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Using direct numerical simulations (DNS), we explore local and volume-integrated
measures of turbulence and mixing in breaking internal waves on slopes. We consider
eight breaking wave cases with a range of normalized pycnocline thicknesses k&,
where k is the horizontal wavenumber and § is the pycnocline thickness, but with
similar incoming wave properties. The energetics of wave breaking is quantified in
terms of local turbulent dissipation and irreversible mixing using the method of Scotti
& White (J. Fluid Mech., vol. 740, 2014, pp. 114-135). Local turbulent mixing
efficiencies are calculated using the irreversible flux Richardson number R; and
are found to be a function of the turbulent Froude number Fr,. Volume-integrated
measures of the turbulent mixing efficiency during wave breaking are also made, and
are found to be functions of k§. The bulk turbulent mixing efficiency ranges from
0.25 to 0.37 and is maximized when k6 =~ 1. In order to connect local and bulk
mixing efficiency measures, the variation in the bulk turbulent mixing efficiency with
ké is related to the turbulent Froude number at which the maximum total mixing
occurs over the course of the breaking event, Fr*. We find that physically, Fr“
is controlled by the vertical length scale of billows at the interface during wave
breaking.
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1. Introduction

Breaking internal waves on slopes are of critical oceanographic importance,
particularly in quantifying dissipation and mixing in the global ocean energy budget.
Munk & Wunsch (1998) suggested that the ocean is primarily mixed by strong
turbulent events at boundaries, with the mixed water masses then being exported into
the ocean interior. The review of Wunsch & Ferrari (2004) expands on this claim
by asking whether breaking internal waves at boundaries can account for the global
average mixing in the ocean being 10 times higher than the observed open ocean
mixing away from topography. A thorough review of breaking internal waves on the
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continental shelf and slope was made by Lamb (2014), but the relative contribution
of breaking internal waves at boundaries to the global ocean energy budget remains
poorly understood.

Shoaling and breaking internal waves on slopes are also important drivers of
transport and mixing in nearshore ecosystems. A variety of field observations have
quantified the effect of breaking internal waves on the nearshore distributions of
biologically important scalars. These include temperature (Leichter et al. 1996; Davis
& Monismith 2011; Walter et al. 2012), nutrients (Leichter er al. 1996; Omand et al.
2011), sediments (Bogucki, Dickey & Redekopp 1997; Klymak & Moum 2003;
Hosegood, Bonnin & van Haren 2004; Hosegood & van Haren 2004; Carter, Gregg
& Lien 2005; Quaresma et al. 2007), larvae (Pineda 1994) and dissolved oxygen
(Walter et al. 2014b).

An understanding of the turbulent energetics of stratified flows is necessary to
solve the aforementioned oceanographic problems. The turbulent mixing efficiency is
particularly important because it allows mixing rates to be inferred from measurements
of dissipation. One can use the mixing efficiency to estimate the eddy diffusivity,
K, = I'e/N?, where I' is the mixing coefficient, € is the turbulent dissipation and
N is the buoyancy frequency (Osborn 1980). Such parameterizations of mixing can
also be used in large-scale models that do not resolve small-scale turbulent mixing
processes. The mixing efficiency of stratified turbulent flows has traditionally been
quantified from the turbulent kinetic energy equation using the flux Richardson
number 5

T B+re

where B is the turbulent buoyancy flux (e.g. Osborn 1980; Ivey & Imberger 1991;
Shih et al. 2005). The mixing coefficient is related to the flux Richardson number as

R, (1.1)

R _B (1.2)

F: =
1-R €

Assuming steady, homogeneous turbulence (a balance of turbulent production with the
buoyancy flux and dissipation), Osborn (1980) suggested a critical flux Richardson
number R~ 0.17, which gives I"~0.2. Based on the relationship between R, and
I' in (1.2), both of these quantities are often referred to as the ‘mixing efficiency’ in
the literature. In this paper, we refer to the mixing efficiency as R;.

As reviewed by Ivey, Winters & Koseff (2008), many field studies have examined
the mixing efficiency from turbulence measurements in the ocean, finding a range
of values for different conditions. These studies use measurements of fine-scale
velocity and temperature gradients to quantify the dissipation of turbulent kinetic
energy € and the dissipation of scalar variance x, respectively. For example, Oakey
(1982) found I" ~ 0.24 using microstructure profiles of the upper ocean (50-100 m
depth), while Yamazaki & Osborn (1993) found Ry~ 0.05 using a submarine-mounted
instrument in a turbulent shear layer. Additionally, using microstructure profiles, Seim
& Gregg (1995) estimated R, = 0.22 & 0.1 for a shear instability event, Gargett
& Moum (1995) estimated Ry ~ 0.4 in a turbulent tidal front and Moum (1996)
estimated Ry =0.13-0.17 in turbulent patches in the main ocean thermocline. Several
studies have also inferred how R, varies when different parameterizations are used
(e.g. Dunckley et al. 2012; Bluteau, Jones & Ivey 2013). The advent of moored
turbulence measurements has allowed for the collection of turbulence data over
longer time series. Several studies, such as Davis & Monismith (2011) and Walter
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et al. (2014a), have used moored instruments to estimate the mixing efficiency during
breaking internal wave events on slopes. While it is clear from these studies that the
mixing efficiency depends upon the state of the turbulence that is driving mixing,
the intermittent (in time) and patchy (in space) nature of ocean turbulence makes a
complete observational understanding of the mixing efficiency difficult.

For this reason, many studies have turned to more idealized laboratory and
numerical set-ups to quantify the mixing efficiency of stratified turbulent flows.
Using laboratory experiments, Ivey & Imberger (1991) extended the definition of the
flux Richardson number to include the entire turbulent kinetic energy budget such that
Ry =1B/m, where m is the net mechanical energy available to sustain turbulent motions
(including production, advection and transport). They then characterized R; in terms
of the turbulent Reynolds number Rery = uLc/v and the turbulent Froude number
Frr = u/NL¢, where L¢ is the centred displacement scale, a measure of observed
turbulent overturns, and u~ (eL¢)!'/3 is the turbulent velocity scale. For large enough
turbulent Reynolds numbers to sustain turbulence (Rey > 15), they found that Ry is
maximized for Fry =~ 1. For Fry < 1, turbulent mixing is suppressed by buoyancy,
while for Fry > 1, turbulent mixing is reduced because the stratification is weak. Both
Davis & Monismith (2011) and Walter et al. (2014a) found good agreement with
Ivey & Imberger (1991) using data from field observations of breaking internal waves
on slopes, noting the potential effect of the advection of turbulent kinetic energy on
the measured mixing efficiency in these events.

Using direct numerical simulations (DNS), Shih ef al. (2005) presented another
parameterization of R, in terms of the buoyancy Reynolds number or turbulence
activity number Re, = ¢/vN?. They found that for Re, < 7 (the ‘diffusive’ regime),
Ry is scattered and often negative due to countergradient turbulent buoyancy fluxes,
ranging from —0.4 to 0.2. For 7 < Re, < 100 (the ‘intermediate regime’), R, is
fairly constant around 0.2, slightly larger than the critical value of Osborn (1980).
For Re, > 100 (the ‘energetic’ regime), R, declines as Re, increases (Ry = ozRe,jl/ 2,
o = 1.5) because the turbulence is actively growing. Several studies have extended the
analysis of Shih et al. (2005) to larger values of Re,, which are common in the field
but infeasible in DNS. Both Davis & Monismith (2011) and Walter et al. (2014a)
found a similar power-law relationship between R; and Re, in the energetic regime,
with « =4.5 and « =2, respectively. A direct comparison between the results of Shih
et al. (2005), Davis & Monismith (2011) and Walter et al. (2014a) is presented in
Walter et al. (2014a), see figure 12 therein. It should be noted that the coefficient «
is not universally O(1). A study of stratified turbulence in the atmospheric boundary
layer by Lozovatsky & Fernando (2013) again found Ry = ozRe,:l/ : scaling, but with
o = 50. Mater & Venayagamoorthy (2014) have since reconsidered the results of
Shih et al. (2005) in terms of a shear strength parameter ST, = Sk/e, a turbulent
Froude number Fr; =¢/Nk and a turbulent Reynolds number Re; = k*/ve, where S
is the mean shear and k is the turbulent kinetic energy. Using this framework, they
discussed the potential ambiguities of using single parameters such as Re, and the
gradient Richardson number Ri, = N?/S* to characterize the mixing efficiency.

