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[11 We develop a three-dimensional numerical model to simulate bed form dynamics
in a turbulent boundary layer. In the numerical model, hydrodynamics is solved in a
moving generalized boundary-fitted curvilinear coordinate system, such that the domain
boundary exactly follows complex time-dependent bed form geometry. The resolved
turbulent features are computed via large-eddy simulation, while the subgrid scale
turbulent motions are modeled with a dynamic mixed model. A second-order accurate
arbitrary Lagrangian-Eulerian method is used to guarantee conservation of sediment mass,
while the grid moves arbitrarily due to the motion of the bed. Transport of suspended
load is modeled using the Eulerian approach with a pickup function as the bottom
boundary condition for sediment entrainment at the bed. Transport of bed load and
suspended load are combined in a mass balance equation for the bed, which evolves due to
the spatiotemporally varying bed stress induced by the turbulent flow field above the
bed and gravity (gravity-induced avalanche flow). Motion of the bed in turn affects the
flow field in a coupled hydrodynamic moving bed simulation, in which bed features
evolve due to resolved details of the turbulent flow. We compare different bed elevation
models and demonstrate the capability of the present model through simulation of

sand ripple formation and evolution induced by turbulence in an oscillatory flow.

A resolution study demonstrates the need for fine grid resolution to resolve a bulk

of the near-wall turbulence, which is essential for bed form initiation.

Citation: Chou, Y.-J., and O. B. Fringer (2010), A model for the simulation of coupled flow-bed form evolution in turbulent

flows, J. Geophys. Res., 115, C10041, doi:10.1029/2010JC006103.

1. Introduction

[2] In the coastal environment and fluvial systems, sedi-
ment transport induced by time periodic forcing due to
gravity waves or constant forcing due to currents results in
different types of bed forms, ranging from small-scale ripples
(O (10 cm)) to large-scale (O (10 m)) sand dunes and bars.
Understanding bed form dynamics is important because it
provides insight into the estimation of the bottom roughness
which is of practical importance in coastal and hydraulic
engineering. It is also essential in countless problems related
to coastal and fluvial geomorphology.

[3] The first models that were employed to study the for-
mation of sand dunes and ripples were based on linear sta-
bility theory that required assumptions of weak spatial
variability and small-amplitude bed forms [e.g., Fredsoe,
1974; Ridchards, 1980; Colombini, 2004]. In the natural
environment, linear stability theory is applicable to the
analysis of small-amplitude sand dunes and sand ripples,
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namely rolling grain ripples (dunes). Rolling grain ripples are
sand ripples over which flow separation does not shed vor-
tices and most of the transport of sediment occurs within the
bed in the form of bed load. In the coastal environment where
the size of sediment particles is small (O (0.1 mm)),
assumption of small-amplitude bed forms is only valid during
the initial stages of bed form evolution. This initial period
under which rolling grain ripples exist is very short when
compared to the time scale of a typical bed form life cycle. In
general, ripples continue to grow in size beyond rolling grain
ripples and, at a certain amplitude, vortices form in their lee
due to flow separation. These vortices provide a strong local
vertical velocity field that entrains sediment from the bed into
the water column. When the ripples reach an amplitude in
which vortices form, they are known as vortex ripples, and
sediment transport is dominated by suspended sediment
which is ejected into the flow field by the strong vertical
velocities and turbulence associated with the vortices. Once
vortices form, linear stability analysis no longer applies
because of the presence of suspended load, which is primarily
responsible for the transition from rolling grain to vortex
ripples.

[4] Recently, due to great advances in computational
power and computational fluid dynamics (CFD) techni-
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ques, great attention has been paid to flow details over
vortex ripples. Through numerically solving the discretized
Navier-Stokes equations on a rippled bed with oscillatory
forcing, simulation results allow detailed observations of the
vorticity dynamics [Blondeaux and Vittori, 1991; Scandura
et al., 2000], turbulence structures [Barr et al., 2004], and
sediment transport patterns [Chang and Scotti, 2003; Zedler
and Street, 2006] over synthetic ripples. Although numerical
simulations of oscillatory flow over idealized sand ripples
reveal realistic flow features and the associated sediment
transport phenomena, these studies suffer from the lack of
the coupling mechanism between the dynamic bed forms and
the flow field. That is, due to the lack of a bed form model to
describe the evolution of the bed, these studies are restricted
to demonstration of steady or quasi-steady state by assuming
a static sand bed. As a result, most of what is known about
dynamic bed forms has been realized through laboratory
experiments [e.g., O’Donoghue and Clubb, 2001; Faraci
and Foti, 2002; Testik et al., 2005; Lacy et al., 2007].
While laboratory experiments yield a great deal of insight,
further understanding of bed form dynamics can be achieved
through the use of CFD tools that can simulate the details of
the turbulent flow field above a bed and how it leads to the
formation of dynamic bed forms which in turn affect the
turbulent flow.

