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We use the results of a direct numerical simulation (DNS) with a particle-tracking
model to investigate three-dimensional transport by breaking internal gravity waves on

slopes. Onshore transport occurs within an upslope surge of dense fluid after breaking.

Offshore transport occurs due to an intrusion of mixed fluid that propagates offshore
and resembles an intermediate nepheloid layer (INL). Entrainment of particles into

the INL is related to irreversible mixing of the density field during wave breaking.

Maximum onshore and offshore transport are calculated as a function of initial
particle position, and can be of the order of the initial wave length scale for particles
initialized within the breaking region. An effective cross-shore dispersion coefficient
is also calculated, and is roughly three orders of magnitude larger than the molecular
diffusivity within the breaking region. Particles are transported laterally due to
turbulence that develops during wave breaking, and this lateral spreading is quantified
with a lateral turbulent diffusivity. Lateral turbulent diffusivity values calculated using
particles are elevated by more than one order of magnitude above the molecular
diffusivity, and are shown to agree well with turbulent diffusivities estimated using a
generic length scale turbulence closure model. Based on a favourable comparison of
DNS results with those of a similar two-dimensional case, we use two-dimensional
simulations to extend our cross-shore transport results to additional wave amplitude
and bathymetric slope conditions.

Key words: internal waves, stratified flows, topographic effects

1. Introduction

When nonlinear internal waves interact with the continental or nearshore slope,

they shoal and break, generating cross-shelf velocities throughout the water column.

Observations have shown that these flows affect the transport of physically and
biologically important scalars such as temperature (Leichter et al. 1996; Davis &
Monismith 2011; Walter et al. 2012), nutrients (Leichter ef al. 1996; Omand et al.
2011), sediments (Bogucki, Dickey & Redekopp 1997; Klymak & Moum 2003;
Hosegood, Bonnin & van Haren 2004; Hosegood & van Haren 2004; Carter, Gregg
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& Lien 2005; Quaresma et al. 2007), larvae (Pineda 1994) and dissolved oxygen
(Walter et al. 2014). Due to the difficulty in capturing internal wave breaking events
with adequate spatial and temporal resolution in the field, laboratory experiments and
numerical simulations have been used widely to investigate internal wave breaking
dynamics. Such studies have focused on the kinematics of wave breaking (Wallace
& Wilkinson 1988; Helfrich 1992; Vlasenko & Hutter 2002; Venayagamoorthy &
Fringer 2007), classifying breaker types (Boegman, Ivey & Imberger 2005; Aghsaee,
Boegman & Lamb 2010), wave reflection (Bourgault & Kelley 2007; Aghsaee et al.
2010) and quantifying turbulence and mixing (Michallet & Ivey 1999; Boegman et al.
2005; Arthur & Fringer 2014). However, only a few laboratory or numerical studies
have addressed transport due to breaking internal waves on slopes (Helfrich 1992;
Bourgault, Kelley & Galbraith 2005; Nakayama & Imberger 2010; Nakayama et al.
2012; Bourgault et al. 2014).

Before breaking occurs, internal waves propagating over a flat bottom are known to
transport mass. This phenomenon was first observed in the field by Shanks (1983), but
was examined more thoroughly by Lamb (1997) for internal solitary waves. Lamb
(1997) showed that for an approximately two-layer stratification (two well-mixed
layers separated by a sharp pycnocline), transport occurs in the direction of wave
propagation in the upper layer and in the opposite direction in the lower layer.
Transport increases with wave amplitude and is maximized at the surface.

As internal waves interact with a sloping bottom, the associated transport is affected
by the breaking process. Using dye as a tracer in laboratory experiments on breaking
internal waves on slopes, Helfrich (1992) showed that onshore transport occurs as
dense fluid flows upslope as a bore or bolus after breaking. In addition, Nakayama
& Imberger (2010) and Nakayama et al. (2012) used a combination of laboratory
measurements and numerical modelling to quantify transport using a time-averaged
residual circulation. This circulation describes transport that is generally onshore in
the upper layer and offshore in the lower layer. Several laboratory (Ivey & Nokes
1989; Helfrich 1992; McPhee-Shaw & Kunze 2002; Nakayama & Imberger 2010)
and numerical (Bourgault et al. 2005, 2014; Nakayama & Imberger 2010) studies
have shown that breaking internal waves on slopes drive offshore transport along
the pycnocline due to intrusions of mixed fluid after breaking. These intrusions
resemble intermediate nepheloid layers (INLs), a common feature of the coastal
ocean. Intermediate nepheloid layers have been observed to spread offshore along
isopycnals from mixing regions associated with internal wave breaking on slopes in
the field (McPhee-Shaw et al. 2004; McPhee-Shaw 2006; Cheriton et al. 2014), and
can transport benthic material into the interior of the water column of the order of
1-10 km offshore (McPhee-Shaw 2006).

Mass transport has also been studied for shoaling internal solitary waves of
depression. Lamb (2002, 2003) investigated the formation of ‘trapped cores’ of
dense fluid within shoaling internal solitary waves of depression using a numerical
model. Trapped cores have been observed in the field, for example in the South
China Sea within shoaling internal solitary waves of depression (Lien et al. 2012,
2014). For a particular wave, Lien et al. (2012) gave an instantaneous estimate of
mass transport within the trapped core of 18 Sv, and an average estimate of 0.05
Sv per day. Trapped cores have also been observed in internal solitary waves of
elevation in the field, and it has been suggested that they provide a mechanism for
the transport of benthic material and nutrients associated with cold dense water in
the ocean (Klymak & Moum 2003; Scotti & Pineda 2004).

In this study, high-resolution numerical simulations are used in conjunction with a
particle-tracking model to investigate transport due to breaking internal gravity waves
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FIGURE 1. The domain used to study breaking internal gravity waves on slopes. Here,
(x1, X2, x3) are Cartesian coordinates in the cross-shore, lateral (along-shore, into the page)
and vertical directions respectively. (@) The initial stratification, where p; =985 kg m~3,
02 =1015 kg m™> (Ap =30 kg m~>) and § =2 cm. The parameters ay, L, b, and h,
are shown in table 1. (b) The physical dimensions of the domain and a coarse example
of the orthogonal curvilinear grid (without vertical stretching). The parameters L, H and
s are shown in table 1. In three-dimensional cases, the lateral (x,) width of the domain is
W =0.1 m. The radius of curvature of the rounded bottom at the beginning of the slope is
3 m, and L;=1.675 m for all cases. (¢c) A coarse example of the particle initialization for
cases 3tl and 1-7. Vertical lines indicate particles at each vertical grid point and every
10 horizontal grid points. Grey shading represents a particle plume just offshore of the
intersection of the initial pycnocline and the slope, as shown in figure 4.

on slopes. Section 2 summarizes the computational set-up, which is based on that of
Arthur & Fringer (2014). Using the results of a three-dimensional direct numerical
simulation (DNS), §3 describes cross-shore transport, while §4 explores the effects
of three-dimensional dynamics on transport. Then, § 5 considers several applications
of two-dimensional simulations, including the variation of cross-shore transport with
wave amplitude and bathymetric slope, as well as the composition of INLs.

2. Computational approach
2.1. Computational set-up

We simulate breaking internal gravity waves on slopes in an idealized laboratory-scale
domain using the parallel Navier—Stokes code of Cui (1999) on a curvilinear grid.
This code employs the method of Zang, Street & Koseff (1994), which has been
used extensively in the past to study geophysical flows at the laboratory scale (see
Venayagamoorthy & Fringer 2007; Chou & Fringer 2010; Arthur & Fringer 2014).
The computational set-up used here is based on that of Arthur & Fringer (2014)
and is summarized in figure 1(a,b). Simulations were run on the US Army Research
Laboratory DoD Supercomputing Research Center (ARL DSRC) supercomputers
Pershing and Excalibur.
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Case 2D/3D L H hy, hy ag, Ly K v & Type
(m) (cm) (cm)  (cm) (m* s
3tl 3D 4 56 30, 26 10, 70 0.218 1.00x 10~°® 1.07 C
3t2 3D 4 56 30, 26 10, 70 0.218 1.00x 10~ 1.07 C
1 2D 4 56 30,26 5,70 0218 250x1077 1.51 S
2 2D 3.5 56 30, 26 10, 70 0.3 1.00 x 10°° 1.47 C
3 2D 4 56 30, 26 10, 70 0.218 1.00x 10°¢ 1.07 C
4 2D 4 56 30, 26 15, 70 0.218 225x10°% 0.87 P
5 2D 4 56 30, 26 20, 70 0.218 4.00x 10~ 0.76 P
6 2D 5 56 30, 26 10, 70 0.15 1.00x10°% 0.73 C
7 2D 11 56 30,26 10, 70 0.05 1.00x10°° 0.24 F
Ins 2D 4 56 30,26 5,70 0 2.50 x 1077 0 —
3ns 2D 4 56 30, 26 10, 70 0 1.00 x 10~° 0 —
4ns 2D 4 56 30, 26 15, 70 0 225 x 107 0 —
5ns 2D 4 56 30, 26 20, 70 0 4.00 x 107° 0 —

TABLE 1. The wave cases considered in this study in terms of the dimensionality of
the simulation, the domain length L, the domain height H, the upper-layer depth A, the
lower-layer depth h,, the amplitude of the initial half-Gaussian ay, the length scale of the
initial half-Gaussian L, the bottom slope s, the kinematic viscosity v, the internal Iribarren
number £ and the breaker type (S = surging, C = collapsing, P = plunging, F = fission).

