slack will not be violated. Otherwise, it uses the
best feasible configuration.
Priority-based commit. Priority-based commit addresses
the challenges of under-allotting slack and operations’ affin-
ity to heterogeneous hardware. First, to address the chal-
lenge of under-allotting slack, the Configurator prioritizes
invoking a certain number of reference invocations for each
operation, favoring deeper operations in the pipeline. This
ensures the feedback loop for all reference configurations is
closed as fast as possible to minimize under-allotted slack.
Second, to compute an operation’s affinity to heteroge-

neous hardware, Llama compares the benefits an operation
invocation receives from running on a specific backend to
other available backends. It computes the affinity of an invo-
cation’s operation 𝑜𝑝 to hardware backend 𝜆 using Equation
3, where 𝑋𝑜𝑝,𝜆 is the subset of configurations for 𝑜𝑝 that
run on 𝜆 and 𝑋 c

𝑜𝑝,𝜆
is the complementary set (i.e., all other

configurations for 𝑜𝑝).

𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦 (𝑜𝑝, 𝜆) =
min∀𝑥 ∈𝑋 c

𝑜𝑝,𝜆
{𝑜𝑏 𝑗 (𝑥, 𝑠𝑙𝑎𝑐𝑘)}

min∀𝑥 ∈𝑋𝑜𝑝,𝜆
{𝑜𝑏 𝑗 (𝑥, 𝑠𝑙𝑎𝑐𝑘)} (3)

Intuitively, Equation 3 determines if a hardware backend
provides more benefit (via Equation 1) to an invocation than
other backends. Llama prioritizes invocations from opera-
tions with a higher affinity to a hardware backend 𝜆 when
committing them to each𝐶𝑄 [𝜆]. This ensures each backend
achieves its highest utility.

4.5 Handling stragglers and invocation

failures

During execution, operation invocations may straggle or fail
to execute [21, 30, 74]. The Scheduler keeps track of each
invocation’s execution time. If it exceeds a configurable time-
out (discussed in Section 5) or the Scheduler receives an error,



Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video Analytics Pipelines SoCC ’21, November 1–4, 2021, Seattle, WA, USA

the Scheduler notifies the Manager to create a duplicate in-
vocation. This duplicated invocation is then passed to the
Configurator to begin the slack allotment and configuration
process anew. The allotted slack will now be reduced, poten-
tially resulting in a different configuration to still meet the
pipeline latency target (evaluated in Section 6.4).

5 IMPLEMENTATION

We implemented Llama as an extension to gg in ∼4K lines
of C++ code. We modified gg’s C++ and Python SDK to
support complex pipelines and general knob configurations.
Llama supports operations from any framework or library;
we implemented non-deep learning pipeline operations (e.g.,
blur and meanshift) using OpenCV [26] and FFmpeg [34],
and deep learning pipeline operations with TensorFlow [16].

We implemented the online phase on top of gg’s dispatcher
and backend resource manager. The online phase is single-
threaded but can scale out to multiple threads as needed. For
straggler mitigation, we set each invocation’s time-out value
to 1.5× the invocation’s profiled latency. Larger values wait
too long to spawn a duplicate invocation, which may violate
the pipeline latency target, while smaller values unnecessar-
ily overload the speculation queues. For depth-first priority,
we observed that 10 invocations of the reference configu-
ration were sufficient to obtain enough feedback values to
converge on a latency measurement. Smaller values do not
collect enough feedback values to prevent under-allotted
slack, while larger values unnecessarily prioritize invoca-
tions with configurations that may not be efficient.
For the offline specification phase, we implemented the

Operation-Profiler as a client to the online phase that collects
and stores the profiled metadata into configuration specifica-
tions. Configuration specifications are implemented as JSON
files. The Metadata Store is implemented in an object store
(e.g., Google Cloud Storage).