[s] Few papers have been published on the numerical
simulation of flow problems over dynamic bed forms. Giri
and Shimizu [2006] present a two-dimensional numerical
model that couples the flow field to changes in the bed to
simulate sand dune migration in a unidirectional flow.
Although they demonstrated predictive capability of their
model under some laboratory settings, the simplified two-
dimensional model is limited to studying the influence of
simplified flow fields on bed form dynamics and cannot be
applied to simulate realistic bed forms under complex, tur-
bulent flows. Because formation of bed forms is dominated
by turbulence, two-dimensional models cannot directly
simulate the formation of bed forms due to a turbulent flow
field but instead must model the turbulence to account for
the unresolved, three-dimensional flow physics.

[6] A three-dimensional moving bed model is presented
by Ortiz and Smolarkiewicz [2006] to study large-scale sand
dune evolution in severe winds. Combining a numerical
atmospheric model with a morphologic model, they suc-
cessfully obtain qualitatively realistic results of barchan
dune evolution in the aeolian system. However, bed form
dynamics in water flows is more difficult to simulate than
sand dunes in the aeolian environment because morpho-
logical dynamics in the aeolian environment results pri-
marily from sand grain saltation and avalanching of granular
flows, both of which can be categorized as bed load. In the
aquatic environment, on the other hand, morphological
processes result from both suspended and bed load trans-
port. Transport of sediment in the atmospheric boundary
layer is mainly induced by the shear stress exerted by winds,
which in turn influences transport of bed load, while in
water, transport of sediment is not only affected by shear
stress, but is also closely tied to turbulence and the vortex
dynamics of the flow field which contribute to a bulk of the
flux of suspended sediment throughout the water column.
Therefore, in order to study the detailed flow features and
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bed form dynamics in the coastal environment, a three-
dimensional Navier-Stokes solver that can resolve fine-scale
flow features over time-dependent bottom topography is
required.

[7] In this paper, we present a numerical model that solves
the Navier-Stokes equations in a moving generalized curvi-
linear coordinate system. Employing a second-order con-
sistent arbitrary Lagrangian-Eulerian (ALE) scheme, the
numerical model solves flow problems on arbitrarily moving
meshes, which enables simulation of flows over time-
dependent deforming bottom geometry. Moreover, incor-
porating a suspended load model with the Eulerian approach
and a large-eddy simulation model (LES) with a proper
sediment boundary condition, the present model is able to
simulate sediment pickup and suspension in strongly turbu-
lent flows. Along with a suitable bed elevation model derived
from a sediment mass balance, the model enables simulation
of unsteady flow and the associated sediment transport over
dynamic bed forms, thereby enabling the study of bed form
dynamics in complex flows. Unlike previously mentioned
studies on numerical simulations of turbulent flow and sed-
iment transport over synthetic fixed ripples, the present
numerical model enables study of flow physics and sediment
transport over realistic time-dependent ripples. We summa-
rize the mathematical formulation of the present model and
we analyze different bed elevation models based on different
types of existing empirical sediment transport formulae.
Numerical and physical aspects related to the development of
the bed elevation model are addressed with simulations of
sand ripple formation and evolution induced by turbulence in
an oscillatory flow due to waves. The model is validated
through comparison to existing numerical and laboratory
studies.

2. Mathematical Formulation

2.1.