We focus our results in §§3 and 4 on breaking wave case 3tl, a three-dimensional
DNS case that is summarized in table 1. An additional three-dimensional DNS case,
case 3t2, which has the same physical set-up as case 3tl but a different particle
configuration (see §2.3), is considered in §5.1. Seven two-dimensional (x;, x3) cases
are considered in §§5.2 and 5.3. These cases are two-dimensional versions of cases
1-7 in Arthur & Fringer (2014), and include four cases with constant bathymetric
slope s and varying initial wave amplitude a (cases 1, 3, 4, 5), as well as four cases
with constant initial amplitude a and varying slope s (cases 2, 3, 6, 7). The initial
wave amplitude a is measured once it has formed from the initial condition, and is
approximately ay/2 (see §2.2). A constant wave Reynolds number Re, = a’*w,/v ~
208, where the wave frequency wy = c¢y/4, is maintained by changing the molecular
viscosity v (Arthur & Fringer 2014). Here, we estimate the wave speed as the linear
phase speed in a two-layer system, ¢y = +/g'hih;/H =0.20 m s~!. The wavelength is
approximated by 4=2L,, (Michallet & Ivey 1999; Arthur & Fringer 2014). The wave
length scale L, =1/a fOL‘ n(x;)dx; ~ 1.2 m for all cases, where 1 is the displacement
of the p = py isopycnal from h; (Michallet & Ivey 1999). The Prandtl number Pr=1
such that the molecular diffusivity k = v. Case 3 is considered to be the base case
with v = 107% m? s~!. Finally, four two-dimensional cases with no slope (cases Ins,
3ns, 4ns, 5ns) are included for comparison with cases 1, 3, 4 and 5, and are discussed
in §5.2.

Computations are made on an orthogonal curvilinear grid generated with the
open-source software gridgen (available online at https://code.google.com/p/gridgen-c/).
Three-dimensional cases (cases 3tl and 3t2) are computed on a grid of size
Ny x Ny x N3 = 1152 x 96 x 128 ~ 14 x 10° grid points. Grid stretching of the
form Axt = rAX™, where r is the stretching factor and k is the index of the grid
point, is employed in the horizontal (x;) and vertical (x;) directions to increase the
resolution in the breaking region. In the horizontal direction, stretching is applied
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from x; =0 to L, with r=1.01, concentrating approximately 90 % of the grid points
into the sloping region. The grid is also stretched slightly in x; in the sloping region
to maintain orthogonality. In the vertical direction, stretching is performed twice. First,
grid points are concentrated towards the bottom with r = 1.02 in order to resolve
the flow near the wall. Second, 100 of 128 points (78 %) are concentrated in the
bottom 35 % of the domain with r = 1.07 in order to resolve the pycnocline and
lower layer during breaking. The resulting grid resolution at the pycnocline in the
breaking region is approximately Ax; X Ax; x Ax; =4 x 1 x 2 mm. Near the bottom
wall, the vertical coordinate is measured in wall units xj = x3/8s, where the Stokes
layer thickness is given by 8, = 4/2v/wy. The vertical resolution near the wall is
therefore Ax§ = Ax;/8s < 1. The grid spacing in the lateral (x,) direction is constant.
In the worst-case scenario, the grid spacing in cases 3tl and 3t2 is found to be within
approximately one order of magnitude of the Kolmogorov length scale 7, providing
sufficient resolution for DNS (see Arthur & Fringer 2014). The two-dimensional cases
1, 3, 4, and 5 are computed on a grid of size Ny x N3 = 1152 x 128. To account for
different length domains, N; = 1024 for case 2, N; = 1408 for case 6 and N, =2048
for case 7. The boundary conditions for all velocity components are no-slip on the
bottom wall and free-slip on the top, left and right walls. The density field has a
gradient-free boundary condition on the top, bottom, left and right walls. All variables
are periodic in the lateral direction. A time step of Ar=0.003 s is used for all cases,
and the wave period T =2n/wy~ 76 s is used to normalize ¢ in all figures.

2.2. Incoming wave properties

The stratification in each breaking wave case is initialized as

A 2 h
ﬁ(xl,x3,t=0)=1_27’0tanh (X3+ 1+§(X]))

tanh ()| , (2.1)
Po Po )

where the reference density p, = 1000 kg m~3, the density difference between the

top and bottom layers Ap = p, — p; =30 kg m—3, the upper-layer depth h; = 0.3 m,
the interface thickness 6 =2 cm and o =0.99. The incoming wave is created in our
simulations by initializing a half-Gaussian depression in the density interface at the
left boundary (Fringer 2003; Bourgault & Kelley 2007). Thus,

X1 2

(L())
where ay, and L, are the initial amplitude and length scale of the half-Gaussian
respectively, as shown in table 1. An initial perturbation ¢{’R, where ¢’ =1 mm and
Re{-1, 1} is a uniformly distributed random number, is also added to the interface
to trigger lateral instabilities during breaking in the three-dimensional simulations
(cases 3tl and 3t2).

Once the simulation starts, the half-Gaussian depression forms an internal wave of
depression that propagates towards the slope. The density and velocity fields of the
wave once it has formed (¢/T =0.07) are shown in figure 2 for case 3tl. It should be
noted that the amplitude of the incoming wave a is estimated at this time. The velocity
fields in figure 2(b,c) are normalized by the linear wave speed ¢y, which is found to
be a good estimate of the actual wave propagation speed for all cases. The initial
wave shown in figure 2 for case 3tl, as well as those in all other cases, resembles an
internal solitary wave. However, we note that the properties of internal solitary waves,

£ (x1) = ag exp +¢'R, 2.2)
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FIGURE 2. The density and velocity fields of the incoming wave after it has formed
from the initial half-Gaussian (t/T = 0.07) for case 3tl: (a) the density field p/po, (b)
the horizontal velocity field u;/cy and (c) the vertical velocity field uz/cy. The velocities
u; and u; are both normalized by the linear wave speed in a two-layer system, cy.

including wave amplitude, wavelength and wave speed, are dependent on a specified
wave energy within a given background stratification and shear field. This relationship
is governed by the nonlinear Dubreil-Jacotin—Long (DJL) equation (see Lamb 2002,
and references therein). Due to the potential differences between the initial waves in
our simulations and true internal solitary waves that satisfy the DJL equation, we refer
to the waves in this study more generally as internal gravity waves.

The decision to initialize the present wave cases with a half-Gaussian at the
interface instead of a DJL internal solitary wave was made due to computational
restrictions associated with the three-dimensional DNS cases. As described in
the review of Helfrich & Melville (2006), an internal solitary wave is a wave of
depression when h; < h,. Then, as it shoals and h; > h,, the polarity of the wave
changes and it becomes a wave of elevation. Thus, a relatively large h, is required
for a true internal solitary wave of depression, which requires a deeper (and therefore
longer) domain. By using an initial half-Gaussian, we were able to bypass this
restriction and create waves of depression with h; > h,, allowing us to achieve the
resolution required for DNS. If h; < hy, a wave initialized with a half-Gaussian can
become an internal solitary wave, assuming that it has enough time to evolve before
hitting the slope. This was the case in Bourgault et al. (2005) and Bourgault & Kelley
(2007), where a two-dimensional numerical model was used to study breaking internal
solitary waves on slopes, as well as in Helfrich (1992) and Michallet & Ivey (1999),
where breaking internal waves on slopes were studied in the laboratory. Instead, we
chose to minimize the propagation distance and time prior to the interaction of the
wave with the slope in order to focus computational effort on wave breaking.

2.3. Particle tracking

In order to quantify transport by internal gravity waves as they shoal and break
on a slope, particle tracking is included in the computations. The use of particle
tracking in this study has several benefits over passive scalars, which have been used
in the past to examine transport by breaking internal waves on slopes numerically
(Bourgault et al. 2005; Nakayama & Imberger 2010). Unlike a passive scalar, particle
motion is not affected by numerical diffusion. Furthermore, we are able to investigate
transport as a function of the initial position of individual particles, rather than the
initial distribution of a scalar. The particle-tracking code used here is based on the
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code of Gil & Fringer (2015), who studied particle drift in nonlinear internal gravity
waves. The motion of the particles is governed by
dx?

=,
d

(2.3)

where x” and u! are the position and velocity of particle p in the ith Cartesian
coordinate direction (i = 1, 2, 3) respectively. Equation (2.3) is solved using a
fourth-order Runge—Kutta (RK4) scheme. The particles are first located within the
curvilinear grid using a k-d tree search algorithm (Kennel 2004) that performs in
O(logN,) time, where N, is the number of particles. The particle velocities u} are
then calculated from the flow velocities u; at the nearest grid points using trilinear
interpolation. A random walk based on the molecular diffusivity « is also added to
the particle positions, such that the discrete update equation for the particle positions
is given by

xip,n-H :xip,n + Apr"K4 + ¢ 2K At, (2.4)

i,

where n is the time step, Ax/x, represents the motion of the particles due to the
flow and ¢ is a random variable from a normal distribution with zero mean and
unit variance. The particles are perfectly reflected off of the boundaries on the top,
bottom, left and right walls. In three-dimensional simulations (cases 3tl and 3t2), the
particle boundary condition is periodic in the lateral (x,) direction, as are the other
flow variables.