We deployed Llama with serverless CPUs and server-
less GPUs as compute backends. For serverless CPUs, we
provision and manage a cluster of CPUs similar to existing
serverless offerings [71]. Each invocation requests a specific
number of cores (up to 4). Llama also supports running on
serverless computing services such as AWS Lambda [3] or
Google Cloud Functions [9], where the invocation resources
requested would be an amount of DRAM.
Since there exists no serverless GPU services or frame-

works at the time of writing, we built our own implementa-
tion (∼1K lines of C++ code) that we believe is representative
of a future production offering [27]. Similar to CPU server-
less offerings, an invocation requests an amount of GPU
memory (in MB) per invocation. Our serverless GPU sched-
uler then allocates a proportional amount of GPU threads
using NVIDIA MPS [10], allowing for multiple invocations

to execute concurrently. Invocations are executed on a first-
come, first-served basis. Llama is also compatible with GPUs
that support concurrent job execution in hardware [11].

6 EVALUATION

We answer the following questions: (a) How does Llama
compare to state-of-the-art systems (Scanner, Nexus, gg, and
GrandSLAm)? (b) How effective is Llama in meeting diverse
latency targets? (c) How does each technique employed by
Llama, such as early speculation and late commit and safe
delayed batching, contribute to its ability to meet the latency
target? (d) What is the impact of profiling errors and failures
on Llama’s ability to meet latency targets? (e) What are the
overheads of various decisions Llama makes?
Metrics. Unless otherwise noted, we use pipeline processing
latency and cost as metrics for success (similar to [22, 28, 48]).
For each experiment, we report the mean of three runs.
Experimental setup. We deployed Llama on Google
Cloud Platform (GCP) [8]. The Llama runtime ran on a
n1-standard-8 instance (8 vCPUs, 30 GB of DRAM). We
used the following setup unless otherwise noted. For the
serverless CPU backends, we used 10 n1-standard-64 (64
vCPUs, 240GB of DRAM). For the serverless GPU backends,
we used 2 custom-12-46080 (1 V100 GPU, 12 vCPUs, 45
GB of DRAM). All instances feature Intel Xeon Platinum
E5-2620 CPUs operating at 2.20GHz, Ubuntu 16.04 with 5.3.0
kernel, and up to 32 Gbps networking speed. The backends
are sized to match each other in cost: custom-12-46080 and
n1-standard-64 VMs are effectively priced the same on
GCP (a difference of 1% at the time of writing). (This price-
equivalency is also true for equivalent instances on AWS.)
This allowed us to use the same compute resources for both
Llama and the baselines.
Baseline systems. We compared Llama with three sets of
systems: (a) cluster systems (Scanner and Nexus), (b) server-
less systems (gg), and (c) target-aware systems (GrandSLAm).
Scanner is used by Facebook for processing 360◦ videos [13].
Nexus accelerates deep learning-based video analysis on
GPUs. gg is a general purpose serverless framework. Grand-
SLAm estimates slack to meet pipeline latency targets for
sequential, DNN-only pipelines. We evaluated two common
Scanner setups: one in which a user only provisions a cluster
with CPUs (sc-cpu), and one in which, similar to Nexus,
a user runs all operations on a GPU (sc-gpu). For gg, we
also compared against a version augmented with Llama’s
branching support (gg-branch). sc-cpu, gg, and gg-branch
do not support heterogeneous accelerators, while Nexus and
sc-gpu require GPU VMs. Since GrandSLAm does not na-
tively support non-sequential pipelines, and does not ac-
count for input-dependent execution flow, we implement it
with Llama by disabling early speculation and late commit,
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Pipeline Description Length (Form) Operations (# of total configurations) Video input

AMBER Alert detect cars and people 5 (branching) decode†, preprocess†, object detect.,
face recog., car recog. (646) traffic camera [15], 10 min, 1080p

Face Blurring detect indiv. face and blur from all frames 5 (branching) decode†, preprocess†, face recog.,
template match†, blur† (600) rally [12], 10 min, 720p

Denoising detect indiv. face and denoise/segment 5 (branching) decode†, preprocess†, face recog.,
template match†, meanshift† (600) rally [12], 10 min, 720p

Toonify apply cartoon effect to video 4 (parallel) decode†, edge detect.†, bilateral filter†,
merge edge-filter†, encode† (989) tears of steel [14], 10 min, 720p

Synthetic synthetic pipeline for sensitivity analysis 7 (sequential) decode†, blur†, preprocess†,
face recog. (596) rally [12], 10 min, 720p

Table 2: Video pipelines used for evaluating Llama, their operations, and video inputs. † are non-deep learning pipeline

operations.