[8] After applying a spatial filter denoted by the overbar,
the equations governing the motion of a three-dimensional
unsteady fluid with the Boussinesq approximation in strong
conservation law form in a generalized curvilinear coordi-
nate system (£, &, £3) are given by

Hydrodynamics
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where ¢ is time, u; represents the Cartesian velocity com-
ponents, U, is the contravariant volume flux, 6 is the
Kronecker delta, p is the pressure, g is the gravitational
acceleration, p is the density of the sediment-water mixture,
po 1s the water density, pj is the background density, v is the
kinematic viscosity, J ! is the inverse of the Jacobian or
the volume of the cell, G™ is the mesh skewness tensor, and
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T is the coordinate-transformed subgrid scale (SGS)
stress. The quantities U,,, J~!, G™ and T;,, are defined,
respectively, by

1 08m _
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Ox;

J = det(—’), 4
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where x; is the Cartesian coordinate. Here the Einstein
summation convention is assumed with Z, j, m,n=1,2, 3 and
X3 is the vertical coordinate. The density stratification of the
sediment-water mixture is modeled with

p=po(1-C)+pC, (7)

where p, is the sediment density (=2650 kg m ), and C is
the sediment concentration in volume fraction, and in
equation (2), the background density, p,, is equal to the
water density (pp). In the present study, we employ a
dynamic mixed model (DMM) for the SGS motion in the
LES framework. The DMM is composed of a dynamic
Smagorinsky term and a modified Leonard term. The
dynamic Smagorinsky term models the SGS motion as
turbulent diffusion with a dynamically determined eddy-
viscosity while for the modified Leonard term, through the
self-similarity assumption, the other portion of the SGS
stress is reconstructed by applying a test filter. In this
framework, as is standard practice in LES formulation [e.g.,
Zang and Street, 1995; Armenio and Sarkar, 2002; Cui and
Street, 2004], the impact of the stratification on the unre-
solved fields is implicit in the method by which the unre-
solved fields are computed. This occurs because the
unresolved fields are either modeled or reconstructed from
the resolved fields which are directly affected by density
stratification.

2.2. Suspended Sediment

[s] Transport of suspended sediment is modeled with an
Eulerian formulation, whereby suspended sediment con-
centration is transported as a scalar with a settling velocity.
In practice, the Eulerian approach can be applied to dilute
sediment suspensions with C ~ O(0.01) in volume fraction.
However, this assumption may not always be true in coastal
flows, particularly in near-bed regions where large con-
centrations of sediment exist, and under such conditions,
two-way coupling effects between sediment and water must
be taken into account. The interactions between sediment
particles and water can only be modeled with the Lagrangian
approach, which tracks the trajectory of each particle and
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models its own inertia. However, this is not practical to apply
to sediment suspension modeling in which a large number of
particles are present. An alternate methodology is to employ
the two-phase approach, in which sediment parcels are
modeled as a second flow phase such that the inertia of
sediment parcels and the drag between the sediment phase
and water phase is taken into account. However, due to the
strong nonlinearity of interactions between groups of sedi-
ment particles and the flow, accurate simulation of two-way
coupling for sediment-water interaction remains a chal-
lenging and unsolved problem, and there is much room for
further study, particularly in the context of LES [Crowe
et al., 1996]. In the numerical examples that we demon-
strate in the present study, since the volumetric sediment
concentration in most regions of the domain is less than
0(0.01), we employ the Eulerian method, which simulates
the sediment dynamics reasonably well in practical engi-
neering problems and has been successfully applied by
numerous other authors [e.g., Gessler et al., 1999; Zedler
and Street, 2001, 2006; Chou and Fringer, 2008].

[10] After applying a spatial filter denoted by the overbar,
the governing equation for the concentration field (C) of
suspended sediment is given by

OF

9T _O[C(Un—
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where W,, is the contravariant settling volume flux and F is
the coordinate-transformed SGS flux, and are defined by
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where wy is the settling velocity of the sediment particle.
Again, we employ DMM for the SGS sediment flux, which
is analogous to DMM for momentum by Zang et al. [1993].

[11] A challenging issue for modeling transport of sus-
pended sediment is the bottom boundary condition, which
must represent subgrid scale flux of sediment from the bed
due to erosion. The pickup function to represent this flux of
sediment is given by

*3 ey
P {aD T

Vi Dgdo

where «, 3, and  are constant coefficients to be deter-
mined, p; is the sediment density, s is the specific gravity
of sediment, g is the gravitational acceleration, d, is
the sediment diameter, the nondimensional diameter D* =
do [(s — Dg/v 21", T* = (6 — 6,)/0., the Shields parameter 6
is given by

>80,
(11)

0 otherwise,

= 5 eedy’ (12
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Figure 1. Configurations of the control volume in the BEM
with (a) the bed load model and (b) the pickup function.

and 6, is the critical Shields parameter. The shear stress 7
at the bottom is calculated with
Th -