In cases 3tl and 1-7, particles are initialized at each vertical (x3) grid point
and at an interval of 10 grid points in the horizontal (x;) over the sloping region
of the domain, resulting in approximately 13000 particles. In case 3tl, particles
are initialized along the lateral centreline of the domain x,/W = 0.5. A coarse
representation of the particle initialization is shown in figure 1(c). Also included in
figure 1(c) is a particle ‘plume’ that covers the entire depth of the water column
between roughly x;/L = 0.75 and x;/L = 0.79. The plume includes particles from
case 3tl that are initialized just offshore of the intersection of the initial pycnocline
and the bottom, and is used to visualize transport in § 3 (figure 4). Case 3t2 is used
to examine the lateral variability in cross-shore transport in §5.1, and we note that
separate three-dimensional simulations need to be run for each particle scenario due
to the computational cost of the parallel three-dimensional particle-tracking algorithm.
It includes particles initialized at the first 20 vertical grid points above the bottom, at
an interval of 10 horizontal grid points over a restricted region of the slope, and at
an interval of 10 grid points in the lateral direction. The limited number of particles
in the vertical and horizontal directions allows more to be included in the lateral
direction, resulting in a total of approximately 14000 particles, roughly the same
as in case 3tl. In what follows, we omit the time superscript and refer to particle

locations as x”. The time superscript is used only for the initial locations x! 0,

3. Cross-shore transport
3.1. Physical description

When internal gravity waves interact with sloping bathymetry, the induced velocity
field acts to transport mass predominantly in the cross-shore (x;) direction. We
therefore begin with a general description of cross-shore transport that is based on
the results of case 3tl. The cross-shore velocity field u;, normalized by the linear
wave speed ¢y, is shown over time for case 3tl in figure 3. It should be noted
that these results were originally presented in Arthur & Fringer (2014) (see their



100 R. S. Arthur and O. B. Fringer

0.5 0.6 0.7 0.8 0.9
X1 /L

FIGURE 3. Snapshots in time of the laterally averaged cross-shore velocity structure for
breaking wave case 3tl. The colour scale for each panel is based on the maximum
absolute value of the cross-shore velocity at the given time step normalized by the linear
wave speed, %|u;|q/co- A contour line of the p = p, isopycnal is shown for reference.
Also shown are the cross-shore location of the breakpoint (c, A), the location of the
formation of the upslope surge (d, <), the initial intersection of the pycnocline and the
slope (a, O) and the maximum onshore location of the upslope surge (f, O). These are
referenced in figures 5, 6(b) and 15.
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figure 2), but are included here for clarity. As the leading face of the wave reaches
the slope, downslope velocities are concentrated in the lower layer (figure 3a) and
are eventually confined to the thin region between the interface and the bottom
(figure 3b), creating a strong downslope jet with u,,./co = 0.71. This jet interacts
with the upslope velocities with u,,,,/co = 0.79 underneath the rear shoulder of the
wave to cause the overturning indicative of wave breaking (figure 3c¢). After breaking,
dense fluid continues to surge upslope as a bore or bolus with u,,./cy = 0.65. Flow
is also directed up and over the nose of the upslope surge, creating offshore flow in
the upper layer (figure 3d,e). Once the surge reaches its maximum upslope location,
a second downslope jet forms as dense fluid relaxes back down the slope (figure 3f),
reaching u,,,./co = 0.62. Due to mixing during the upslope surge, this downstream
jet is less dense than the initial lower-layer fluid, causing it to detach from the slope
(figure 3g) and flow offshore along the pycnocline as an intrusion (figure 3A,i) with
Unar/Co = 0.24. Also shown in figure 3 (as well as in figures 4, 12 and 13) are
labels indicating the cross-shore location of the breakpoint (¢, A), the location of the
formation of the upslope surge (d, <), the initial intersection of the pycnocline and
the slope (a, O) and the maximum onshore location of the upslope surge (f, O). These
locations are approximate and were chosen by visual inspection; they are displayed
for reference in figures 5, 6(b) and 15.

Currents induced by the breaking wave transport particles in both the onshore and
offshore directions. Figure 4 shows the positions of the particles in the plume with
initial locations shown in figure 1(c) over time for case 3tl. We note that this figure
only shows the (x;, x3) positions, or a side view, of the particles, despite the fact
that they propagate in the lateral (x,) direction due to three-dimensional turbulence.
As the wave begins to interact with the slope, particles are transported offshore in
the lower layer and slightly onshore in the upper layer (figure 4a—c). After the wave
breaks, the upslope surge of dense fluid transports particles onshore. Upper-layer
fluid is directed up and over the nose of the upslope surge, carrying a thin layer
of particles offshore along the pycnocline (figure 4d,e). Once the surge reaches its
maximum upslope location, the relaxation of dense fluid begins to carry particles
back downslope (figure 4f). When the jet detaches from the slope as an intrusion,
particles are transported further offshore along the pycnocline (figure 4f—i).

Over the course of the breaking event, onshore transport occurs along the bottom
within the upslope surge of dense fluid. Offshore transport occurs along the pycnocline,
initially due to flow over the nose of the upslope surge and ultimately due to the
offshore intrusion of intermediate-density fluid. Above the pycnocline, the onshore
transport is minimal and decreases towards the surface. The shape of the plume
at the end of the breaking event resembles the plume in the numerical dye study
of Nakayama & Imberger (2010). Their study examined the cumulative effect of
multiple periodic internal waves breaking on a slope, as opposed to the single wave
of depression considered here.

While the particle plume discussed above provides a good visualization of
cross-shore transport, analysis of the plume only allows for the quantification of
transport of particles initialized near the breaking region. The particles initialized
over the length of the slope (see figure 1c¢) provide a more complete description of
particle motion during the breaking event. In particular, these particles allow us to
characterize the cross-shore variation in cross-shore transport, as shown in figure 5
for case 3tl. It should be noted that although particles move in three dimensions
due to turbulence, figure 5 considers only the cross-shore component of this motion.
These results were calculated by binning particles based on their initial cross-shore
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FIGURE 4. Snapshots in time of a plume of particles from breaking wave case 3tl. A side
(x1, x3) view of the three-dimensional particle positions is shown. The cross-shore position
x, is presented relative to the initial mean position of the plume ﬁ’o and normalized by
the wave length scale L,. A contour line of the p = p, isopycnal is shown for reference.
The panel labelled ‘Initial’ shows the initial particle plume; panels (a—i) correspond to the
same times as in figure 3. Also shown are the cross-shore location of the breakpoint (c,
A), the location of the formation of the upslope surge (d, <>), the initial intersection of the
pycnocline and the slope (initial, O0) and the maximum onshore location of the upslope
surge (f, O). These are referenced in figures 5, 6(b) and 15.
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FIGURE 5. Maximum onshore and offshore transport (xf — xf ‘O)W,X, normalized by the
wave length scale L,, as a function of the initial cross-shore position x{ * for breaking
wave case 3tl. Onshore transport is positive, while offshore transport is negative. Also
shown are the breakpoint, the location of the formation of the upslope surge, the initial
intersection of the pycnocline and the slope, and the maximum onshore location of the
upslope surge.

positions x/ . Sixteen bins of length L;;,/L =0.0375 were used between x;/L = 0.4
and x;/L = 1. Particles initialized just offshore of the breakpoint travel the furthest
onshore (0.90L,,), as they are carried from this point to the maximum onshore
location of the upslope surge. The maximum onshore transport then decreases in the
onshore direction, as the distance between the initialized particle and the maximum
onshore location of the upslope surge decreases. The maximum offshore transport
(0.80L,,) is found for particles initialized near the intersection of the pycnocline
and the slope. Offshore transport then decreases in both the onshore and offshore
directions. The particles initialized in this region that travel the furthest offshore are
mixed into intermediate-density fluid during breaking and are then carried offshore
by the resulting intrusion.

3.2. Effective cross-shore dispersion

The cross-shore transport of particles is quantified with an effective cross-shore
dispersion coefficient, defined as

19(07)
= — — K,
2 ot

D, (3.1)

where (o])? is the cross-shore variance of particles. Here, we calculate the time-
averaged cross-shore dispersion over the course of the breaking event as

A _ L@’y =@y

, 3.2
R (3.2)
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FIGURE 6. Effective cross-shore dispersion results for breaking wave case 3tl. (a) The
cross-shore variance (o!)? as a function of time for the bin centred at x;/L = 0.83. The
locations of #; and # used in the calculation of D, are shown for reference (O). Labels
(a—i) correspond to the time snapshots shown in figures 3 and 4. (b) The effective cross-
shore dispersion D; as a function of the initial cross-shore position x/ 0. Also shown are
the breakpoint, the location of the formation of the upslope surge, the initial intersection
of the pycnocline and the slope, and the maximum onshore location of the upslope surge.

where 7; is defined as the time at which (67)? > 1.2(67%)? (when (o7)? begins to
increase above its initial value (o] '0)2) and ¢, is defined as the end of the breaking
event.

Cross-shore variance results are binned as in § 3.1 such that (o7)? represents the
cross-shore variance of the particles that were initialized in each bin. An example
plot of (o!)? over time for case 3tl is shown in figure 6(a) for the bin centred at
x1/L = 0.83 (this corresponds to the bin with the maximum cross-shore dispersion,
see figure 6b). The curve in figure 6(a) is qualitatively similar for each bin, and
shows non-monotonic behaviour of (o1)? with time due to the oscillatory nature of
the breaking wave. The first increase in (o7)? occurs due to the initial rundown of
the wave as it approaches the slope (figure 4a—c). After breaking, (o])? decreases as
the upslope surge brings most of the particles back to roughly their initial positions
(figure 4d). Despite the decrease in (o7)* from point ¢ to point d, a small net increase
in (07)? occurs from time ¢ to point d. As the upslope surge carries particles further
onshore in the lower layer and flow over the upslope surge carries particles offshore
in the upper layer, (07)? again increases (figure 4¢). Ultimately, (o07)? increases until
the end of the breaking event due to transport by the offshore intrusion of mixed
fluid (figure 4f—i). Despite the oscillatory nature of (o7)* over time, the time-average
cross-shore dispersion D, defined in (3.2) captures the net increase in (07)? due to
the breaking event as a whole.