The mixing efficiency of stratified turbulent flows can also be quantified by
separating the potential energy into its available and background components (Winters
et al. 1995). The background potential energy represents the lowest possible potential
energy state of a system if it were to be adiabatically rearranged, and is obtained
numerically by sorting the density field. The available potential energy, then, is the
difference between the total potential energy and the background, and is available
for exchange with the kinetic energy. Changes in the background potential energy
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can only occur due to molecular diffusion, and therefore represent a true measure
of irreversible mixing. Reversible turbulent ‘stirring’ is contained in the available
potential energy field. Winters et al. (1995) used these definitions to define a
volume-integrated measure of the mixing efficiency. Several studies have employed
this method to quantify the energetics of stratified shear flows. Smyth, Moum &
Caldwell (2001) used DNS to compare mixing efficiency values calculated with
the Winters et al. (1995) method to a typical approximation used in the field, the
Osborn—Cox model (Osborn & Cox 1972), which is based on the dissipation of scalar
variance y. Peltier & Caulfield (2003) also used the Winters et al. (1995) method to
relate a cumulative measure of the mixing efficiency to the initial Richardson number
Rij.

Much of the laboratory and numerical work examining the mixing efficiency of
stratified turbulent flows has focused directly on breaking internal wave events. For
example, Michallet & Ivey (1999) and Boegman, Ivey & Imberger (2005) calculated
the bulk mixing efficiency of breaking internal wave events on a slope in the
laboratory, finding a range of mixing efficiency values between 0.05 and 0.25 for
various wave and slope conditions. Their mixing efficiency calculation was based
on the total potential energy gain in the system due to the breaking wave event.
Additionally, Hult, Troy & Koseff (2011) calculated the mixing efficiency within
turbulent patches generated by breaking internal waves propagating over a ridge.
However, due to the difficulty of measuring the turbulent buoyancy flux B in the
laboratory, they calculated dissipation and inferred R, from the parameterizations of
Ivey & Imberger (1991) and Shih et al. (2005), and found R; ~ 0.10 — 0.17 in the
turbulent patch created by wave breaking. Although turbulence existed in the upper
and lower density layers during their experiments, it did not contribute to mixing
because these layers were unstratified (thus Ry ~ 0 there). This resulted in an overall
Ry of 0.04-0.07 for the entire domain.

Using numerical simulations, Fringer & Street (2003) employed the method of
Winters et al. (1995) to calculate the mixing efficiency of breaking progressive
internal waves as a function of the non-dimensional pycnocline thickness k5. They
found an average bulk mixing efficiency of 0.42, with a peak around 0.49 when
ké ~ 1. This corresponds to the most efficient transfer of energy from the large-scale
wave to the turbulent scales, where mixing takes place. Finally, Arthur & Fringer
(2014) used the method of Winters et al. (1995) to quantify the energetics of breaking
internal waves on slopes. They calculated the bulk mixing efficiency as a function
of the incoming wave amplitude and bathymetric slope, and found a range of values
between 0.14 and 0.20.

There are several drawbacks associated with the mixing efficiency measures
explained above. First, the flux Richardson number R; is affected by countergradient
turbulent buoyancy fluxes, especially at low Reynolds number Re,, leading to small
and potentially negative values of R, (Venayagamoorthy & Koseff 2016). Second, the
Winters et al. (1995) method relies on domain-integrated quantities of dissipation and
mixing in order to define the mixing efficiency. Thus, the energetics cannot be broken
down into smaller (local) regions of the flow. In order to address both of these issues,
Scotti & White (2014) developed a new measure of local turbulent energetics based
on a local definition of the rate of change of the background potential energy. Their
method builds upon the framework of Winters et al. (1995) to provide a measure of
irreversible turbulent mixing. This facilitates calculations of local turbulent mixing
efficiency that are not affected by countergradient buoyancy fluxes. The method of
Scotti & White (2014) has yet to be applied to the problem of breaking internal
waves on slopes.
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In the present study, we use the method of Scotti & White (2014) to explore local
and volume-integrated measures of turbulence and mixing in breaking internal waves
on slopes. We focus on the effect of pycnocline thickness on turbulence and mixing,
which is relevant in lakes and the coastal ocean, but has not been considered in
previous laboratory-scale studies of breaking internal waves on slopes (e.g. Michallet
& Ivey 1999; Boegman et al. 2005; Arthur & Fringer 2014). We employ DNS to
consider eight breaking wave cases with a range of pycnocline thicknesses, but with
fixed initial amplitude, and therefore similar incoming wave properties. Section 2
explains our computational approach, which is based on that of Arthur & Fringer
(2014) and Arthur & Fringer (2016). Section 3 provides an overview of the breaking
process for different pycnocline thicknesses. Then, in §§4 and 5, we explore local
and volume-integrated turbulent energetics quantities, respectively. Finally, in § 6, we
present a connection between local and volume-integrated energetics perspectives.

2. Computational approach
2.1. Computational set-up

We perform DNS of breaking internal waves on slopes in an idealized, laboratory-
scale domain using the parallel Navier—Stokes code of Cui (1999). This code employs
the fractional-step method of Zang, Street & Koseff (1994), and has been used
extensively in the past to study geophysical flows at the laboratory scale (see
Venayagamoorthy & Fringer 2007; Chou & Fringer 2010; Arthur & Fringer 2014,
2016). The computational set-up used here is based on that of Arthur & Fringer
(2014, 2016), and is summarized in figure 1.

Computations are made on an orthogonal curvilinear grid of size n; X n, X n; =
1152 x 96 x 128 &~ 14 x 10° points that was generated using the open-source software
gridgen (available online at https://code.google.com/p/gridgen-c/). Grid stretching of
the form Axf = rAx{*', where r is the stretching factor and k is the index of the
grid point, is employed in the horizontal (x;) and vertical (x;) directions to increase
resolution in the breaking region. Grid spacing in the lateral (x,) direction is constant.
In the horizontal direction, stretching is applied from x; = 0 to L, with r = 1.01,
concentrating 1024 points (approximately 90 % of n;) into the sloping region. The
grid is also stretched slightly in x; in the sloping region to maintain orthogonality. In
the vertical direction, stretching is performed twice. First, grid points are concentrated
toward the bottom with » = 1.02 in order to resolve the flow near the wall. Second,
100 of 128 points (78 %) are concentrated in the bottom 35 % of the domain with
r = 1.07 in order to resolve the pycnocline and lower layer during breaking. The
resulting grid resolution at the pycnocline in the breaking region is approximately
Ax; X Ax, X Ax3 =4 mm x 1 mm x 2 mm. Near the bottom wall, the vertical
coordinate is measured in wall units x7 = x3/85, where 85 = /2v/w (see §2.2 for the
definition of the wave frequency w). The vertical resolution near the wall is therefore
Ax] = Ax3/8s < 1. In the worst case scenario, the grid spacing is found to be within
approximately one order of magnitude of the Kolmogorov length scale 7, providing
sufficient resolution for DNS (see Arthur & Fringer 2014). The boundary conditions
for all velocity components are no slip on the bottom wall and free slip on the top,
left and right walls. The density field has a gradient-free boundary condition on the
top, bottom, left and right walls. All variables are periodic in the lateral (x,) direction.