feedback, and depth-first priority. However, GrandSLAm
still has access to Llama’s branching support, safe delayed
batching, priority-based commit, and dynamic resource allo-
cation across heterogeneous backends (GrandSLAm++). To
equalize the compute resources provided to all systems,
we provisioned sc-cpu, gg, gg-branch, and GrandSLAm++
with 12 n1-standard-64, and Nexus and sc-gpu with 12
custom-12-46080.
Resource requests and cost model. For Llama, gg, and
GrandSLAm++, each invocation requests a set amount of re-
sources (GPU memory or CPU cores) as is done in com-
mercial serverless offerings. The respective backend then
provisions the invocation with the requested resources, and
charges a price based on the amount of requested resources
and invocation latency.We calculate the price (in $/(resource-
second)) by dividing the cost per second charged by GCP
by the VM’s total resources. For example, the price of a
V100 GPU invocation is calculated by dividing the price of
custom-12-46080 by 16𝐺𝐵. Since Scanner and Nexus are
cluster-based frameworks, we compute cost using the time to
rent the cluster for the duration of the execution; we do not
include the cost of starting and maintaining a warm cluster.
Pipelines, operations, and videos. Table 2 shows the
pipelines, operations, and videos that we used. For branching
pipelines, only invocations satisfying the branching condi-
tion are executed. For AMBER Alert, only frames with faces
and cars execute their respective recognition paths. For Face
Blurring and Denoising, frames with faces proceed to a tem-
plate match operation where the frame is compared against a
pre-determined face. If a match is found, the face in the frame
is then blurred, or denoised using meanshift. The Toonify
pipeline executes the bilateral filtering and edge operations
in parallel before merging and encoding the frames. Finally,
the synthetic pipeline is a chain of 5 image blurring oper-
ations followed by a face recognition operation. The face
recognition operation is the most compute-intensive oper-
ation of this pipeline, which allows us to evaluate Llama’s
ability to meet diverse pipeline latency targets, even when
configurations were mis-profiled (Section 6.4). Since sc-cpu,
sc-gpu, and gg do not support branches, they execute the
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Figure 7: Latency of baselines to execute each pipeline.

Nexus only supports theAMBERAlert pipeline (unsupported

pipelines are denoted by ×). Llama’s fastest execution is

faster than all baselines.
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Figure 8: Cost incurred by baselines for each pipeline.

Nexus only supports the AMBER Alert pipeline (unsup-

ported pipelines denoted by ×). Llama’s cheapest execution
is cheaper than all baselines.

three branching pipelines as parallel ones (i.e., both branches
are executed). Videos were selected based on their use in
similar pipelines in prior work (e.g., tears of steel [14] in
Sprocket [22]) or based on their content (e.g., a traffic video
to exercise branches in AMBER Alert).
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6.1 Comparing Llama to existing systems

We first show how Llama’s ability to dynamically reconfig-
ure operation invocations enables it to outperform existing
systems, both in terms of latency and cost.
Experimental setup. For Nexus, we set the pipeline la-
tency target to be 2 seconds per frame, which we found
to be the strictest latency that does not drop any re-
quests [63]. Nexus then automatically configures the batch
size and number of instances for each model. For sc-cpu
and sc-gpu, we swept each operation’s batch size from 1
to 64 (by powers of 2) and set each value based on the
lowest pipeline execution latency (reported in Figure 7).
For gg and gg-branch, we set each invocation’s configu-
ration based on the lowest, most cost-effective CPU latency
reported by the Operation-Profiler. We configured Llama
and GrandSLAm++ with two pipeline latency targets: an un-
achievable low target (0 seconds) that forced both to min-
imize pipeline execution latency at the expense of cost:
llama-fast and GrandSLAm++-fast, and an overly-loose
target (∞ seconds) that allowed Llama to minimize the over-
all cost: llama-cheap and GrandSLAm++-cheap.
Results and discussion. Figures 7 and 8 show the process-
ing latency and total cost, respectively, to execute each of the
four non-synthetic pipelines. Llama achieves lower latency,
higher throughput, and lower cost than existing systems.
Even when the cost of starting and maintaining a warm

cluster are not considered, Llama is faster (up to 65× and 28×
on average) and cheaper (up to 110× and 55× on average)
than sc-cpu. Compared to sc-gpu, Llama is up to 11× faster
(6× on average) and up to 27× cheaper (18× on average).
Scanner cannot dynamically adjust and right-size invocation
configurations, and thus cannot address performance degra-
dation caused by resource contention for compute-intensive
operations (e.g., deep learning inference and meanshift) or
memory-intensive operations (e.g., bilateral filtering).