The cross-shore dispersion results D; for case 3tl are shown in figure 6(b) as a
function of the initial cross-shore position. The strong onshore and offshore transport
during the breaking event results in a net cross-shore dispersion of particles. As
expected from figure 5, the largest D; values occur in the breaking region, peaking
at roughly 1500 times the molecular diffusivity « near the initial intersection of the
pycnocline and the slope. From here, D; values decrease in both the onshore and
offshore directions. In the onshore direction, D; values decrease rapidly beyond the
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FIGURE 7. Maximum onshore and offshore transport (a—c) and effective cross-shore
dispersion (d—f) as a function of depth for breaking wave case 3tl. Results are shown
for three cross-shore bins centred at x;/L =0.64 (a,d, the location of maximum onshore
transport in figure 5), x;/L=0.76 (b,e, an intermediate location with similar onshore and
offshore transport values) and x;/L=0.83 (c,f, the location of maximum offshore transport
in figure 5). The maximum onshore and offshore transport is normalized by the wave
length scale L,,. Also shown are the local depth of the initial pycnocline (——-) and the
local bottom depth on the offshore side of the cross-shore bin (——).

maximum onshore position of the upslope surge. In the offshore direction outside of
the breaking region, D; values level out at roughly 300 times «.

3.3. Depth variation

The cross-shore transport of particles during wave breaking shows a clear variation
with depth (see figure 4 and Nakayama & Imberger 2010). However, this depth
variation is not considered in the maximum onshore and offshore transport and
effective cross-shore dispersion results presented above, since these are representative
of the maximum cross-shore transport and dispersion throughout the water column.
We therefore recalculate these values for several representative cross-shore bins, now
binning particles by their initial depth x} ¥ as well. We use vertical bins with a height
of hy;,,/H =0.09; the number of vertical bins used depends on the local depth of the
given cross-shore bin. The maximum onshore and offshore transport and effective
cross-shore dispersion results are presented as a function of depth in figure 7. Results
are shown for three cross-shore bins centred at x;/L =0.64 (the location of maximum
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onshore transport in figure 5), x;/L = 0.76 (an intermediate location with similar
onshore and offshore transport values) and x;/L = 0.83 (the location of maximum
offshore transport in figure 5).

As expected, cross-shore transport and dispersion are low in the upper layer and
near the surface (above roughly x;/H = —0.4), where the wave induces mostly uniform
onshore and offshore velocities. Here, the maximum transport (x] — x’f’o)mm <0.1L,
and the effective dispersion D; ~ k. Transport and dispersion increase near the
pycnocline and near the bottom, where strong onshore and offshore transport
is induced by wave breaking. At the deepest location shown in figure 7(a,d)
(x;/L = 0.64), there is a separation between the transport near the pycnocline and
the transport near the bottom. Near the pycnocline, particles move roughly 0.25L,,
onshore during breaking and the beginning of the upslope surge (see figure 4c.d),
and roughly 0.30L, during the offshore intrusion of mixed fluid at the end of the
event (see figure 4g—i). This results in an effective dispersion of roughly 400« near
the pycnocline. Near the bottom, the overall maximum onshore transport of roughly
0.90L,, occurs due to particles being carried onshore by the upslope surge. The
maximum offshore transport near the bottom is similar to that near the pycnocline
(roughly 0.30L,), but it occurs during the initial rundown of dense fluid before
breaking (see figure 4a,b). The resulting dispersion near the bottom is roughly
300«. Thus, although the maximum transport near the bottom is roughly three times
that near the pycnocline, the net spreading of particles is approximately equal in
both locations. In the middle of the lower layer (x;/H = —0.67), the net effect
of the breaking event on transport is smaller. Maximum transport is reduced to
roughly 0.05L, onshore and 0.30L, offshore, resulting in a reduced dispersion
of roughly 20«.

At the intermediate-depth location shown in figure 7(b,e) (x;/L = 0.76), the initial
pycnocline is close to the bottom. Maximum transport and dispersion values are
therefore concentrated near the pycnocline and near the bottom where velocities
are strongest during breaking. The maximum onshore transport due to the upslope
surge is roughly 0.65L, and the maximum offshore transport due to the offshore
intrusion of mixed fluid is also roughly 0.65L,. The resulting dispersion is roughly
800«, slightly larger than the maximum seen at the deeper location. The shallowest
location, shown in figure 7(c,f) (x;/L = 0.83), is onshore of the initial intersection
of the pycnocline and the slope. Transport and dispersion are thus elevated near the
bottom, where the flow is affected by the upslope surge and its subsequent relaxation
downslope. The maximum transport is dominated by offshore transport of roughly
0.80L,,, which is the overall maximum value during the event, since particles are
entrained in the offshore flow of mixed fluid after breaking. Particles are transported
only 0.35L,, onshore as the upslope surge passes by. The resulting dispersion (roughly
1600« ) is approximately twice as large as that seen at the intermediate-depth location
(figure 7e). This indicates that a relatively large number of particles initialized at
this cross-shore location are transported offshore by the intrusion of mixed fluid,
increasing the local binned variance (o). It should be noted that while the overall
maximum onshore and offshore transport values in figure 7(a—c) are equal to the
maximum values shown in figure 5 at the corresponding cross-shore locations, the
maximum effective dispersion values shown in figure 7(d—f) are generally larger than
those shown in figure 6(b). This is because without vertical binning, (07)?, and thus
D,, is reduced by particles near the surface that do not spread in the cross-shore
direction.
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FIGURE 8. Particles that make up the INL for breaking wave case 3tl: (a) the final
positions of the particles within the INL at 7 =1 and (b) their initial positions at 7 = #,.
Each plot shows contours of the intermediate region as well as a vertical line at the
cross-shore position of the initial intersection of the pycnocline and the slope xi py..

3.4. Intermediate nepheloid layer formation

The layer of particles transported offshore along the pycnocline by the breaking wave
in figure 4 resembles an INL. These features have been observed in the field (McPhee-
Shaw et al. 2004; McPhee-Shaw 2006; Cheriton et al. 2014), as well as numerically
(Bourgault er al. 2005; Nakayama & Imberger 2010; Bourgault et al. 2014) and in
the laboratory (Ivey & Nokes 1989; Helfrich 1992; McPhee-Shaw & Kunze 2002;
Nakayama & Imberger 2010). The use of particles initialized over the entire slope
(figure 1c) in our simulations allows the formation of INLs to be considered in terms
of irreversible mixing driven by wave breaking. Specifically, we divide the domain
into three regions based on the density p. The intermediate region is defined as py —
fAp/2 < p < py + fAp/2, while the top and bottom regions are defined as p <
po —fAp/2 and p > py + fAp/2 respectively. The parameter f is a fraction of the
total density difference Ap and is chosen to be 0.7. The INL is then defined to include
particles within the intermediate region at the end of the breaking event. The INL is
depicted in figure 8(a) for case 3tl.

A benefit of defining the INL using particles in this way is the ability to examine
INL composition based on particle initial positions, as shown in figure 8(b). In
addition to the particles that are initialized within the intermediate-density region, the
INL consists mostly of particles that begin in the breaking region and are mixed into
the intermediate-density region during breaking and the upslope surge. This includes
particles between the initial interface and the bottom that are swept downslope before
getting caught in the upslope surge. It also includes particles above the initial interface
that are entrained in the upslope surge as it propagates and are ultimately carried
offshore by the relaxation of dense fluid downslope.

We examine the entrainment of particles into the intermediate region during
breaking by keeping track of the fraction of INL particles in each region Ng/Npp.
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FIGURE 9. The entrainment of particles into the intermediate-density region over time for
breaking wave case 3tl: (a) a stacked area plot of the fraction of INL particles Ng/Nyy
within the intermediate (R = int), top (R = top) and bottom (R = bot) regions over time
and (b) the volume-integrated effective irreversible mixing rate ¢, as computed in Arthur
& Fringer (2014). Labels (a—i) correspond to the time snapshots shown in figures 3 and 4.

over time, with R = int, top and bot. This result is shown in figure 9(a) for case
3tl. Also shown in figure 9(b) is the volume-integrated effective irreversible mixing
rate ¢, for case 3tl, as computed in Arthur & Fringer (2014). Initially, the majority
of particles that end up in the INL are within the top and bottom regions, while a
small fraction (approximately 8 %) are within the intermediate region. The fraction of
particles in the intermediate region N, /Np; then increases monotonically over the
course of the breaking event as particles from the top and bottom regions are mixed
into the intermediate region. Several processes lead to this entrainment. First, as the
wave begins to overturn and break, a small spike in irreversible mixing is seen and
particles from the bottom region are entrained into the intermediate region (figure 95,
point ¢). Then, as the upslope surge forms and propagates upslope, irreversible mixing
increases rapidly and billows at the interface lead to increased entrainment from the
top region into the intermediate region (figure 9b, points d—f). Entrainment continues
until N;,,/Np, =1 at the end of the breaking event. We note that irreversible mixing,
and thus the entrainment of particles into the INL, is dependent on the Prandtl number
Pr=v/k, which is 7 for temperature and 700 for salt. However, we use Pr=1 here
due to the increased computational effort associated with resolving mixing for smaller
values of «.