A time step of Ar=0.003 s is used for all simulations. The number of time steps
varies by case and ranges from 18 000 for case 1 to for 27000 for case 8. Simulations
were run on the US Army Research Lab Department of Defense Supercomputing
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FIGURE 1. The computational set-up used to study breaking internal waves on slopes. (xi,
X2, x3) are Cartesian coordinates in the cross-shore, lateral (along shore, into the page)
and vertical directions, respectively. (@) A schematic of the domain, where the length
L =4 m, the total depth H =0.56 m, the upper-layer depth s = 0.3 m, the lower-layer
depth h, =0.26 m, the upper-layer density p; =985 kg m~>, the lower-layer density p, =
1015 kg m~3, the slope s =0.218, the amplitude of the initial half-Gaussian ay = 0.1 m
and the length scale of the initial half-Gaussian Lo =0.7 m. The length of the flat region
before the slope begins is L;=1.675 m and the radius of curvature of the rounded bottom
at the beginning of the slope is 3 m. The pycnocline thickness § varies for each case and
is shown in table 1. The lateral (x,, into the page) width of the domain is W=0.1 m. (b)
The initial density profile for each case, as defined in (2.1). The stratified region around
the interface x; = —h; = §/4 is highlighted by the intersection of the vertical dotted lines
at p/po=0.987, 1.013 with each density profile. (¢) The maximum buoyancy frequency
for each case N, as a function of §, including a scaling line of N, ~ 8~ '/? (Troy &
Koseff 2005).

Research Center (ARL DSRC) supercomputer Pershing using 432 processors. With
a computation time of approximately 20 s per time step, this resulted in wall-clock
simulation times ranging from 100 h (43000 processor h; case 1) to 150 h (65000
processor h; case 8).

2.2. Initial wave parameters

We consider eight breaking wave cases with varying pycnocline thickness &, as
summarized in table 1. The stratification within the domain is initialized as

A 2 h
Pt =)= 1 — O [P+ ED)
Po 2po )

tanh~' () |, (2.1
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Case 8 (cm) a(cm) c(@ms™) L, (m) k& ka  Re,

1 2 4.9 0.16 1.27 0.05 0.12 146
2 10 4.9 0.16 1.25 025 0.12 159
3 20 5.0 0.16 1.23 0.51 0.13 162
4 30 5.1 0.16 1.21 0.78 0.13 167
5 40 5.1 0.15 1.20 1.04 0.13 162
6 50 52 0.14 1.20 1.31 0.14 151
7 60 52 0.12 1.20 1.57 0.14 138
8 70 52 0.12 1.20 1.83 0.14 137

TABLE 1. The breaking wave cases considered in this study in terms of the pycnocline
thickness §, the wave amplitude a, the wave speed ¢ and the wave length scale L,,
the normalized interface thickness k8, the wave steepness ka and the wave Reynolds
number Re,,.

where the reference density py = 1000 kg m™3, the density difference between
the top and bottom layers is Ap = p, — p; = 30 kg m~>, the upper-layer depth
hy =03 m, and o = 0.99. The pycnocline thickness & determines the buoyancy
frequency N = /—(g/po)0p/0x; of the initial stratification; the maximum buoyancy
frequency N, scales with 8§72 (Troy & Koseff 2005), as is shown for each case
in figure 1(c). Throughout the paper, we refer to time using the variable 7 in order
to avoid confusion with #, which stands for ‘turbulent’ in the notation of Scotti &
White (2014).

A wave of depression is created in the domain by initializing a half-Gaussian at the
left boundary. The shape of the interface is given by

X1 2
¢ (x1) =ag exp [— (Lo>

where gy = 0.1 m and Ly = 0.7 m are the initial amplitude and length scale of
the half-Gaussian, respectively. An initial perturbation ¢'R, where ¢’ = 1 mm and
R e {—1, 1} is a uniformly distributed random number, is also added to the interface
to trigger lateral instabilities during breaking. Relaxation of the initial half-Gaussian
produces an internal wave of depression that propagates toward the slope and breaks.
We note that the initial wave is solitary-like, but that it does not necessarily satisfy
the Dubreil-Jacotin—Long (DJL) equation for internal solitary waves (see Lamb 2002,
and references therein). We therefore refer to the waves in this study more generally
as ‘internal waves’. Further discussion of the difference between the waves in the
present study and true DJL internal solitary waves can be found in Arthur & Fringer
(2016).

Here, case 1 corresponds to case 3 from Arthur & Fringer (2014) and cases 3t1/3t2
from Arthur & Fringer (2016). The additional cases 2-8 differ from this ‘base case’
only in the value of §; all other initial parameters are held constant. As a result of
changing §, the other properties of the incoming wave (after it has formed from the
initial half-Gaussian) change slightly relative to the base case (see table 1). These
properties, including the wave amplitude a, the wave speed ¢ and the wave length

scale L, =1/a fOLS n(xy) dx;, where 7 is the displacement of the p = py isopycnal from
x3 = —h; (Michallet & Ivey 1999), are calculated after the wave has formed but before
it begins to interact with the slope.

+¢'R, (2.2)
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In order to quantify the effect of changing the pycnocline thickness § on the
incoming wave, we classify each breaking wave case in terms of the relevant
non-dimensional parameters, including k5, ka and Re, (Troy & Koseff 2005), as
shown in table 1: k& is the normalized pycnocline thickness, where the horizontal
wavenumber k = 2m/A and A~ 2L,; ka is the wave steepness; Re, = a’*w/v is the
wave Reynolds number, where the wave frequency w = c¢/Ad. We note that the value
of Re, = 146 reported here for case 1 differs from the value of Re, =208 reported
for the same case in Arthur & Fringer (2014) and Arthur & Fringer (2016). Here,
we use the actual wave speed ¢ as opposed to the linear phase speed in a two-layer
system that was used previously. As shown in table 1, the normalized pycnocline
thickness varies by nearly two orders of magnitude from case 1 to case 8. However,
ka and Re,, change by no more than 20 % from the base case. The bathymetric slope
s is also held constant. We therefore focus our analysis on how the energetics of
wave breaking change with the normalized pycnocline thickness k5. Troy & Koseff
(2005) considered the combined effect of the pycnocline thickness k§ and the wave
steepness ka using the wave Richardson number Ri, ~ k§/(ka)?>. However, we do not
consider Ri, here because ka is roughly constant and therefore Ri,, ~ ké.

3. General description of wave breaking

The density structure over the course of the breaking event is similar for each case,
and is shown in figure 2 for case 5 (k§ &~ 1). In this figure and others, we present the
time t normalized by the wave period for case 1, Ty =2n/w;. As the wave begins
to interact with the slope, downslope flow is concentrated in the lower layer beneath
the leading face (figure 2a). At the same time, the rear face steepens (figure 2b). The
downslope flow beneath the leading face and the upslope flow beneath the rear face
then interact to create the shear that initializes the breaking event (figure 2c¢).

After breaking, a surge of dense fluid flows up the slope, creating shear instabilities
(billows) at the interface (figure 2d,e). These billows create regions of unstable
stratification that are subject to secondary convective instability. A region of unstable
stratification is also created under the nose of the upslope surge, leading to the lobe
and cleft instability typical of gravity currents (Simpson 1972; Hirtel, Carlsson &
Thunblom 2000). Figure 3 shows the development of lateral instabilities in these two
regions after breaking for case 5. A three-dimensional view of the upslope surge
that depicts the fully turbulent flow field for case 5 is shown in figure 4. After the
upslope surge reaches its maximum onshore position (figure 2f), dense fluid flows
back downslope (figure 2g—i) and the pycnocline returns to approximately its initial
horizontal position (figure 2i). As in Arthur & Fringer (2014, 2016), we define the
end of the breaking event t; as the time just before dissipation begins to rise due
to a second upslope surge of dense fluid (see figure 9a). This second upslope surge
arises from small waves trailing behind the initial wave due to the initial condition,
but is not considered in our results.