Next, since Nexus focuses on inference-serving pipelines,
we are only able to run the AMBER Alert pipeline (other
pipelines denoted by × in Figures 7 and 8). While we provide
Nexuswith 12 GPUs, Nexus’s bin-packing algorithm [63] uti-
lizes only 8; thus, we report cost for 8 GPUs. By dynamically
choosing CPU versus GPU configurations, Llama achieves
1.3× speedup and 2.8× lower cost compared to Nexus.

Compared to gg, Llama is up to 3.1× faster (2.2× on aver-
age) and up to 8.2× cheaper (5.7× on average). Compared to
gg-branch, Llama is up to 2.9× faster (1.8× on average) and
up to 6.8× cheaper (4.7× on average). While gg-branch can
reason about conditional flow, it cannot make dynamic invo-
cation configuration decisions or adjust to resource volatility,
resulting in a higher latency and cost compared to Llama.
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Figure 9: Evaluating Llama given varied latency targets.

50%: mean of the measured latencies of llama-fast and

llama-cheap, 25%: mean of llama-fast and 50%, and 75%:

mean of llama-cheap and 50%. The execution latency is nor-

malized to the pipeline target (≤1 means target was met).

Cost is in dollars. Llama meets all latency targets and re-

duces overall cost for less stringent targets.

Finally, Llama is up to 1.7× faster (1.2× on average)
than GrandSLAm++-fast and 1.4× cheaper (1.1× on av-
erage) than GrandSLAm++-cheap. For the AMBER Alert
pipeline, Llama’s initial exploration using the depth-first
priority technique led to a higher cost, but similar latency,
as GrandSLAm++-fast, since Llama converged on a similar
configuration. Since GrandSLAm++ allots slack and selects
configurations based on profiled values, it cannot dynami-
cally adjust to nondeterminism, which can result in slower
performance or higher cost (e.g., Denoising).
By making dynamic invocation configurations, Llama

can determine how well operations perform across heteroge-
neous backends and right-size resources depending on the
pipeline latency target.
General applicability. While Llama was designed to ad-
dress the challenges of running video analytics and process-
ing pipelines (Section 2), its operation configuration specifica-
tion (Section 3.2) supports arbitrary operation- and hardware-
specific configuration knobs. To demonstrate this, we built
a four-stage natural language processing pipeline for appli-
cations like therapy session analysis for at-risk youth [38].
The pipeline has six models (language identification, two lan-
guage translation, sentiment analysis, text generation, and
summarization) and features branching, parallel, and sequen-
tial patterns. For a 256-line transcript, llama-fast takes 275s
($1.22) while llama-cheap takes 573s ($0.44). Thus, Llama
can be used for meeting latency targets for general domains.

6.2 Can Llama trade off latency for cost?

We now show Llama can also meet latency targets that lie
between llama-fast and llama-cheap.
Experimental setup. For each pipeline, we provide three
latency targets to Llama that lie between the times required
to execute the pipeline using llama-fast and llama-cheap.
The 50% latency target is the mean latency between the
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Pipeline # configs. used % invoc. that met slack

AMBER Alert 27 ± 8 92% ± 6%
Face Blurring 29 ± 3 93% ± 1%
Denoising 40 ± 4 99% ± 0%
Toonify 30 ± 5 97% ± 3%
Synthetic 50 ± 16 88% ± 3%

Table 3: Mean and standard deviation of number of con-

figurations used and percent of invocations that met their

allotted slack. Llama accurately allots and meets almost all

slack by selecting a variety of different configurations per

pipeline.