4. Lateral transport
4.1. Three-dimensional particle dynamics

The lateral velocities induced by breaking allow for the lateral transport of particles.
Figure 10 depicts this lateral transport over time for case 3tl, including a top view
(x1—x,) of the particles, a top view of the streamwise vorticity structure w; and a side
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FIGURE 10. Lateral transport of particles, along with the density and vorticity structure,
of breaking wave case 3tl. Each panel of the figure includes three parts. The first part
shows a top view (x;—x;) of all particles. Particles are shown to extend beyond the lateral
boundaries of the domain x,/W = (0, 1) due to lateral periodicity. Also included are
contours of x,/W = 0.5 + 305 /W, where o5 is calculated using the same bins as in
figures 12 and 13, representing the lateral boundary of the particle plume. The second
part shows a top view of the breaking wave that includes isosurfaces of p = py (red),
w/wy =06 (blue) and w;/wy= —6 (green). Also included are pathlines of three particles
initialized at x,/L~0.8 and x3 ~ 0.8 (vertical grid points 8-10). The white dots represent
the (x;—x,) positions of the particles at the given time, while the white triangle represents
their initial position. The third part shows a side view (x;—x3;) of the laterally averaged
density structure. Here, (d—i) correspond to the time snapshots shown in figures 3 and 4.

view (x;—x3) of the density structure. Before turbulence develops, lateral transport
occurs only due to a random walk based on the molecular diffusivity «. Then, as the
wave breaks, lateral variability develops regions of unstable stratification due to the
lobe and cleft instability at the nose of the upslope surge and secondary convective
instability within billows at the interface (Arthur & Fringer 2014). Initially, this
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variability does not lead to enhanced lateral transport (figure 10d). However, as the
flow transitions to fully turbulent during the upslope surge (figure 10e,f), lateral
transport occurs at faster rate than that due to the molecular diffusivity. This lateral
spreading continues as dense fluid from the upslope surge relaxes back downslope,
causing a second burst of turbulence (figure 10g). Turbulence then begins to dissipate,
but the laterally spreading plume of particles continues to move offshore in the
intrusion of mixed fluid (figure 10f—i). It should be noted that in figure 10, particles
are plotted outside of the lateral boundaries of the computational domain. This is
because the lateral particle positions x, were adjusted to account for periodic boundary
crossings by adding or subtracting the domain width W.

The middle part of each panel of figure 10 also shows the pathlines of three
particles initialized at x;/L ~ 0.8 and xj ~ 0.8 (vertical grid points 8-10). The
white dots represent the (x;—x;) positions of the particles at the given time. These
particle paths highlight the effects of three-dimensionality on transport. First, the
lateral motions of the particles are driven by the lateral velocities associated with the
turbulent breakdown of the wave (this lateral transport is discussed further in §§4.2
and 4.3 below). Additionally, turbulence causes particles that are initialized at nearly
the same location to end up in quite different cross-shore positions. Such variability in
cross-shore transport is captured by the effective cross-shore dispersion D; calculated
in §3.2. To confirm this, we observe that the cross-shore separation distance, 5x”, of
the three particles at the end of the simulation (as shown in figure 10i) scales with
the cross-shore dispersion length scale,

83" /L~ \/2D,1;/L~0.1, @.1)

where D; ~ 107> m? s~!, as shown in figure 6(b) for x;/L ~ 0.8. We note that
the random walk of particles also contributes to their separation; that is, if several
particles were initialized at exactly the same position, the random walk would cause
their trajectories to diverge.

4.2. Lateral turbulent diffusivity

The lateral spreading of particles during wave breaking can be characterized by a
lateral turbulent diffusivity that is defined as

19(a3)?
= — — K,
2 ot

4.2)

2T

where (07)? is the lateral variance of particles. Here, we calculate the time-average
lateral turbulent diffusivity for the breaking event as

5. _ 1@ — @]y
Dy=-—+—"—""——k, 4.3
T f—1, K (4.3)

where #; is defined as the first time at which D,y/k — 1 > 0.05 (i.e. when particles
begin to spread at a rate above the molecular rate «) and # is defined as the end of the
breaking event (see figure 11a). A bulk value of D,; calculated in this way using all
particles initialized on the slope is approximately 4 x 10~® m? s~!, or four times the
molecular diffusivity x. However, because the turbulence that develops during wave

breaking is not homogeneous, the bulk turbulent diffusivity is sensitive to the initial
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FIGURE 11. Examples of lateral variance and lateral turbulent diffusivity calculations for
breaking wave case 3tl. (a) The bulk lateral variance (03)? (calculated using all particles)
as a function of time. The locations of #; and #; used in the calculation of D,y are shown
for reference (O), as is the molecular rate of increase of the lateral variance, (0})? = 2«t
(——-). (b) Binned lateral turbulent diffusivity results ﬁgwm as a function of time for the
bin centred at x;/L=0.75 in figure 12.

positions of the particles included in the calculation. In particular, particles in non-
turbulent regions (e.g. most of the upper layer and the lower layer outside of the
breaking region) spread only due to the molecular diffusivity, and therefore reduce
the bulk turbulent diffusivity.

A more representative turbulent diffusivity that accounts for the non-homogeneous
nature of the turbulence during breaking can be calculated by binning particles in
the cross-shore (x;) direction. We therefore create 16 cross-shore bins of length
Ly;,,/L = 0.0375 between x;/L=0.4 and x;/L =1 (as in §3.1), in which we define
binned values of the lateral variance of particles (03;;,)? and the corresponding

lateral turbulent diffusivity 5;””.”. These values are a function of time because we
reassign particles to bins after every An = 1000 time steps (¢/T = 0.04). If particles
are not re-binned, the number of particles in each bin can change over time due to
cross-shore transport, potentially leading to non-monotonically increasing values of
(03)*. Re-binning particles every 7/T = 0.04 ensures the monotonicity of (o};;,)*
because the amount of cross-shore transport that occurs over this time period is small.
The binned lateral turbulent diffusivities are then calculated for each time period An

as A
p.n+An 2
5 1 (02 hin )* = (O3pin) x (4.4)
2T,bin — 2 tn+An —_m ’ :

for n= (0, An, 2An, ...). The choice of An does not significantly affect the Dj; ,.
results as long as it is small enough to ensure monotonicity of (o3;,)* over that
time. An example of D,,,, as a function of time is shown in figure 11(b) for the
bin centred at x;/L = 0.75. It should be noted that D, ,, > 0 because (037;)? is
monotonically increasing. It begins to increase above zero when the flow becomes
turbulent within the bin at #/7 = 0.25. It then increases as turbulence grows within
the bin due to the upslope surge, decreasing slightly at #/7 = 0.38 as the upslope
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FIGURE 12. Binned lateral turbulent diffusivity calculations for breaking wave case 3tl.
Panels (d—i) show Dj; ;. as a function of x; for the times corresponding to panels (d—i)
in figures 3, 4 and 10, as well as the maximum EZ”,M over the course of the breaking
event (E;T,bm)max. Panel (j) shows a side view (x;—x3) of log, (K7 )max/k), Where ‘max’
indicates a maximum in time over the course of the breaking event, as a proxy for the
strength of turbulence in the domain (see §4.3). Also shown are the cross-shore location
of the breakpoint (A), the location of the formation of the upslope surge (<>), the initial
intersection of the pycnocline and the slope (O) and the maximum onshore location of the
upslope surge (O) which are referenced in figures 5, 6(b) and 15, as well as the initial
pycnocline (——-).

surge exits the upslope boundary of the bin. It reaches a peak of nearly 40 times the
molecular value « at ¢t/T = 0.50 as the dense fluid from the upslope surge relaxes
back downslope, and then decreases as turbulence decays.

Binned lateral turbulent diffusivity results DZT’bm as a function of cross-shore
position are shown over time in figure 12. Over the course of the breaking event, the
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FIGURE 13. Lateral turbulent diffusivity calculations as a function of initial particle
position for breaking wave case 3tl. Panel (@) shows D,r;,;, as a function of cross-shore
position x;. The values labelled 8—13 correspond to points in figure 14(b). The maximum
of 5;T’bm over the course of the breaking event (EZT,bin),w (as in figure 12) is also shown
for comparison. Panel (b) shows a side view (x;—x3) of log,,(k7/«) as a proxy for the
strength of turbulence in the domain (see §4.3). Also shown are the cross-shore location
of the breakpoint (A), the location of the formation of the upslope surge (<>), the initial
intersection of the pycnocline and the slope (O) and the maximum onshore location of the
upslope surge (O) which are referenced in figures 5, 6(b) and 15, as well as the initial
pycnocline (——-).

lateral turbulent diffusivity is elevated within the breaking region, which extends from
roughly x;/L=0.6 to x;/L=0.95. This overlaps with the most turbulent region of the
domain, marked by darker colours in figure 12(j) (see §4.3 for further discussion of
the value used as a proxy for turbulence). However, the location of elevated turbulent
diffusivity changes with time due to the non-homogeneous nature of turbulence
during wave breaking. The binned lateral turbulent diffusivity ﬂgT win 18 first elevated
near and onshore of the breakpoint (ﬁgure 12d). As the upslope surge forms and
travels upslope, the elevated region of D,;,, moves onshore (figure 12¢). Then,

as the fluid from the upslope surge relaxes back downslope, DZT,bin increases and
reaches a maximum of roughly 40 times the molecular diffusivity « at x,/L = 0.75
(figure 12f,g). As mixed fluid continues to flow offshore in the intrusion, the region
of elevated DzT »in €Xtends further offshore (figure 12h,0).