All of the breaking waves in this study can be classified as ‘collapsing breakers’
(Boegman et al. 2005; Aghsaee, Boegman & Lamb 2010; Arthur & Fringer 2014) or
‘backward overturning’ (Moore, Koseff & Hult 2016) since the steepening rear face
is swept (collapses) backward before it is able to plunge forward. However, several
differences can be seen in the breaking event among cases 1-8. The first occurs just
before the backward collapse, as a tongue of dense water is forced into the interior
of the water column by the upslope momentum of the wave. This dense tongue
becomes larger as k6 increases (see figure Sa—h). Additionally, during the upslope
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FIGURE 2. Snapshots in time of the density structure p/p, for breaking wave case 5
(k8 ~1). Results are averaged in the lateral (x,) direction. The time shown in (c) represents
the breakpoint, shown in figure 5(e¢), while the time shown in (e) represents the time of
maximum turbulent mixing (e;)v (5.2), shown in figures 4 and 5(m).
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FIGURE 3. A three-dimensional view of lateral instabilities developing after breaking for
case 5 (k8§ = 1), corresponding to figure 2(d). Isosurfaces of p = py (red), £2,/w, =24
(blue) and £2,/w; = —24 (green) are shown. £2; is the longitudinal vorticity, representing
the ‘streamwise rolls’ discussed in Arthur & Fringer (2014).

FIGURE 4. A three-dimensional view of the turbulent flow field during the upslope surge
for case 5 (ké ~ 1), corresponding to figures 2(e) and 5(m). Isosurfaces of p = py (red),
£2,/w, =37 (blue) and £2,/w; = —37 (green) are shown.

surge (figure 5i-p), the vertical length scale of the billows at the interface changes
with k8. Specifically, as k§ increases, the billows appear larger relative to the height
of the upslope surge. The effects of this change in scale will be discussed further
in §6.

4. Local turbulent energetics
4.1. Local definitions of turbulent dissipation, mixing and mixing efficiency

The local mixing efficiency of stratified turbulent flows has traditionally been
quantified using the flux Richardson number Ry = B/(B + €) (1.1), where B =
(g/p0)p'tt; is the turbulent buoyancy flux and € = 2vS;;S;; is the turbulent dissipation
(e.g. Osborn 1980; Ivey & Imberger 1991; Shih et al. 2005). The turbulent rate
of strain tensor is S;j = ((0u;/0x;) + (8u}/8x,-))/2. The overbar denotes a Reynolds
average, while the prime denotes a departure from that average. As discussed by
Venayagamoorthy & Koseff (2016), the turbulent buoyancy flux B can include
reversible countergradient fluxes, leading to low or negative values of Ry, especially
in weakly turbulent conditions. Interpretation of R, using this method is further
complicated in the presence of unsteady, inhomogeneous turbulence due to the
difficulty in choosing the appropriate Reynolds average (e.g. Hult et al. 2011). Thus,
even in the current DNS study, it is difficult to interpret the meaning of R;.
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FIGURE 5. Snapshots of the density structure p/p, for breaking wave cases 1-8. Results
are averaged in the lateral (x,) direction. Column (a—h) depicts the wave at the time of

breaking, while column (i—p) shows the upslope surge of dense fluid after breaking at the
time of maximum turbulent mixing (E;)V (5.2).

max

To address the problems associated with quantifying turbulent dissipation, mixing
and mixing efficiency in regions of unsteady, inhomogeneous turbulence, Scotti
& White (2014) developed a new method of analysis based on a locally defined

Downloaded from https:/www.cambridge.org/core. Lane Medical Library / Stanford University Medical Center, on 22 Feb 2017 at 02:29:41, subject to the Cambridge Core
terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.36


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.36
https:/www.cambridge.org/core

180 R. S. Arthur, J. R. Koseff and O. B. Fringer

(@ 0 ‘ (b)

——_1t=0
/T, =0.36 |

X3/H

-1.0
0.985 1.000 1.015 0 0.5 1.0 1.5 2.0

P+/ Po N2

FIGURE 6. (a) The background density field p./po and (b) the background buoyancy

frequency field N? used in the calculation of €,. Data are shown for case 5 (k§ ~ 1) at the
time of maximum turbulent mixing (61[7)::[” (5.2), which corresponds to the time shown in
figures 2(e), 4 and 5(m). The background buoyancy frequency is shown at 7 =0 and T =17
in (b) as well. The horizontal dotted line denotes the vertical location of the maximum
background buoyancy frequency N? at t/T; = 0.36, while the horizontal dash-dot line

denotes the vertical location of the initial pycnocline x; = —h;.

background potential energy. Their method builds upon the background potential
energy framework of Winters er al. (1995) to define local turbulent dissipation and
irreversible turbulent mixing quantities. Turbulent dissipation is defined as above,

€ =2vS;S; 4.1)

lj’

where we have adopted the notation of Scotti & White (2014) for clarity. Irreversible
turbulent mixing is defined as the turbulent dissipation of available potential energy,

Vb|? Vb|? Vb'|?
€ =k VoI | l :Kl J, 4.2)
g NZ(b)  N2(b) N2(b)

where b(xy, x5, X3, T) =g(p — po)/po is the buoyancy field and Nf(x3, 7) is the squared
buoyancy frequency of the background density field p,(x3, 7). The background density
field represents the lowest possible potential energy state of the system if it were to be
adiabatically rearranged (Winters et al. 1995), and is obtained numerically by sorting
the density field p. Changes in the background potential energy can only occur due to
molecular diffusion, and are therefore irreversible. In the present study, the Reynolds
average overbar denotes a lateral average (in the x, direction), while the prime denotes
a departure from that average. Our calculations of € and €, are therefore functions
of x;, x; and 7. In (4.2), N*(b) is found by mapping the given local value of b
to a corresponding value of N? in the background buoyancy frequency profile and
is therefore a function of x;, x;, x3 and t. Alternatively, Nf(E) must be found by
interpolating N2 to the given value of b, and is therefore a function of x;, x; and .

Irreversible mixing leads to a decrease in the maximum background buoyancy
frequency over time. This is shown in figure 6, which presents example calculations
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of the background density field p, and background buoyancy frequency field N? for
case 5. The background buoyancy frequency is shown for the initial condition t =0,
during the upslope surge at 7 /7T; =0.36 (the time shown in figures 2e, 4 and 5m), and
at the end of the breaking event T = 7;. The background density field is only shown
for the intermediate time t/7) =0.36 because the change from 7 =0 to v =1 is not
discernible in the figure. The horizontal dotted line denotes the vertical location of
the maximum buoyancy frequency at 7/7; = 0.36, which is slightly below x; = —h
because there is initially less lower-layer fluid (p = p,) than upper-layer fluid (p = p;)
in the domain due to the sloping bottom. Layering is also evident in the background
density field (figure 6a), along with the corresponding wiggles in N? (figure 6b).
Using the definitions of turbulent dissipation and irreversible turbulent mixing in
(4.1) and (4.2) above, the local irreversible flux Richardson number can be calculated

with
&
R = . 4.3
T et @3

This measure of the flux Richardson number is not affected by countergradient
buoyancy fluxes, and is therefore a preferable measure of the local mixing efficiency
to Ry (Scotti & White 2014; Venayagamoorthy & Koseff 2016).