latencies achieved by llama-fast and llama-cheap. The
25% latency target (the most stringent of the three) is the
mean latency between llama-fast and the 50% latency tar-
get. Finally, the 75% latency target (the least stringent of the
three) is the mean latency between llama-cheap and the
50% latency target. For example, llama-fast executed Face
Blurring in 155 seconds, and llama-cheap executed it in 423
seconds; the 25%, 50%, and 75% latency targets are 225, 290,
and 380 seconds respectively.
Results and discussion. Figure 9 shows the observed ex-
ecution latency, normalized to each of the aforementioned
pipeline latency targets (≤1 means that the latency target
was met), as well as the raw cost values for each pipeline
execution. Llama not only meets all latency targets, but also
dynamically adjusts its configuration decisions to choose
cost-efficient configurations as the latency target became
less stringent. For the Denoising and Synthetic pipelines,
the cost stays the same for the 50% and 75% targets. This
is due to Llama selecting similar invocation configurations
during both runs, since it determined them to be the most
cost-efficient configurations for both latency targets.
Table 3 shows a breakdown of how many configurations

were used to meet the 50% pipeline latency target, and what
percent of invocations met the slack. We note that (a) Llama
meets the slack for 94% of invocations on average across
all pipelines, with the lowest being the Synthetic pipeline
since it is the longest, and (b) the number of configurations
used varies per pipeline. Thus, Llama’s slack allotment and
configuration selection algorithms (Section 4) are effective
in meeting pipeline latency targets while minimizing cost.

6.3 Ablation study of Llama’s techniques

We now show how each technique of Llama contributes to
its ability to efficiently meet pipeline latency targets.
Experimental setup. We performed an ablation study with
two distinct pipelines: Amber Alert and Toonify. Following
is the list of techniques employed by Llama: feedback loop
(FB, Section 3.3), depth-first priority (DFP, Section 4.4), safe
delayed batching (SDB, Section 4.4), early speculation and
late commit (ESLC, Section 4.3), and priority-based commit
(PBC, Section 4.4). Note that priority-based commit includes
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Figure 10: Impact of turning Llama’s techniques off on the

AMBER Alert and Toonify pipelines. Red borders and circled

slashes indicate the pipeline latency target was violated. FB

is feedback, DFP is depth-first priority, SDB is safe-delayed

batching, ESLC is early speculation and late commit, and

PBC is priority-based commit.

both depth-first priority and hardware affinity. For each run,
we turn off a single technique and record the pipeline exe-
cution latency and cost. For each pipeline, we use its 50%
pipeline latency target specified in Section 6.2.
Results and discussion. Figure 10 shows the results of our
ablation study (red borders and circled slashes indicate the
latency target was violated). For the AMBER Alert pipeline,
disabling feedback, depth-first priority, or early speculation
and late commit results in latency target violations. All three
techniques allow Llama to accurately measure and adapt
to performance volatility caused by input-dependent execu-
tion flow (branching operations) and resource contention.
For example, disabling feedback causes Llama to miss the
latency target because resource contention resulted in invo-
cations taking longer than their profiled values. With feed-
back enabled, Llama is able to detect this and choose con-
figurations with higher throughput at a small expense of
cost-efficiency. On the other hand, disabling safe delayed
batching or priority-based commit causes Llama to not use
large batches for deep learning inference invocations on
GPUs, resulting in reduced cost-efficiency.

For the Toonify pipeline, disabling feedback also causes a
latency target violation similar to the AMBER Alert pipeline.
Disabling either safe delayed batching or early speculation
and late commit results in Llama choosing less cost-efficient
configurations. On the other hand, disabling depth-first pri-
ority and priority-based commit results in more cost-efficient
configurations without violating the latency target. This is
because these techniques led to Llama choosing configu-
rations that are more throughput-intensive than necessary
for merge edge-filter operation invocations in an effort to
meet the pipeline latency target. However, as noted for the
AMBER Alert pipeline and evaluated in Section 6.4, both
depth-first priority and priority-based commit are important
for Llama’s robustness in right-sizing resources and meeting
latency targets despite profiling errors.
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Pipeline (target) Llama Llama w/o FB & DFP

Denoising (350s) (348s, $1.20) (369s, $1.64)
Synthetic (520s) (520s, $2.31) (487s, $3.14)

Table 4: Impact of profiling errors. Latency and cost for

the Denoising and Synthetic pipelines when profiled values

are inaccurate (set to 50% of their measured latencies). FB

is feedback and DFP is depth-first priority. Without these

techniques, Llama cannot meet the latency target, or uses

configurations that are not cost-effective.