~ = CpU},
14

(13)

where U, = (/#} + %3 is the magnitude of the horizontal

velocity, and u;, u, are velocity components in the x and
y directions, respectively, and Cp is the drag coefficient on
the bottom. Based on the log law in the turbulent boundary
layer, Cp is determined with

Cp = Fln (271 + ZO)} 72:
K V)

where k = 0.41 is the von Karman constant, z, is the bottom
roughness, and z; is the distance between the channel bed and
the center of the bottommost cell. On the bed with fixed
roughness in the absence of saltating grains, the Nikuradse
roughness zo y = dy/12 can be used as z,. However, when
saltating grains are present, a value that is larger than the
Nikuradse roughness should be used. Typically, it varies from
0(0.1dy) to O(10dy ) depending on T* [Smith and McLean,
1977; Grant and Madsen, 1982]. In the present simulations,
Max(7* ) = O(10), which gives zy ~ O(d,). Therefore, fol-
lowing Zedler and Street [2006], zo = d is chosen to be the
bottom roughness. In the present study, we use the values a =
0.00033, 3=0.3 and v = 1.5 in equation (11) as suggested by
van Rijn [1993] from experimental data. Since the vertical

(14)
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velocity vanishes at the bottom, the flux described by the
pickup function must represent the entire SGS flux from the
bed, as described in detail by Chou and Fringer [2008].

2.3. Bed Elevation Equation

[12] The bed elevation equation (BEE) mathematically
describes the evolution of the bed elevation and provides a
link between the fluid motion and the bed form dynamics.
In the present study, the bed is defined as the sediment that
resides above some immobile layer of sediment and below
the fluid. A general form of the mass balance for the
sediment within the bed is given in curvilinear coordinates
(&, m=1,2, and 3) as

0J7'C  0Fp,
o1 D

=0, (15)

where Fp is the contravariant sediment volume flux
defined as

Om

]:B,m :Jilgf&/v (16)
J

in which f3 ; = Cu; is the sediment flux within the bed and
is determined by the flow field and local geometry. This
transport equation moves sediment around in a very thin
layer near the bed in which intensive sediment pickup and
deposition result in a very high concentration field. This
high concentration field, sometimes referred to as bed load,
is the main contribution to bed form dynamics, and the
method of modeling this high-concentration sediment-
water mixture is the key issue for modeling bed form
dynamics.

[13] Assuming 6z is the thickness of this high-
concentration layer, which is also defined as the bed load
layer, the depth-integrated mass balance (equation (15))
over g can be written as

aJ; ' 65C . 00s.n

By 2€, ‘n:1,2 +J§1 (Flux,(,,, — Flux;,,m) =0,

(17)

where J; ' is a two-dimensional inverse Jacobian (the sur-
face area) of the projected bottom face of the control volume
to the horizontal plane, the tilde denotes the average over the
thickness 6p, the subscripts top and btm denote that the
associated quantities are evaluated at the top and bottom
surfaces of the bed load layer, respectively, and Q; is the
contravariant sediment volumetric transport rate in the bed
plane (the &;, & plane). A configuration of this control
volume is shown in Figure 1. At the bottom of the bed load
layer, the sediment concentration is equal to (1 — p’), in
which p’ is the porosity of the bed material, and the sediment
flux at the bottom (Flux,,, in equation (17)) can thus be
written as

Oh

Fluxpm, = —(1 —=p') =. 18

wim = ~(1 =) 5, (18)

Using the notation D and E to represent the deposition and

erosion fluxes, respectively, the sediment flux at the top
(Flux,,, in equation (17)) is written as

Flux,,, = E — D. (19)
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Substitution of equations (18) and (19) into equation (17)
yields

GJ,;I(SBE‘ "N or—1 Oh OQXn —1
B b 1—-p"J,; ' =— : =J, (D—E 20
ot +( p) B ot agn |n:1¢2 B ( )’ ( )
where
9§
_ —19n
Osn = Jp O, Dy .
519 /68 Cuds @)
B ox o 4z,

in which the transport rate @, ; is obtained by integrating the
flux over 6. Equation (20) describes the bed motion based on
sediment mass balance. However, due to difficulties in
resolving particle-particle and particle-flow interactions in
the near-wall region, several terms in equation (20) need to be
modeled empirically. In what follows, we present approaches
to model equation (20) and its simplified version employed in
the present study.
2.3.1. Bed Load Transport