Local turbulent dissipation and irreversible mixing quantities are calculated over
time for each breaking wave case. For illustrative purposes, we consider these
quantities for case 5 during the upslope surge of dense fluid after breaking, when
shear instabilities (billows) are present at the interface (figure 7a). At this time,
turbulent dissipation €; and mixing €, are elevated throughout the upslope surge
(figure 7b,c). However, mixing is more concentrated along the roll-up regions of
the billows and the nose of the upslope surge (figure 7c¢), where sharp density
gradients are present. A similar result was noted by Smyth et al. (2001), who used
the dissipation rate of scalar variance x = 2«|Vp’|> to examine turbulent mixing
during the breakdown of Kelvin—-Helmholtz billows. The quantity x is related to €,

by the background buoyancy frequency N2, viz.

2

g
=3k (4.4)

The local irreversible flux Richardson number R; (figure 7d) generally follows €. It
approaches 1 in the billow roll-up regions and at the nose of the upslope surge, where
€, is elevated, and approaches 0 within the billow cores and throughout the rest of the
turbulent region, where € is smaller relative to €. Although R} clearly varies with the
local characteristics of the flow, the bulk (spatially and time-averaged) R} is found
to be roughly 0.3 for each case. We therefore present an analysis of R; using the
parameter space of Mater & Venayagamoorthy (2014) in the next section.

4.2. Local mixing efficiency analysis

Mater & Venayagamoorthy (2014) defined three non-dimensional parameters that
quantify the effects of shear, stratification and viscosity in stratified turbulence. They
include a shear strength parameter S7;, a turbulent Froude number Fr; and a turbulent
Reynolds number Re;, as presented in § 1. Here, we define these parameters as

Sk

€k
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FIGURE 7. Example local turbulent energetics calculations for case 5 (k§ =~ 1) at the
time of maximum turbulent mixing (el’,)xax ((5.2), corresponding to the time shown
in figures 2(e), 4 and 5(m)). Shown are (a) the density field p/p,, (b) the turbulent
dissipation €, (c) the turbulent mixing 61’,, and (d) the local irreversible flux Richardson
number R;. In (b) and (c), the turbulent quantities are normalized by the maximum
turbulent d1551pat10n at the time shown, €, .. Note that in (d), the R} field is restricted
to locations where Re; > 10 for clarity (Re; is defined in (4.7)), while (a), (b) and (c)
include the full field.

where S =|0%,/dx3| is the absolute value of the laterally averaged vertical shear and
= (uju})/2 is the turbulent kinetic energy,

et
Fri=—% . (4.6)
N, (D)K
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FIGURE 8. R} versus Fr; results for breaking wave cases 1-8. Data are restricted to
4 < ST, <9 and 100 < Re;, < 400. (a) The overall mean irreversible flux Richardson

number (R}). along with (Rf). for cases 1-8. (b) The area-weighted fraction of total
turbulent mixing as a function of Fr; (i.e. a binned sum of e;,AL.e,,W/ (61’,),‘;[ in each Fr;
bin, where A, is the (x;, x3) area of the corresponding grid cell and W is the x, width
of the domain), for cases 1, 3, 5 and 8. The quantity (6;))::)[ used in (b) is the total

volume-integrated turbulent mixing (defined in (5.4)).

where N*LE) is the buoyancy frequency of the background density field for the local
value of b, as in (4.2), and

Rep=——. 4.7)

Because we are interested in the effect of stratification on the local turbulent mixing
efﬁciqncy, we consider how R; varies with the tu_rbulent Frqude number Fr;. For ea(f‘h
breaking wave case, we calculate a mean irreversible flux Richardson number (R}). in
bins of Fr, (figure 8a). (Rf), reaches a local maximum between 0.2 and 0.45 for 0.5 <
Fri. <0.9. We also define an overall mean irreversible flux Richardson number (R}")all
as a function of Fr; by calculating the mean R} value among all cases in each Fr; bin.
The (R;)u,, versus Fr, curve captures the general trends of the (R}). versus Fr, results
(figure 8a). It reaches a local maximum of approximately 0.36 for Fr, 0.7, where the
balance of turbulence and stratification leads to the optimal mixing efficiency. (Rf)au
decreases as Fr; increases above (0.7 because there is less stratification to be mixed.
As Fr; decreases below 0.7 until roughly 0.1, (R}‘)a” decreases because the increased
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stratification suppresses turbulence. For Fr;, < 0.1, (R;f)all increases as Fr; decreases
because €; approaches zero. Despite the relatively large values of (Ry). for Fr, <0.1,

only a small fraction of the total mixing occurs in these regions. This is evidenced
by the result in figure 8(b), which shows the total irreversible mixing €, that occurs
within each Fr; bin for cases 1, 3, 5 and 8.

We note that the data in this analysis are restricted to 4 < ST, < 9 and 100 <
Re; < 400, which is where the most total mixing occurs over the course of each
breaking wave event. The (R}),; versus Fr, curve in figure 8(b) shows similarities
to Ry and Ry versus Fry relationships found in previous studies (Shih 2003; Mater &
Venayagamoorthy 2014), particularly for Fr, > 0.1. However, a complete analysis of
R}“ in the (ST, Fr,, Rey) parameter space, which would facilitate direct comparisons
to these studies, is left to future work.

5. Volume-integrated energetics
5.1. Volume-integrated turbulent dissipation and mixing

By volume-integrating local dissipation and mixing quantities during wave breaking,
we examine the changes in turbulent energetics as a function of the initial interface
thickness k5. We define the volume-integrated turbulent mixing as

(€)' = / € dv, 5.1)
Vs

where the volume of integration V; is defined as the sloping region of the domain
(Ly <x1 < L, see figure 1) in order to better isolate the effects of breaking (Arthur
& Fringer 2014). Maximum, cumulative and total volume-integrated turbulent mixing
quantities are defined as

(o= ((61)") 52
(6 )cum_/ (G[tl)vdt’ (53)
0
and
T v
(€)1 = / ()" dr, (5.4)
0

respectwely Similar quantities are defined for turbulent dissipation by replacing €,
with €; in (5.1)—(5.4). Turbulent dissipation and mixing both begin to rise after wave
breaking occurs, and continue until the end of the breaking event T =1, (figure 9a,b,
points d-i for case 5). Note that the volume-integrated turbulent mixing efficiency
measures in figure 9(c,d) are defined and discussed in §5.3.

The variation in volume-integrated turbulent dissipation and mixing with k8 can
be summarized by examining the maximum and total values of these quantities, as
shown in figures 9(e) and 9(f), respectively. Here, we define two regimes of k§
based on the peaked shape of (e, )y .. (figure 9¢) and the asymptotic shape of (e‘,’,),‘;t
(figure 9f). Regime I is defined for k3 <1, where both (e, Yoo and (e, )., increase
monotonically. Regime II is defined for k6 > 1, where (e, )y . decreases monotonically
and (e, )., asymptotes. The maximum volume- 1ntegrated turbulent dissipation (e})) .
does not follow the peaked shape of (€))max- Rather, (e,{)mwC increases with k6 for low
ké values in regime I, and is relatlvely scattered as k§ increases into regime II. The

total volume-integrated turbulent dissipation (e})? , however, increases monotonically
with k& through both regimes I and II.

tot>
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FIGURE 9. Volume-integrated turbulent energetics results for breaking wave cases 1-8.
Shown are (a) cumulative dissipation (€})” . (b) cumulative mixing (61’,)‘/ (¢) cumulative

cum? cum?