6.4 Meeting targets despite profiling errors

& failures

We now show that Llama can meet targets despite profiling
errors and invocation failures.
Experimental setup. To evaluate “mis-profiling”, all oper-
ation profiled latencies are set to 50% of their values. Sepa-
rately, to evaluate Llama’s resiliency to failures, we forced
3% of invocations to fail (2, 114 and 3, 617 failures for the
Denoising and Synthetic pipeline, respectively). For both
experiments, we used the Denoising and Synthetic pipelines
because they represent worst-case scenarios: an expensive
operation at the end of the pipeline with an under-estimated
latency. In addition, the Synthetic pipeline is the longest
pipeline, which further exacerbates profiling errors: Llama
will under-allot slack to the last operation unless techniques
are used to mitigate mis-profiling. We use the respective 50%
pipeline latency target from Section 6.2 for each pipeline.
Results and discussion. Table 4 shows the impact of pro-
filing error on latency and cost with (a) all of Llama’s tech-
niques, and (b) both feedback and depth-first priority turned
off (the two techniques Llama relies on to adjust for inaccu-
rate profiling). For the Denoising pipeline, disabling feedback
and depth-first priority causes Llama to under-allot slack to
the last meanshift operation. This results in a missed pipeline
latency target because Llama could not adjust to the profiling
errors until late in the pipeline execution. For the Synthetic
pipeline, when both techniques were off, Llama meets the
latency target but at a 35% higher cost. This is because the
50% lower-than-profiled latencies cause Llama’s objective
function (Equation 1) to incorrectly calculate that the CPU,
not the GPU, is most cost-efficient for the meanshift opera-
tion. Even though latency is reduced due to the availability
of more CPU resources, each CPU configuration was less
cost-effective than a GPU, resulting in an increased cost.

When evaluating invocation failures, both pipelines were
able to meet the specified latency target despite the high
failure rate using the techniques described in Section 4.5.
These results demonstrate depth-first priority and feed-

back are necessary to resolve profiling discrepancies early
on during execution, and that Llama is robust to failures.

Phase Action Latency (% of exec.)

Specification Profiling 257 ± 155 s
Path decomposition 1.74 s

Online Speculate 0.005 ± 0.005 ms (0.08%)
Commit 0.186 ± 0.813 ms (3.1%)
Invoke 0.151 ± 0.078 ms (2.5%)
Finalize 0.141 ± 1.209 ms (2.4%)

Table 5: Llama’s decision overheads. Mean and standard

deviation latencies of invocations for the AMBER Alert

pipeline. Latencies are per-invocation for online actions, per-

operation for profiling, and per-pipeline for path decompo-

sition. For each online action, we show the percent of the

execution time spent on the action across all operation invo-

cations (73K).

6.5 Overheads of decisions Llama makes

Finally, we evaluate Llama’s overheads and its ability to
scale across backends.

Table 5 shows the overhead for these decisions when speci-
fying and running the AMBER Alert pipeline with the 50% in-
termediate latency target from Section 6.2; all other pipelines
have similar overheads. For the specification phase, profiling
each operation takes an average of 257 seconds, and only
needs to be performed the first time an operation is added
to the Metadata Store. The decomposition step, which is
performed once per pipeline, takes only 1.7 seconds.
During the online phase, Llama only spends 483 micro-

seconds, on average, to process (i.e., speculate, commit, in-
voke, and finalize) an invocation, allowing Llama to process
over 2000 invocations per second. Calculating a slack and
determining a configuration is efficient, as speculate only
requires 5 micro-seconds. Most time is spent evaluating pri-
ority between operations during commit, connecting and
sending invocations to backends during invoke, and updating
global state once invocations completed during finalize.
Low overheads also allow Llama to improve execution

latency as the number of resources or maximum concurrency
increases. Compared to llama-fast for the AMBER Alert
pipeline run on 10 CPU and 2 GPU instances (Section 6.1),
having 6 CPU and 1 GPU instances is 46% slower, while
having 15 CPU and 3 GPU instances is 25% faster.