[14] There have been numerous studies on modeling the
transport rate, @, in equation (21) using empirical formulae
that are functions of the nondimensional shear stress, or the
Shields parameter [Meyer-Peter and Mueller, 1948; Fernandez
Luque and van Beek, 1976; Wilson, 1987; Ribberink, 1998],
in which &, takes the form

||

— S —G(0—-9,),
d() (S — l)gdo

(22)

where C, and b are coefficients to be empirically deter-
mined, and 6, is the critical shear stress. Using this formula
for the magnitude of the flux, the components in each
direction, @, ;, are obtained with
U, j=1,2
[tto]

<Ds,j:1.2 - |(I)S|7 (23)

where the subscript 0 implies that the associated quantities

are located at the bottom-most cell, and [zg| = 4 /ﬁ%,l + 3 ,.

In the present study, we employ the commonly used Meyer-
Peter-Muller (MPM) formula for equation (22), in which
C,=8and b = 1.5.

[15] It is important to note that the aforementioned
empirical bed load formulae are usually developed under
idealized situations such as flat beds and may not be suitable
for application to complex cases such as those presented in
this paper. Therefore, as we will show, application of only
the bed load model to situations in which strong vertical
velocity exists, such as flow over sand ripples, leads to over-
approximation of the bed load flux because it does not
allow entrainment of sediment into suspension.

2.3.2. Erosion and Deposition

[16] When applying equations (22) and (23), the sediment
erosion (E) at the bottom boundary is usually modeled using
the reference concentration, C,., as [Celik and Rodi, 1988;
Gessler et al., 1999; Wu et al., 2000],

E= WSC}'()f7 (24)
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in which (?,4) is derived experimentally in a way that
ensures a balance between sediment pickup and deposition
in a state of equilibrium. The deposition flux (D) at the
bottom is modeled with w, C;, where C, is the concen-
tration at the bottom boundary extrapolated from the
nearby interior points in the vertical direction. The total
flux at the bottom thus becomes D — E = w (Cp — Crey),
and equation (20) becomes

aJ;5 "' 65C
ot

oh 00,

+(1=p )5 = 7

B 8t - Erej)

(25)

‘11:1,2 = ‘]B_]WS (6[7

Due to the assumption of the equilibrium state under which
C,.r is obtained, this formulation may not properly repre-
sent the instantaneous reference concentration in response
to strong fluctuations of the flow field and unsteady flows
(e.g., waves). Moreover, in equation (25), even if Q;, and
C,o are properly calculated, equation (25) is still not
closed due to the unknown quantities, 6z and C.

[17] An alternative to using the reference concentration
along with the bed load model is to use the pickup function,
which provides a direct link between sediment pickup and
the instantaneous shear stress and serves as a Neumann-type
boundary condition for the suspended sediment transport
model as described in section 2.3.1. One commonly used
pickup function was derived by van Rijn in a laboratory
setting to determine the magnitude of sediment erosion as a
function of particle properties, flow properties, and the shear
stress [van Rijn, 1993]. There is no further consideration of
the transport type after sediment pickup in van Rijn’s
experiment, and the pickup function accounts for total
sediment entrainment including bed load and suspended
load. In such a formulation, the layer of the high sediment
concentration with thickness ¢ is not explicitly treated but
instead is included in the domain of the flow simulation.
Thus, equation (20) is written as

Oh

N ZJEI(WSE}, 7Pk).

(1-p)J5! (26)
Use of the pickup function for sediment erosion assumes
that in the near-wall region, intergranular forces are less
important when compared to hydrodynamic forces, and that
intergranular effects are parameterized in the pickup func-
tion. In this framework, there is no need for separate con-
sideration of bed load and suspended load, which is
effectively only when sediment transport is dominated by
suspension, i.e., there is no substantial layer of high con-
centration transport in which particulate collision and fric-
tion are important. If sediment transport is dominated by a
highly concentrated near-wall layer with intensive particu-
late collision, this layer must be explicitly treated as in
equation (25).