mixing efficiency 7n’,, and (d) instantaneous mixing efficiency n’ over time for cases 1, 3,
5 and 8. In (a) and (b), (€)Y  and (el’,)v are normalized by the total time-integrated

cum cum

values (€})) and (61’,),‘2[, respectively. The critical R, value of 0.17 is shown by a
horizontal dotted line in (¢) and (d). Labels a—i in (a—d) correspond to the times shown
in figure 2 for case 5. Also shown are (¢) maximum and (f) total (time-integrated) values
of dissipation and mixing as a function of k§ for all cases. Values in (e) are normalized
by the maximum instantaneous turbulent dissipation for all cases (e})":%", while values in

V \all

(f) are normalized by the maximum total turbulent dissipation for all cases ((€p),,)%.-
Vertical dotted lines in (e) and (f) represent k§ regimes I and II.
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5.2. Turbulent contribution to dissipation and mixing

Due to the computational restrictions associated with DNS, the Reynolds number
Re,, of our simulations is limited. In order to contextualize our results, it is therefore
important to quantify the turbulent contribution to the full energy budget, which
includes both laminar and turbulent effects. In this section, we use volume-integrated
dissipation and mixing quantities to consider the turbulent contribution to the full
dissipation and mixing that occurs during wave breaking. Scotti & White (2014)
define the local dissipation of the full kinetic energy as

€ = ZUSiiji, (55)

where S;; = ((du;/0x;) + (du;/0x;))/2 is the rate of strain tensor, see (1.1) therein. Thus,
we define the full volume-integrated dissipation as

D= / .dv. (5.6)
VS

where the volume of integration V; is defined as in §5.1. We define the full volume-
integrated mixing as in Winters et al. (1995),

K 9?
M = 7g (/ x;k p(x§) dv — / (pt()p - pbon‘om) dA> = ¢d - ¢iv (57)
Po vV, ana.Xj A

where ¢, is the volume-integrated rate of change in the background potential energy
and ¢; is the irreversible rate of change from internal to potential energy. Here,
Prop and Ppoyom are the densities on the top and bottom boundaries of the domain,
respectively, and A is the corresponding surface area of the boundary. We note that
the full volume-integrated dissipation D and mixing M measures defined here are
equal to those used previously by Arthur & Fringer (2014). The dissipation ¢ in
Arthur & Fringer (2014) is equal to D and the effective irreversible mixing ¢, in
Arthur & Fringer (2014) is equal to M. The values D and M include both laminar
and turbulent effects, while ()" and (/)" (5.1) include only turbulent effects.

The initial peak in the full dissipation D (shown for case 5 in figure 10a) is
associated with near-bottom downslope flow in the lower layer prior to breaking
(figure 2a). As noted in Arthur & Fringer (2014), this dissipation is laminar because
turbulence does not develop in the domain until wave breaking occurs. The turbulent
dissipation (e})", therefore, does not begin to rise until breaking and does not include
this pre-breaking laminar dissipation. The shapes of the turbulent mixing (6;)" and
full mixing M curves (shown for case 5 in figure 10b) are similar. This is expected
because the turbulence generated by overturning during the breaking event is the
primary driver of mixing in the domain. Overall, however, (e,ﬂ)v and (e;)V are
generally lower than D and M, respectively, throughout the breaking event.

In order to quantify the difference between the turbulent and full measures of
dissipation and mixing, we define f;,, as the fraction of either dissipation or mixing
due to turbulence over the course of the breaking event. Thus f,, = (e,’()tvw/Dmt

for dissipation and f,;, = (6;))}’0,//\/1,0, for mixing, where D,, and M, are the
time-integrated values of D and M, respectively, defined as in (5.4) for (e,’,)x)t. The
turbulent contribution to dissipation (figure 10c) increases within regime I from
approximately 17 % for case 1 to approximately 35% for case 5 (k§ ~ 1). Within

regime II, f,,, remains relatively constant. The turbulent contribution to mixing
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FIGURE 10. The turbulent contribution to dissipation and mixing. Volume-integrated (a)
dissipation ((e})", turbulent and D, full) and (b) mixing ((e[’))v, turbulent and M, full) over
time for breaking wave case 5 (k6 ~ 1). Values in (a) and (b) are normalized by D,,,, the
maximum full dissipation for case 5. The fraction f,,,, of both dissipation and mixing (c)
over the entire breaking wave event (‘Total’) and (d) during the turbulent portion of the
event (‘Post-turbulent’), as a function of k& for all cases. The vertical dotted lines in (c¢)
and (d) represent k§ regimes I and II defined in §5.1.

(figure 10c) is approximately 34 % for case 1, but is then roughly constant between
40 %-50 % for larger kS. The onset of turbulence in the domain (when (e,’{)v and
(e,’,)V begin to rise) is indicated by a dot in figure 10(a,b). Another calculation of f,,,,
this time over only the post-turbulent portion of the event (as opposed to the entire
event) is shown in figure 10(d). The turbulent contributions to dissipation and mixing
are higher in the post-turbulent stage because the laminar pre-breaking stage is not
included, reaching approximately 45 % for dissipation and 45 %—55 % for mixing.
However, similar trends are seen with k8.

Overall, the turbulent contribution to dissipation and mixing is relatively low
(<60 %). This is a consequence of the low Reynolds number Re, used in our
simulations, which is necessitated by the computational restrictions associated
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with DNS. Although we reach local Re, values of the order of 10°-10° (in the
energetic regime of Shih et al. 2005), these regions make up only a small fraction
of the domain. Arthur & Fringer (2014) found that as Re, increases, the turbulent
contribution to dissipation and mixing during breaking internal wave events increases
because turbulence develops earlier in the event. Thus, we expect that as the Reynolds
number of the cases considered in this study increases, the turbulent contribution to
dissipation and mixing will also increase. The potential effect of increasing the
Reynolds number on the mixing efficiency is discussed in the next section. However,
further analysis at larger Reynolds number is left to future work.

5.3. Volume-integrated mixing efficiency

Using the volume-integrated calculations of turbulent dissipation and mixing above,
volume-integrated measures of the turbulent mixing efficiency are made. We define a
cumulative volume-integrated turbulent mixing efficiency

/T (6;)‘/ dr
0

Mo (T) = ; (5.8)
/ ((e;)v + (6,’()‘/) dr
0
as well as a bulk volume-integrated turbulent mixing efficiency
(€)1
My =y (5.9)

(€))ior + (€)ior

Thus, n!,,(t;) =nj. As in Arthur & Fringer (2014), we also define a full bulk mixing
efficiency, which includes both laminar and turbulent effects, as

Mo

P (5.10)
Ml{)t + D[()I‘

nB

The cumulative mixing efficiency n!, (figure 9c) is initially large due to the
offset between the growth of mixing and dissipation in the early stages of turbulence.
That is, as sharp density surfaces are created by turbulent strain, mixing begins to
increase before turbulent dissipation occurs. This effect is discussed in Smyth et al.
(2001), who observed a similar phenomenon in stratified shear flow turbulence. After
turbulence has developed, 7, decreases, approaching nj5. The bulk volume-integrated
turbulent mixing efficiency 7}, varies in the k8 regimes defined in §5.1 (figure 11).
N, is low (roughly 0.25) for small k8 (case 1). As k§ increases within regime I, the
mixing efficiency increases, reaching a peak of 0.37 when k6 =~ 1 (case 5). Within
regime II, nj, levels out around 0.35.

The volume-integrated bulk mixing efficiency values calculated for breaking wave
cases 1-8 are consistently higher than the critical value of the flux Richardson
number, R¢" ~ 0.17. However, we note that the instantaneous volume-integrated
turbulent mixing efficiency, defined as

()

_ 5.11
(€)Y + (D" G-1h

n'(t) =
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FIGURE 11. Bulk mixing efficiency measures nj and np as functions of k8. The vertical
dotted line represents k6 regimes I and II defined in §5.1. Also shown are the bulk mixing
efficiency results of Fringer & Street (2003).

and shown in figure 9(d), does approach R;’” ~0.17 towards the end of the breaking
event, especially for low values of k8. This asymptotic behaviour occurs for each case,
indicating that the turbulence after breaking reaches an equilibrium state representative
of what one might expect in turbulence that is predominantly shear driven. A similar
trend was observed by Smyth et al. (2001) for the flux coefficient, which is analogous
to the mixing efficiency.