While D2T’bm provides a local measure of lateral turbulent spreading within each
bin, a measure of particle spreading based on the initial positions of particles is also
desirable. In particular, in the coastal ocean, it is useful to know how a biologically
important scalar plume (e.g. nutrients, larvae, sediment or dissolved oxygen) at a given
location may spread over the course of a wave breaking event. For this reason we
define a lateral turbulent diffusivity D,7,; that is calculated as in (4.3), but using
particles binned by their initial cross-shore position x| *_ It should be noted that
in (4.3) is now a bin-specific value (# is the same for all bins). Thus, Dorinir 18 a
measure of lateral turbulent spreading as a function of initial cross-shore location. The
Dor i tesults for breaking wave case 3tl are shown in figure 13. It can be seen
that Doy ;,; reaches a maximum value of roughly 20 times the molecular diffusivity
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between x;/L=0.725 and x;/L=0.75, near the formation of the upslope surge, and is
elevated throughout the region covered by the upslope surge, where turbulence is most
energetic (darker colours in figure 13b, see §4.3 for further discussion of the value
used as a proxy for turbulence). Particles initialized in this region first spread laterally
due to turbulence during the upslope surge (figure 10e,f). They then experience more
lateral spreading due to turbulence associated with intrusion of mixed fluid offshore
(figure 10g—i). Thus, as these particles are transported in the cross-shore direction,
they experience the maximum possible combination of the local spreading rates 5;7, bin
shown in figure 12. This is evidenced by the comparison of Doz iy with the maximum
of D2T »in OVET the course of the breaklng event (D2T bm)max in figure 13(a). Particles
initialized outside of the turbulent region do not experience as much or any local
spreading as they move in the cross-shore direction, leading to lower values of Djr ;-

4.3. Application of a generic length scale turbulence closure model

Many models exist to parameterize turbulence in situations when DNS is not feasible.
Warner et al. (2005) presented a generic length scale method that combines several
such models, where a turbulent eddy viscosity vy is estimated as

vr = c(2k) 218y + v. 4.5)

Thus, the eddy viscosity scales as vy ~ k'/?[, where k is the turbulent kinetic energy
and [ is a turbulent length scale. The vy calculation includes a stability function Sy,
that accounts for the effects of shear and stratification, as well as a model coefficient
¢ that depends on the chosen stability function. Using DNS results for case 3tl, we
evaluate the effectiveness of this model for capturing lateral spreading during the
breaking event. We use a framework that is similar to that of Warner er al. (2005)
and estimate «y by directly calculating k¥ and /. It should be noted that we set
kr = vy since the particles in our simulations are passive. We then compare xr with
the lateral turbulent diffusivity values calculated using particle tracking in §4.1. Thus,
we estimate the turbulent diffusivity with

kr = C(2k)'*1 = Ci}, (4.6)

where C is a constant, [ is a turbulent length scale and «} = (2k)'/?l. In order to
account for the effects of stratification and the presence of the bottom boundary on the
turbulent length scale, we choose /=min(Ly, Lo, L;), where Ly =k*/?/€ is the scale of
the energetic eddies, Lo = (e /N*)'/ 2 is the Ozmidov scale and L, is the local vertical
distance to the bottom wall. As in Arthur & Fringer (2014), turbulent quantities are
defined as a departure from the lateral average, such that the velocity u; = (u;) + u;,
where (u;) is the laterally averaged velocity and u; is the fluctuation about the lateral
average. The turbulent quantities k and € are then calculated as

k=1(uu), 4.7
€ =2v(s;s;), (4.8)
where s;; = ((du;/dx;) + (9u;/9x:)) /2.

To facilitate comparison of «7, which is defined for all x;, x; and ¢, with ﬁgwm,
which is defined for each cross-shore bin and time interval An, we define

1 In+-An
TR - %
(KT )bm - n’lilar'lx <tn+An — /t" kr dt) ’ (49)
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FIGURE 14. Comparison of lateral turbulent diffusivity calculations with estimates of «r
using a generic length scale turbulence closure model: (a) 5;T oin VEISUS (K7 )pins Cpin =
0.02, R}, = 0.33; (b) Dar i versus ()i, Cinir = 0.08, RZ. = 0.98. In each plot, the
best-fit line used to calculate C with the corresponding R2 value is shown. Labels 8-13
in (b) correspond to bins with elevated values of Doy, in figure 13(a).

for n=(0, An,2An, ...). Thus, k7" is the time average of x; over each time interval
An and (K7")pi, is the maximum of 7" in each cross-shore bin. Similarly, to facilitate
comparison of «3 with Dyr ,;, Which is defined for each cross-shore bin as an average

over t; to t;, we define
,* 1 v
(K7 )inin = max (tf s / K dt) . (4.10)

Thus, k7 is the time average of k7 between #; and #, and (k7)n: is the maximum of
k7 in each cross-shore bin.

Comparisons of DzT pin With (€7")pi, and Dor inir With (K3) i are shown in figure 14
along with best-fit hnes and the corresponding estimates of C. Results for the local
binned diffusivity DZTbn are relatively scattered (R7, = 0.33), but tend to increase
with (K7")pin, With an estimated Cpin value of 0.02. Results for the binned diffusivity
based on initial particle position D,z ;,; show remarkably good agreement with (K7 init
(Rmn = 0.98), with an estimated C,,, value of 0.08. It should be noted that the six
points located along the best-fit line above k}/k ~ 10 labelled 8-13 in figure 14(b)
correspond to bins with elevated values of Dy, in figure 13(a). These bins make
up the most turbulent region of the domain, as shown in figure 13(b) (darker shades
between x;/L = 0.7 and x;/L =0.9). Both estimated C values are near the ¢~ 0.18
value used with the stability functions of Canuto et al. (2001) (see Warner et al. 2005)
and the canonical value of c=C,/ V2 =0.09/ V220.06 for k— models (Pope 2000).
This suggests good agreement between lateral turbulent diffusivity values estimated
using particles and those estimated with a generic length scale turbulence model.

5. Two-dimensional model applications
5.1. Comparison of two- and three-dimensional k results

Thus far, we have discussed transport using a three-dimensional DNS (case 3tl).
However, the computational expense associated with DNS makes the extension of
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FIGURE 15. Cross-shore transport comparison between two- and three-dimensional
simulations: (a) the maximum onshore and offshore transport, and (b) the effective
cross-shore dispersion, both as functions of initial cross-shore position. For case 3t2, each
cross-shore (xi, x3) slice of particles is considered separately; grey shading represents the
range of values among all slices. For case 3, particle results are restricted to include only
those particles that are initialized at the same (x;, x3) grid points as in case 3t2. Results for
case 3tl, as in figures 5 and 6(b), are shown for reference. Also shown in each plot are
the breakpoint, the location of the formation of the upslope surge, the initial intersection
of the pycnocline and the slope, and the maximum onshore location of the upslope surge.

our results to a larger parameter space impractical. It would, instead, be practical to
make use of two-dimensional simulations for this purpose. For example, while case
3tl took 145 h to run on 432 processors (63000 CPU hours), the two-dimensional
version (case 3) took just 16 h on 144 processors (2000 CPU hours). This is roughly
a 96 % reduction in computational effort. Although two-dimensional simulations of
breaking internal waves on slopes contain the unrealistic inverse energy cascade
associated with two-dimensional turbulence, they are nonetheless qualitatively similar
to three-dimensional simulations at this scale (Arthur & Fringer 2014, see figure
13 therein). We therefore expect the cross-shore transport results from two- and
three-dimensional simulations to be similar as well. By comparing the results of
the two- and three-dimensional versions of case 3, we can determine whether it is
reasonable to extend our results using two-dimensional simulations.

Figure 15 shows a comparison of cross-shore transport results between case 3t2
(three-dimensional) and case 3 (two-dimensional), including the maximum onshore and
offshore transport as well as the effective cross-shore dispersion, both as functions
of initial cross-shore position. It should be recalled from §2.3 that case 3t2 includes
particles initialized at the bottom 20 grid points in 10 cross-shore (x;, x3) slices over
the width of the domain. We choose this initialization instead of that in case 3tl
(in which all particles are initialized along the lateral centreline) in order to better
capture transport over the lateral extent of the flow. We note that because most of
the cross-shore transport occurs near the bottom in the breaking region (figure 7), the
maximum transport results in cases 3tl and 3t2 are similar, as indicated by the dashed
line in figure 15(a). The effective cross-shore dispersion for case 3tl, as shown by
the dashed line in figure 15(b), is also similar to that in case 3t2. However, some
differences arise because the cross-shore dispersion in case 3tl is affected by particles
in the upper layer. We consider each of the initial 10 cross-shore particle slices in
case 3t2 separately. That is, we calculate maximum onshore and offshore transport,
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as well as the effective cross-shore dispersion, separately for each slice. Figure 15,
therefore, shows the range of transport values among these 10 slices. Finally, in order
to fairly compare case 3t2 with case 3, which has particles initialized at every vertical
grid point over the entire length of the slope, we restrict the case 3 particle results to
include only those particles that are initialized at the same (x;, x3) grid points as in
case 3t2.