[18] Our simulations show that in the absence of the
influence of density stratification of the sediment-water
mixture, using the pickup function as the bottom boundary
condition for suspended sediment transport assumes that
sediment is suspended immediately after entrainment from
the bed and behaves as a passive scalar. As a consequence,
no significant regular geometric variation in the streamwise
direction occurs, and unrealistic spanwise geometric varia-
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tions are present, as will be shown in a numerical example.
We demonstrate that addition of the density stratification
term in the fluid momentum equation is necessary for
accurate simulation of sand ripple evolution. This effec-
tively models the bed load as a thin layer of high-density
fluid near the bed which plays an important role in the
formation and evolution of sand ripples.
2.3.3. Gravity Effect

[19] While the shear stresses exerted by the flow on the
bed play a dominant role in bed load transport, particu-
larly when the bed is flat, gravitational effects become
equally important in the presence of bed forms. We
account for gravitational effects on sediment entrainment
by modifying the critical Shields parameter (6.) in both
the bed load formula (equation (22)) and the pickup
function (equation (11)). If the Shields parameter for the
flat bed is given by 6., then the Shields parameter under
the influence of gravity, 6., is given by [Whitehouse and
Hardisty, 1988]

_sin(n +6) (27)

O
0.0 sin(qﬁrp)

where ¢,,, is the bed angle of repose and ¢ is the local
bed angle. In the present study, 6. is calculated using an
empirical formula which is obtained from the experi-
mental data of Soulsby [1997],

0.3

= — >
YT 1+ 1.2D%

+0.055[1 — exp(—0.02D*)].  (28)

In a two-dimensional (x;—x3 plane) configuration, employing
equation (27) is straightforward since ¢ is obtained from the
bed slope ¢ = arctan(dh/dx). However, in a fully three-
dimensional domain in which geometric variability in the
x, direction is present, the bed angle is obtained as the bed
slope in the direction of the shear stress as

U1 bed SIN @1 + Ud peq SIN
- b
3 —

A Y ped T Y3 pea

where the subscript bed denotes the velocity component at
the bed, and ¢, and ¢, represent the local bed angle in the
x1 and x, directions, respectively.

[20] When strongly nonuniform bottom geometry is
present such that the local bed slope is larger than the angle
of repose, an additional contribution to the transport of bed
sediment due to gravity appears. This additional transport
rate, denoted by ®,, is the gravitational slumping flow
which causes the local bed slope to adjust so that it is less
than or equal to the angle of repose. Among existing bed
load transport models, the empirical formulae are obtained
from laboratory or field measurements under mild bed form
variability such that the local bed form slope is always less
than the angle of repose. As a consequence, there are no
empirical formulations available to model ®,. One way to
model ®, is to add a momentum transport equation to the
bed load transport as part of the BEE, such that bed load
accelerates due to gradients in bed slope that exceed the
angle of repose. This leads to equations similar to the

sin(¢) (29)
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shallow water equations and are analogous to those that are
used to model avalanche flow [e.g., Pitman et al., 2003;
Denlinger and Iverson, 2004; Mangeney-Castelnau et al.,
2005].

[21] However, implementation of the shallow water
equations to model the bed load leads to several coefficients
that are not known due to the lack of laboratory studies on
shallow water models for the evolution of bed forms. We
avoid the shallow water equations and derive an incremental
gravitational flux ®, as a slope-dependent quantity such that
(as derived in the Appendix A)

oh 9, Oh
b, = —h—= —F—2 —
8] kaxj axj 65;1 |n:],27

(30)
where the diffusion coefficient, %, is nonzero only when the
local bed slope is larger than the angle of repose. The
contravariant volume flux (Q,,,) of this gravity-induced
transport rate (®p ;) is then given by

mn ah
Og.m = kGy 3¢, (31)
where
a m a n
Gy = gyt Lo 05 (32)

axj axj |m,n,j:1,2'
Adding the divergence of O, to the BEE with the pickup
function (equation (26)) results in

71@7 8 mnah

R e

b %) |m,n:1.2 +Jl;1 (W\a - Pk)

(33)

In the present study, we choose the diffusion coefficient,

d—o,
=, ¢7 > ¢r
k= o : (34)
0

otherwise.