For further comparison to the present results, table 2 shows mixing efficiency values
that have been calculated for various flows in previous studies. It is similar to table 1
in Fringer & Street (2003), but with the addition of several more recent studies. The
range of bulk turbulent mixing efficiency values calculated here (n; = 0.25 — 0.37)
is on the upper end of the values reported in other studies of breaking internal
waves on slopes (Michallet & Ivey 1999; Arthur & Fringer 2014). This may be
because we consider only the turbulent contribution to the bulk mixing efficiency, as
discussed in § 5.2. For the relatively low Reynolds number in our simulations, laminar
dissipation occurs due to strong downslope flow near the bottom boundary prior to
wave breaking. This laminar dissipation reduces the overall mixing efficiency of the
breaking event np (see figure 11), but is not captured in 5%, which includes only
turbulent effects. At higher Reynolds number, we would expect turbulence to develop
earlier in the simulation (i.e. during the downslope flow of lower-layer fluid before
breaking), increasing turbulent dissipation and thus lowering the turbulent mixing
efficiency. Therefore, at increased Reynolds number, we would expect 1 and g to
approach one another because the turbulent contribution to dissipation and mixing
would overwhelm the laminar contribution.

The bulk mixing efficiency values calculated here are also larger than those
presented by Hult er al. (2011) for breaking internal waves over a ridge. This is due,
in part, to the presence of turbulence in the unstratified bottom boundary layer of their
domain. Conversely, in the present breaking wave cases, the stratified region intersects
the bottom boundary layer on the slope, allowing for near-bottom mixing. Because
the method of Scotti & White (2014) defines turbulent dissipation and mixing locally,
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Mechanism Reference Mixing efficiency
Rayleigh—Taylor instability Linden & Redondo (1991) 0.5
Breaking periodic internal waves Fringer & Street (2003) 0.424+0.07
Critical topography Slinn & Riley (1998) 0.32-0.38
Standing waves McEwan (1983a) 0.26 + 0.06
Breaking internal waves on slopes Present 0.25-0.37
Breaking internal waves on slopes Michallet & Ivey (1999) 0.05-0.25
Breaking internal waves on slopes Arthur & Fringer (2014) 0.14 —-0.20
First principles McEwan (1983b) 0.25
Critical layer Dornbrack (1998) 0.20
Critical layer Lin et al. (1993) 0.13
Breaking interfacial waves over a ridge Hult er al. (2011) 0.04 —0.07
Grid turbulence Rehmann & Koseff (2004) 0.05

TABLE 2. Mixing efficiency values from previous studies.

€, and €, can be integrated over the bottom boundary and interior regions separately.
We define the bottom boundary layer as in §2.1 as x; < —d + &5, where d is the
local depth, and the interior as the remainder of the domain. Although we find that
80 %—90 % of the total dissipation and mixing occur in the interior region, the bulk
turbulent mixing efficiencies in both layers are similar to the overall value n} (see
Arthur 2015).

The present bulk mixing efficiency values are lower than those calculated by Fringer
& Street (2003) for breaking progressive internal waves in deep water because of
the absence of bottom boundary-layer dissipation in their domain. Fringer & Street
(2003) also found a different shape of the bulk mixing efficiency as a function of
ké (see figure 11). In their study, ka is relatively large; this allows k§ to control
the mixing efficiency because billows are not restricted in size by ka. Thus, weak
convective breaking occurs for large k8, causing the mixing efficiency to decrease. In
our simulations, ka is relatively small. Thus, the mixing efficiency is controlled by ka
for large k§ (regime 1II), and is relatively constant. For further discussion of the billow
scale in our breaking wave cases, see § 6 below.

An important consideration when comparing the present mixing efficiency
calculations to those of other flows, especially in the laboratory or the field, is
the Prandtl number Pr=v/k. In water, Pr="7 for temperature and Pr =700 for salt.
As Pr increases (k decreases), one would expect the mixing efficiency to decrease
because the time scale necessary for mixing to occur increases. However, Pr=1 in
the current simulations due to the computational restrictions associated with resolving
mixing for smaller values of «. This provides another potential explanation for the
relatively high mixing efficiencies in the present study.

5.4. Numerical effects

Numerical effects also play a role in the energetics, and are a function of the chosen
numerical methods and discretization. There are, in fact, three sources of dissipation
in our simulations: that due to mean (or laminar) strains, that due to turbulent strains
and that due to numerical effects. We estimate the relative magnitude of the numerical
dissipation, in a domain- and time-integrated sense, by comparing the change in total
energy over the course of each simulation to that captured by resolved quantities.
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FIGURE 12. (a) Cumulatively integrated E7 evolution terms from (5.14) over time for case
1, normalized by (M, + D). (b) Domain- and time-integrated estimate of numerical
dissipation N, relative to the resolved full dissipation and mixing (M, + D), as a
function of k§.

Following Winters et al. (1995) and Arthur & Fringer (2014), the total energy is
defined as |
Er=— / uu; dV + g px3dV =Ex + Ep, (5.12)
2 Jy, Lo Jv,
where V; is the full volume of the domain, Ex is the kinetic energy and Ep is the
potential energy. The evolution of E7y should satisfy

dE

L =D (5.13)

dr
because there are no boundary fluxes (Winters er al. 1995). Numerical dissipation
can therefore be estimated as the difference between the total energy change and the
resolved energy change,

* (dE
-/\/:‘Ltm == / < d L ¢i + D) dr = AE'T - ¢i,cum + ,Dcum‘ (514)
0 T

As shown in figure 12(a) for case 1, the majority of the numerical dissipation occurs
prior to wave breaking (t/T; <0.2), as the initial wave evolves on the coarse, offshore
portion of the grid.

The total domain- and time-integrated numerical dissipation can be estimated as
Nt :M.um(rf), allowing us to estimate the effect of numerical dissipation on the full
bulk mixing efficiency np (5.10). We define an effective full bulk mixing efficiency

as

Mo
= , 5.15
TBel = Ao+ Dy + N G149
_ Mo " , (5.16)

Mg+ Dy [ 1+ —2— >
e i ( M[()f + Dl()[
B

IS, | 5.17
N (5.17)

i
MIOI + Dtoi
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Because 1/(1—r)=1+r+r*/2+---, equation (5.17) can be simplified to

N, )
(1= — 2 5.18
e ”B< M+ Dy ©-18)

For cases 2-8, the quantity |N,,/(M,, + D,,)| varies between 0.06-0.11 (figure 12b),
indicating that ng s is within approximately 6 %—11 % of 5. For case 1, which has
the smallest value of k8, the value of N, /(M,, + D,,) is slightly larger in magnitude
(approximately 0.2). However, as noted above in reference to figure 12(a), the majority
of the numerical dissipation occurs prior to wave breaking. Although case 1 is shown
in figure 12(a) because it has the largest amount of numerical dissipation, cases 2—8
show qualitatively similar results as a function of time. The overall findings of this
paper related to the bulk mixing efficiency would not change despite the relatively
large effect of numerical dissipation in case 1. In particular, the numerical dissipation
would act to further decrease the bulk mixing efficiency for case 1, which already
possesses the smallest bulk mixing efficiency among all cases.