While the shapes of the maximum transport and effective dispersion curves for the
two-dimensional (case 3) and three-dimensional (case 3t2) simulations are similar,
some differences can be noted. In both simulations, the maximum onshore transport
occurs for particles initialized just offshore of the breakpoint (figure 15a). However,
this maximum transport is slightly smaller for the three-dimensional simulation. The
maximum offshore transport occurs, in both simulations, for particles initialized just
onshore of the intersection of the pycnocline and the slope (figure 15a). The maximum
offshore transport is again slightly smaller for the three-dimensional simulation. The
two-dimensional result essentially represents an upper bound for the cross-shore
transport and dispersion, with the three-dimensional dispersion result being up to a
factor of two smaller in the breaking region.

The differences in transport and dispersion are due to increased dissipation in
the three-dimensional simulation. Arthur & Fringer (2014) found a 20 % increase in
dissipation for their case 3 (identical to cases 3tl and 3t2 here) due to turbulence
during wave breaking. Roughly 60 % of this difference in dissipation occurs before
t/T = 0.4, which is when the upslope surge reaches its maximum upslope position.
The remaining 40 % occurs during the relaxation of mixed fluid downslope after
the upslope surge and its subsequent intrusion offshore (figure 3f—i, also see figure
15 after t/T = 0.4 in Arthur & Fringer 2014). Despite the differences between the
two- and three-dimensional simulations, their qualitative agreement justifies the use
of two-dimensional simulations to extend the cross-shore transport results of §3 to
a parameter space consisting of several wave amplitudes and bathymetric slopes, as
described in the next section.

5.2. Variation of cross-shore transport with wave amplitude and bathymetric slope

The density and velocity structure associated with breaking internal waves is known
to change with the amplitude of the incoming wave a and the bathymetric slope
s (Boegman et al. 2005; Arthur & Fringer 2014). It follows that the magnitude
of cross-shore transport induced by breaking waves should also change with these
parameters. We investigate the changes in cross-shore transport as a function of a and
s for two-dimensional cases 1-7 (summarized in table 1) using particles initialized
over the length of the slope (see figure 1c). We also consider how transport varies
with the combined effect of a and s using the internal Iribarren number & =s/\/a/L,,
which has been used in the past to classify wave breakers (Boegman et al. 2005;
Aghsaee et al. 2010), wave reflection (Bourgault & Kelley 2007; Aghsaee et al. 2010)
and turbulent mixing (Boegman et al. 2005; Arthur & Fringer 2014). The results are
summarized in figure 16. Onshore and offshore transport are quantified as the change
in cross-shore particle position over the course of the breaking event x! — x/ . The
effective cross-shore dispersion D; is calculated with (3.2) using bins of the same
length (and thus the same number of particles) as in § 3.1 for all cases.

First, we examine the variation in cross-shore transport with the non-dimensional
incoming wave amplitude a/h; (keeping the slope s constant) using the results of
cases 1, 3, 4 and 5. The maximum onshore and offshore transport of particles
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FIGURE 16. Variation in cross-shore transport and dispersion for breaking wave cases 1-7.
It should be noted that onshore transport is positive while offshore transport is negative.
(a) Maximum onshore and offshore transport and (b) maximum effective cross-shore
dispersion as functions of the incoming wave amplitude a/h;. (¢) Maximum onshore
and offshore transport and (d) maximum effective cross-shore dispersion, both relative
to the corresponding no-slope (ns) case and as functions of a/h;. (¢) Maximum onshore
and offshore transport and (f) maximum effective cross-shore dispersion as functions of
the bathymetric slope s. The s =0 case with the same amplitude, case 3ns, is shown
for reference. (g) Maximum onshore and offshore transport and (4) maximum effective
cross-shore dispersion as functions of the internal Iribarren number £&.
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increases with increasing a/h;, (figure 16a) due to the increased energy of the wave;
as a/h; increases, the wave has more incoming energy to propagate onshore and
more reflected energy to propagate back offshore. A similar result was presented by
Bourgault et al. (2014), who found a linear increase in the extent of offshore transport
with increasing incoming wave energy. An increase in the effective cross-shore
dispersion is also seen with increasing a/h;, (figure 16b).

In the absence of a slope, non-breaking internal solitary waves transport particles,
and this transport also increases with a/h; (Lamb 1997; Gil & Fringer 2015).
Therefore, it is useful to compare the cross-shore transport due to a breaking internal
wave on a slope with that of the same wave propagating over a flat bottom. Although
weakly nonlinear theory (e.g. KdV or eKdV) can be used to estimate transport by a
wave over a flat bottom, fully nonlinear methods must be used for finite-amplitude
internal solitary waves since they broaden with increased nonlinearity, an effect
that significantly impacts the transport (Lamb 1997; Gil & Fringer 2015). We use
the no-slope cases 1ns, 3ns, 4ns and Sns to quantify transport due to the internal
gravity waves in cases 1, 3, 4 and 5 in the absence of a slope. Figure 16(c,d) shows
the maximum onshore and offshore transport, as well as the effective cross-shore
dispersion, for cases 1, 3, 4 and 5 relative to the corresponding no-slope cases. The
maximum cross-shore transport (figure 16¢) is larger in the sloping cases due to
wave breaking. Both onshore and offshore transport are roughly four times larger in
the sloping case for small to intermediate values of a/h;, with the ratio decreasing
as a/h, increases. The relative onshore transport reaches a maximum at a/h, = 0.17.
This peak in the onshore transport is probably due to a peak in onshore energy flux,
as described by Venayagamoorthy & Fringer (2006): for smaller waves, there is little
energy to transmit onshore, while for larger waves, dissipation and mixing increase,
leading to a reduction in onshore energy transmission (see figure 10, Venayagamoorthy
& Fringer 2006). In contrast to the onshore transport, the relative offshore transport
decreases monotonically with increasing a/h;.

Interestingly, the maximum effective cross-shore dispersion (figure 16d) is smaller
in the sloping cases than in the no-slope cases. Because the breaking wave is a
superposition of incident and reflected waves, a particle can be transported a large
distance onshore by the incident wave before being transported back offshore by the
reflected wave. The effect of the slope is therefore to reduce the effective cross-shore
dispersion despite an increase in maximum onshore and offshore transport. In the
limit of a vertical wall (infinite slope), there would be little energy loss during
reflection, and the incident and reflected waves would be of similar amplitudes. As a
result, the reflected wave would return a particle transported onshore by the incident
wave back to roughly its initial location, leading to negligible effective cross-shore
dispersion.

Next, we examine the variation in cross-shore transport with bathymetric slope s
(keeping a/h, constant) using the results of cases 2, 3, 6 and 7. Maximum onshore
and offshore transport decrease with increasing s (figure 16¢). Intuitively, onshore
transport decreases with increasing s because, for a steeper slope, the wave can
travel a shorter onshore distance with the same amount of work against gravity. We
might expect offshore transport to increase with increasing slope since more energy
is reflected off of a steeper slope (see figure 20, Aghsaee er al. 2010). However, if
we define the end of the breaking event as the time at which dissipation reaches a
minimum before the next breaking event begins (Arthur & Fringer 2014), then this
time scale increases with decreasing s. Thus, more time is allowed for reflected wave
energy to transport particles offshore on gentler slopes. This more than compensates
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for the decrease in reflected energy, causing offshore transport to increase with
decreasing slope.

The maximum effective cross-shore dispersion (figure 16f) peaks at roughly 2500
times « for the intermediate slope s =0.15. For larger slopes, the effective dispersion
decreases because there is less cross-shore transport. For smaller slopes, the effective
dispersion decreases due to the behaviour of fission breakers (see table 1 and Arthur
& Fringer 2014). In this breaking regime, boluses transport a relatively small fraction
of particles onshore by a large amount. However, the overall spreading of particles on
the slope is comparatively small because the majority of particles are not affected by
the boluses. The results for case 3ns, which has the same incoming wave amplitude as
cases 2, 3, 6 and 7 but zero slope, are also included in figure 16(e,f) for reference. As
discussed above in reference to figure 16(c,d), the presence of the slope increases the
maximum cross-shore transport associated with the wave, but decreases the effective
cross-shore dispersion.

Finally, we present the variation in cross-shore transport with the combined effect
of incoming wave amplitude and bathymetric slope using the internal Iribarren number
& for cases 1-7. The maximum onshore and offshore transport values decrease with
increasing & (figure 16g), as expected from figure 16(a.e), but are of the order of
the wave length scale L, for all cases. Onshore transport values range from roughly
0.4L, to 2.3L, and offshore transport values range from roughly 0.4L, to 1.6L,.
The effective cross-shore dispersion (figure 16/4) peaks at roughly 4500 times « for
intermediate internal Iribarren numbers & & 0.8, decreasing for larger values of & due
to either steeper slopes or smaller waves, and decreasing for smaller values of & due
to the occurrence of fission breakers.

The constant slope cases (1, 3, 4 and 5) and the constant amplitude cases (2, 3,
6 and 7), are presented separately in figure 16(g,h). While the maximum cross-shore
transport shows a similar relationship to the internal Iribarren number & regardless of
whether a/h, or s is held constant, the same is not true for the effective cross-shore
dispersion. The sharp peak in effective cross-shore dispersion at & 2 (.8 is associated
with the occurrence of plunging breakers (cases 4 and 5, see table 1), which introduce
more available potential energy to the flow than collapsing breakers with similar
internal Iribarren numbers (cases 3 and 6). This discrepancy highlights a limitation of
the internal Iribarren number, specifically that it may not uniquely define the properties
of a breaking wave for a given wave amplitude and bathymetric slope. As noted in
Arthur & Fringer (2014), properties such as the mixing efficiency or cross-shore
transport of breaking internal waves on slopes might be more appropriately classified
as a function of both the wave slope and the bathymetric slope, as in Aghsaee et al.’s
(2010) figure 6 for internal wave breaker types.