7 RELATEDWORK

Video and general-purpose analytics frameworks. In
Section 2, we describe the limitations of several existing
video analytics and processing frameworks [22, 28, 35, 42, 61,
63, 78]. Other cluster-based and serverless systems for both
domain-specific and general-purpose applications [33, 43, 46,
55, 59, 73, 77] either do not support independent-dependent
execution flow, require extensive per-pipeline profiling, or re-
quire users to configure and right-size resources. Dremel [56],
Google’s BigQuery backend, was one of the first framework
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to provide users with a fully-managed experience over their
data. Similar to Llama, Dremel adaptively scales resources
based on the execution DAG, and leverages the idea that dis-
aggregated compute and storage resources can be managed
in a serverless manner for users. However, unlike Dremel,
Llama must also configure operations from a large design
space, must consider heterogeneous serverless backends, and
must meets diverse pipeline latency targets across complex
(and possibly dynamic) video pipelines.
Dataflow optimizations and scheduling techniques.

GrandSLAm [48] and Fifer [40] use slack to statically deter-
mine the batch size for sequential microservice graphs. De-
layed batching is used by Clipper [29] to increase efficiency
of inference queries, but must be statically set by users. Late
binding is used by schedulers [25, 52, 53, 60, 67] to maximize
the flexibility of the scheduling decision and knowledge of
system state. However, these systems do not consider the
need to configure operations for meeting pipeline latency
targets. TetriSched [66] uses a scheduler that prevents tasks
from being sent to a sub-optimal set of resources due to
resources being held by earlier jobs, but only supports per-
operation targets, not an end-to-end pipeline latency target.
Early speculation and late commit, and priority-based com-
mit allow Llama to compute slack and make configuration
decisions for arbitrarily complex pipelines to meet overall
pipeline latency targets. Musketeer [39] and Dandelion [62]
optimize dataflow DAGs for execution on a broad range of
execution engines or hardware platforms. These optimiza-
tions are compatible with Llama, and can be used to expand
the backends and hardware platforms Llama supports.
Existing work in domains such as compilers, adaptive

query processing, and feature-based web serving have also
proposed algorithms for meeting latency targets given a
DAG. Certain compilers leverage an inspector/executor
model [24, 57] to encode irregular accesses in the DAG and
use an online executor to assign compute based on measured
runtime statistics to optimize parallelism. In feature-based
web serving, existing work [76] has proposed algorithms
for not only selecting services from sequential DAGs, but
also from DAGs with input-dependent execution. Similar to
Llama, it ensures that all sequential paths through the DAG
can meet the latency configuration (i.e., rather than choosing
the path with the highest probability of execution). Adap-
tive query processing [31] techniques, such as dynamically
partitioning queries to queues to estimate resource costs
and later adapting configurations based on runtime state,
are used in various query engines [43, 56, 58, 59]. However,
these existing solutions differ from this work since Llama
must (a) configure invocations from a large design space (e.g.,
DNN batch sizes in addition to provisioning resources), (b)
consider heterogeneous hardware backends, and (c) account

for non-determinism from input-dependent execution flow
and resource volatility.
Cost-based query optimization. Several works have
explored cost-based query optimization for relational
databases [17, 41, 49, 64, 65, 69], including for queries whose
optimal plan is input-dependent [72]. Llama is compatible
with these frameworks, and can leverage their optimizations
as an extension to how configurations are selected.
Auto-tuning configurations. CherryPick [18] and
Ernest [68] present a performance prediction framework
for recurring data analytics jobs; however, these systems
require tens of executions of a job to set the configuration
parameters. PARIS [75] focuses on VM-size selection; Op-
timusCloud [54] and Selecta [51] are domain-specific VM
configuration systems for databases and storage technolo-
gies, respectively. Llama dynamically configures general
video operations to meet diverse latency targets, and only
requires one-time per-operation profiling.

8 CONCLUSION

We presented Llama, a heterogeneous and serverless video
analytics and processing framework that executes general
video pipelines, meeting user-specified performance targets
at minimal cost. By dynamically configuring individual oper-
ation invocations, Llama efficiently traverses large configu-
ration spaces, adapts to input-dependent execution flow, and
dynamically allocates resources across heterogeneous server-
less backends. Llama makes per-operation invocation deci-
sions by first calculating invocation slack, then leveraging
techniques such as safe delayed batching, priority-based com-
mit, and early speculation and late commit to efficiently and
accurately select configurations that meet the slack. Llama
achieves an average improvement of 7.8× for latency and
16× for cost compared to state-of-the-art systems.
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