The numerical dissipation in our simulations is due to the non-conservative energy
behaviour of non-staggered grid methods, which do not allow the discrete form of the
energy flux related to pu; (where p is the pressure) to be written in conservative form
(Ferziger & Peri¢ 2002). It is therefore related to the projection scheme used by Zang
et al. (1994) and not to numerical diffusion of momentum, which is expected because
momentum advection is computed with the dispersive QUICK scheme (Leonard 1979).
Based on numerical tests (not shown), ¢; and D are relatively weak functions of the
grid spacing and time step size, while A is a relatively strong function of these
parameters. This suggests that if we had the computational resources to perform the
simulations with higher resolution and a smaller time step size, the effective bulk
mixing efficiency nz,.; would converge to the reported bulk mixing efficiency ng.
Such higher-resolution simulations would also allow for a grid-resolution study of the
dissipation spectra, a more rigorous method for assessing numerical dissipation.

6. Connecting local and volume-integrated energetics

Thus far, we have calculated both local and volume-integrated measures of turbulent
energetics and mixing efficiency during breaking internal wave events on slopes. The
local turbulent mixing efficiency (in terms of (RJ;*)(.) varies with the local turbulent
Froude number Fr,. However, there is no clear dependence of the (R}). versus
Fr; curves on the initial interface thickness k4, as they all generally follow (RF)an
(figure 8a). Alternatively, the bulk turbulent mixing efficiency 7}, does depend on k§
(figure 11).

Ultimately, we seek to explain the dependence of nj on k§ by understanding how
ké affects the local turbulence that drives mixing. We hypothesize that because 7}
depends on the total mixing that occurs over the course of a breaking event, it should
be related to the turbulent Froude number Fr; at which the maximum fraction of the
total mixing occurs. We therefore define Fr;'** as the value of Fr; corresponding to
the peak of the (Zm el’,ACe,,W)/(el’))}’m versus Fr; curves shown in figure 8(b). As
presented in figure 13(a), Fr"** is indeed related to k8; Fr;'** generally increases
with k6 as the background stratification decreases. Furthermore, Fr]* can be used
to predict the bulk turbulent mixing efficiency 5} for cases 1-8 (figure 13b). nj} is
maximized when Fr’* =~ 0.4.

Physically, the control that k§ places on Fr can be described in terms of the
vertical length scale of the billows that form at the density interface during wave
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FIGURE 13. (a) The Fr; of maximum mixing Fr'* as a function of k§ and (b) the
bulk turbulent mixing efficiency nj as a function of Fr]"*. The vertical dotted line in (a)
represents k6 regimes I and II defined in §5.1.

breaking. We define L,(x;) as the vertical length scale of the region defined by Re; >
100 at the time of maximum volume-integrated turbulent mixing (G;)Xax- This region
is shown in figure 14(a—c) for cases 1, 5 and 8, respectively. For each case, the height
of the upslope surge above the bottom boundary at this time is approximately equal
to a, the incoming wave amplitude (indicated by the dashed line in figure 14a—c). We
therefore normalize L by 2a in figure 14(d,e) in order to determine when the billow
scale is affected by the bottom.

For small k5§, L, is controlled by the thickness of the interface because billows
are confined to the thin stratified region (figure 14a). Thus, L] /2a <1 (figure 14d,
regime I), and Fr’ is relatively small (figure 14e). As k$ increases and the interface
thickens, Ly*/2a and thus Fri"* increase as well. For case 5 (k6 ~ 1), Ly*/2a~ 1
and Fr"* ~ 0.4, indicating the optimal transfer of energy from the large-scale wave
into the billows that generate turbulence (figure 14b), and thus the maximum bulk
mixing efficiency. As k& increases above 1, the billows continue to grow in scale
(figure 14c). The vertical scale L) /2a increases above 1 (figure 14d, regime II)
and Fr” increases above the optimal value of approximately 0.4. In regime II,
The billows are clearly affected by the bottom, as L;**/2a > 1. This restriction on
the billow scale likely leads to the asymptotic trend in the bulk mixing efficiency
measures 7 and np seen in figure 11. As k§ increases above the values considered
in this study, we would expect L;*/2a to asymptote and Fr to increase, leading
to a decrease in the bulk mixing efficiency. However, we note that the increase in k§
was limited in order to keep the other relevant non-dimensional parameters (ka and
Re,,) relatively fixed (see §2.2).

7. Conclusions

Using DNS, we have explored local and volume-integrated measures of turbulence
and mixing in breaking internal waves on slopes. We considered eight breaking
wave cases with a range of normalized pycnocline thicknesses k8, but with similar
incoming wave properties (ka, Re,). Thus, for a similar incoming wave and constant
bathymetric slope, we examined the effect of stratification on energetics and mixing
efficiency. This effect is relevant in lakes and the coastal ocean, where the stratification
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FIGURE 14. The vertical length scale L, of the billows at the interface at the time of
maximum volume-integrated turbulent mixing (e}), .. (a—c) The region defined by Re, >
100 that encompasses the billows for cases 1, 5 and 8, respectively. The dashed line shows
the approximate height of the upslope surge above the bottom, which is approximately
equal to the incoming wave amplitude a. (d) L;*/2a as a function of k§ for all cases.
The vertical dotted line represents k8 regimes I and II defined in §5.1. (e) L) /2a as a
function of Fr™ for all cases.

supporting internal wave motion may change on daily or seasonal time scales. We
began with a physical description of wave breaking as a function of k3. The breaking
process is similar for all cases, and agrees with the description in Arthur & Fringer
(2014). A collapsing breaker leads to an upslope surge of dense fluid, during which
turbulence is generated in regions of unstable stratification within billows at the
interface and underneath the nose of the upslope surge.
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The local irreversible mixing efficiency R; was found to vary between O and 1
throughout the turbulent region of the flow. It was relatively large in the billow roll-up
regions and at the nose of the upslope surge, where €, was elevated, and smaller
within the billow cores and throughout the rest of the turbulent region. The bulk
(spatially and time-averaged) R; was found to be approximately 0.3 for each case,
indicating little variation with the initial interface thickness k§. Using the parameter
space of Mater & Venayagamoorthy (2014) and restricting the data to the Re; and ST,
of maximum turbulent mixing, the mean irreversible flux Richardson number (Rf)c
was found to vary with the turbulent Froude number Fr, for each case. However, the
(R}). versus Fry curves showed no clear dependence on ké. Their trends were captured
by an overall mean irreversible flux Richardson number (R;)u,, that reached a local
maximum of approximately 0.36 for Fr, =~ 0.7, where the balance of turbulence and
stratification leads to the optimal mixing efficiency.

Unlike the local turbulent mixing efficiency measures based on R}, the volume-
integrated turbulent mixing efficiency 7}, was found to vary with k§, ranging from
0.25 for low k6 to a maximum of 0.37 for k6 ~ 1. For k8 > 1, nj ~ 0.35. In order
to explain the variation in 7}, with k§ based on the state of turbulence during wave
breaking, we showed that Fr, the Froude number at which the maximum turbulent
mixing occurs over the course of a breaking event, can be used to predict nj, which is
maximized for Fr;"* ~0.4. Physically, we found that Fr** is controlled by the vertical
length scale of billows at the interface during wave breaking.

We note that our findings are limited by the chosen parameter space, wherein the
interface thickness k6 was varied, but the wave steepness ka and the bathymetric
slope s remained constant. Previous studies (Boegman et al. 2005; Venayagamoorthy
& Fringer 2007; Aghsaee et al. 2010; Arthur & Fringer 2014) have shown that wave
breaking dynamics and energetics change with wave amplitude and bathymetric slope.
Additionally, due to computational restrictions, we have limited our results to Pr=1
and a relatively low wave Reynolds number Re, ~ 150, which are not realistic in a
geophysical sense. Future work on turbulence and mixing in breaking internal waves
on slopes should address these limitations by exploring a wider parameter space.
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