Despite its limitations, the internal Iribarren number provides a convenient way
to compare idealized laboratory-scale transport results with those of a field-scale
study. Bourgault et al. (2005) used a two-dimensional model to study an internal
solitary wave shoaling in the St Lawrence Estuary. With an initial wave amplitude
of a=15 m, an initial wave length scale of L, ~200 m and a bathymetric slope of
5§ =0.03-0.06 (1.9°-3.3°), their case had an internal Iribarren number of approximately
0.1-0.2. Although this resulted in a fission breaker that is qualitatively similar to the
breaking wave in our case 7, there are several differences between the field-scale
model of Bourgault er al. (2005) and our laboratory-scale simulations. In terms of
the initial density field, the field-scale case has a relatively thick interface, as well
as a relatively deep lower layer. Additionally, Bourgault et al. (2005) employed
a quadratic drag law to parameterize the bottom friction, while we employ a
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no-slip bottom boundary condition with high near-bottom resolution. Field-scale
models typically employ a quadratic drag law to account for the unresolved bottom
boundary layer dynamics, for both hydrodynamically smooth and rough boundaries.
Our simulations employ a no-slip condition because the boundary layer is resolved
in both the two- and three-dimensional simulations. However, as noted in §5.1,
the two-dimensional simulations slightly overpredict the transport due to a lack of
resolved three-dimensional dissipation during wave breaking. This effect could be
accounted for with a turbulence model that parameterizes the unresolved dissipation
along with a quadratic drag law that can effectively be tuned to produce a better
match between the two- and three-dimensional results. Ultimately, Bourgault et al.
(2005) used a passive scalar to observe both onshore and offshore transport due to
wave breaking. They observed a maximum onshore transport greater than L, within
upslope-propagating boluses, and a maximum offshore transport of roughly 1.5L,
within an intermediate-density intrusion. These maximum cross-shore transport values
agree quite well with what would be predicted by our two-dimensional simulations.
Further comparisons with field-scale cases with low internal Iribarren numbers would
require runs with lower slopes, which are more computationally expensive due to the
need for a longer domain for a given depth.

5.3. Intermediate nepheloid layer composition

Despite the lack of three-dimensional turbulence in the two-dimensional simulations,
particles are entrained into the pycnocline through diffusive processes that mimic
three-dimensional turbulent entrainment. Therefore, the two-dimensional simulations
can be used to qualitatively understand the impact of the internal Iribarren number
on INL composition. Specifically, we would expect a change in the initial cross-shore
extent of particles that are ultimately entrained into the INL as a function of the
internal Iribarren number & for the two-dimensional breaking wave cases 1-7.
This change is relevant to biologically important scalars in the coastal ocean, as
it could determine whether or not they are carried of the order of 1-10 km offshore
(McPhee-Shaw 2006) during an internal wave breaking event. Figure 17(a) shows
the initial onshore and offshore extents of near-bottom particles that are entrained
into the INL as a function of the internal Iribarren number £. By visual inspection,
we restrict this result to particles initialized near the bottom in order to remove the
effect of particles initialized offshore near the pycnocline. As an example, figure 8(b)
indicates a maximum onshore extent of roughly 0.3L, and a maximum offshore
extent of roughly 0.6L,, of near-bottom particles that are entrained into the INL; the
particles extending offshore along the pycnocline in figure 8(b) are not considered. It
should be recalled that the results in figure 8(b) are for case 3tl, and are similar to
the results for case 3 shown in figure 17 (£ = 1.07). Both the onshore and offshore
extents of INL particles decrease with increasing & due to either increasing s or
decreasing a/h;. Based on the trends shown in figure 17(a), we notice that the initial
onshore and offshore extents of INL particles scale with the excursion distance of
the wave on the slope L, =a/s. Figure 17(b) shows the initial onshore and offshore
extents of INL particles as a function of L, for the corresponding breaking wave case.
For each case, both the onshore and offshore extents scale well with 2L,.

6. Conclusions

Using high-resolution numerical simulations with a particle-tracking model, we
have examined transport due to breaking internal gravity waves on slopes. We began
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FIGURE 17. Variation in INL composition for breaking wave cases 1-7. (a) The initial
cross-shore extent of near-bottom particles that are entrained into the INL as a function
of &. The initial cross-shore extent is presented relative to the initial intersection of the
pycnocline and the slope x; ,,. and normalized by the wave length scale L,,. (b) The initial
cross-shore extent of particles that are entrained into the INL as a function of L./L,, along
with a line of slope 2.

with a general physical description of cross-shore transport based on the results
of a three-dimensional DNS case. Onshore transport was found to occur within an
upslope surge (i.e. a bore or bolus) of dense fluid after breaking. Offshore transport
occurred due to the relaxation of dense fluid from the upslope surge back downslope.
Because of mixing during the upslope surge, this fluid was less dense than the lower
layer. It therefore detached from the slope and flowed offshore along the pycnocline
as an intrusion. Maximum onshore and offshore transport values varied with the
initial cross-shore positions of particles, and were of the order of the initial wave
length scale for particles that were initialized within the breaking region. Cross-shore
transport was characterized using an effective dispersion coefficient that was up
to three orders of magnitude larger than the molecular diffusivity near the initial
intersection of the pycnocline and the slope. Both the maximum onshore and offshore
transport, as well as the effective cross-shore dispersion, vary with the depth, with
larger values occurring near the pycnocline and along the bottom where velocities
induced by wave breaking are strongest.

The layer of particles transported offshore by the intrusion of mixed fluid after
breaking resembled an INL, as observed in previous studies of wave breaking on
slopes in the field (McPhee-Shaw et al. 2004; McPhee-Shaw 2006; Cheriton et al.
2014), in the laboratory (Ivey & Nokes 1989; Helfrich 1992; McPhee-Shaw & Kunze
2002; Nakayama & Imberger 2010) and in numerical models (Bourgault et al. 2005,
2014; Nakayama & Imberger 2010). In order to visualize the INL, an intermediate-
density region was defined within 0.7Ap of py. Most particles did not begin in this
region, but were entrained into it during the breaking event and then carried offshore
in the resulting intrusion. The entrainment of particles into the intermediate region
was shown to correspond to the volume-integrated effective irreversible mixing rate
¢, from Arthur & Fringer (2014). This represents a mechanism by which biologically
important scalars in the breaking region can be transported offshore in the interior of
the water column.
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When internal waves break on a slope, three-dimensional effects were shown
to cause lateral transport of particles due to the turbulence that develops. Lateral
transport was quantified using a binned lateral turbulent diffusivity that varied in the
cross-shore direction and in time due to the non-homogeneous nature of turbulence
during wave breaking. This value represents the local lateral turbulent spreading
of particles in each cross-shore bin, and was found to be elevated throughout the
breaking region, reaching a peak of roughly 40 times the molecular level. A second
lateral turbulent diffusivity that is a function of the initial cross-shore location of
particles was also calculated, and reached a peak of roughly 20 times the molecular
level. Particles with different initial cross-shore positions undergo different amounts
of lateral turbulent spreading depending on the local turbulence they experience
as they are transported in the cross-shore direction. This is relevant to the coastal
ocean, where breaking internal waves may transport and spread biologically important
scalars such as nutrients, larvae, sediment or dissolved oxygen. Both lateral turbulent
diffusivity values calculated using particles were shown to agree well with turbulent
diffusivities estimated using a generic length scale turbulence closure model, with
estimated model coefficient values near other published values.

Based on favourable comparisons between two- and three-dimensional simulations,
we used two-dimensional simulations to extend cross-shore transport results to
additional wave amplitude and bathymetric slope conditions. The maximum onshore
and offshore transport, as well as the effective cross-shore dispersion, were found to
increase with the initial wave amplitude due to the increased energy of the incoming
wave. When compared with the maximum transport for the same wave propagating
over a flat bottom, the relative transport for waves breaking on slopes was up
to 4.5 times larger, but was found to decrease with increasing wave amplitude.
Despite the larger maximum transport for sloping cases compared with no-slope
cases, the cross-shore dispersion was smaller for the sloping cases due to the effect
of wave reflection, which reduced the net cross-shore movement of particles over
the course of the breaking event. The maximum onshore and offshore transport
was also found to decrease with increasing bathymetric slope. Onshore transport
decreases for steeper slopes because more work is required against gravity to achieve
the same cross-shore transport. Offshore transport decreases due to the decreasing
duration of the breaking event for steeper slopes. The effective cross-shore dispersion
peaks for intermediate slopes; for larger slopes, dispersion decreases because there is
less cross-shore transport, while for smaller slopes, dispersion decreases due to the
occurrence of fission breakers. These transport effects due to varying wave amplitude
and bathymetric slope can be combined using the internal Iribarren number, &. The
internal Iribarren number is also useful to characterize the initial cross-shore extent of
near-bottom particles that are entrained into the INL during wave breaking. Increasing
the value of & decreases this extent because of a decrease in the cross-shore excursion
distance L, =a/s. The cross-shore excursion distance was found to be a good predictor
of the initial onshore and offshore extents of INL particles, which both scale roughly
with 2L,.
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