As shown in Appendix A, the diffusion coefficient £ is a
function of s, g, 03, and the viscosity, pg, of the sediment-
water mixture in the avalanche layer. Since both 6z and g
vary with sediment properties and the flow shear, it is very
difficult to determine a reference value from the existing
literature. The effect of & becomes important during mature
stages of ripple evolution when ripple slopes become large,
i.e., when bed slope > ¢,,. That is, in a quasi-steady state,
time periodic sediment deposition/erosion does not appre-
ciably effect the shape of ripples, and the final shape of
ripples is determined by a balance between sediment
deposition/erosion and gravity-induced avalanche flow.
Therefore, a smaller & will give a steeper bed slope for
quasi-steady state ripgles. In the present study, we use a
value of a; = 10™* m?* s~', which we found to help ensure
smooth bed forms without smearing fine-scale features and
to give good agreement between the present numerical
results and laboratory data. From a numerical perspective,
the presence of the diffusion term in equation (33) allows
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Figure 2. Grid configurations in the xi, x3 plane at x, = 0.12 m and at (a) £ = 17 and (b) ¢ = 287 during a
simulation of ripple formation under currents. Every other grid line and only a fraction of the domain are

shown for clarity.

the BEE to be discretized implicitly in time in a way that
ensures smoothness and stability of the resulting bed
forms.

3. Numerical Implementation

3.1.

[22] The aforementioned mathematical formulations are
implemented in a CFD code that was originally developed
with a generalized fixed curvilinear grid by Zang et al.
[1994]. In this code, a finite-volume method is used to
discretize the governing equations on a nonstaggered grid.
All spatial derivatives except the convective terms are dis-
cretized with second-order central differences. The con-
vective terms in the momentum equation are discretized
using a variation of QUICK (quadratic upstream interpola-
tion for convective kinematics) [Leonard, 1979; Perng and
Street, 1989] and the convective terms in the scalar trans-
port equation are discretized using SHARP (simple high
accuracy resolution program) [Leonard, 1988]. The second-
order Crank-Nicolson scheme is used for the diagonal vis-
cous terms, and the second-order Adams-Bashforth method
is used for all other terms. Following Kim and Moin [1985],
the momentum equation is advanced with a predictor-
corrector procedure based on the fractional-step method, in
which a divergence-free velocity field is calculated at each
time step by correcting the predicted velocity with the pres-
sure gradient. In order to simulate high Reynolds number
turbulent flows, a large-eddy simulation (LES) with a dynamic
mixed model (DMM) as the subfilter-scale (SFS) turbu-
lence model [Zang et al., 1993] is employed. The code is
parallelized using the message passing interface such that it
can be run on a parallel computer [Cui, 1999]. This code has
been successfully applied to simulations of numerous lab-
oratory-scale flows, including turbulent lid-driven cavity
flow [Zang et al., 1994], coastal upwelling [Zang and Street,
1995; Cui and Street, 2004], breaking interfacial waves
[Fringer and Street, 2005], rotating convective flows [Cui
and Street, 2001] sediment transport [Zedler and Street,
2001, 2006; Chou and Fringer, 2008], and free-surface flows
[Hodges and Street, 1999].

Code Description

3.2. Mass Conservative Scheme

[23] The grid is allowed to move in response to changes in
the bed elevation, and an example of the grid configurations
in the x;, x3 - plane at different time steps during a simu-
lation is shown in Figure 2. Due to grid motion, special care
must be taken when discretizing the transport equation for
suspended sediment in order to ensure conservation of
suspended sediment mass. To this end, the second-order
accurate arbitrary Lagrangian-Fulerian moving grid trans-
port scheme developed by Chou and Fringer [2010] is
employed. While this scheme ensures conservation of sus-
pended sediment mass under arbitrary grid motion, the total
fluid volume within the domain is not necessarily conserved
because the equations governing the bed elevation are not
required to conserve bed load sediment mass or volume
since the bed is an infinite source of sediment. Therefore, in
order to ensure compatibility with the incompressible flow
solver, which requires that the change in volume of the
domain exactly balance the integrated volume flux into or
out of the domain, a horizontally uniform vertical velocity is
imposed at the rigid lid that exactly balances the change in
volume resulting from the evolving bed forms. This vertical

velocity is denoted by wy;; and is calculated at each step over
n+1
]

the time interval [z", ¢ as
1 Vn+1 _pn
= 35
Vi At A4 1,2,top ( )

where At is the simulation time step, Vis the total volume of
the computational domain, and 4, 5 ,,, is the area of the top
surface of the domain.

3.3. Near-Wall Model

[24] In the presence of sediment grains, the channel bed is
represented by a rough wall such that the drag law is applied
as the bottom boundary condition for the momentum, which
is written as

Q1 2lpeq

—=24 — CpU,
(v+wvr) o, DU 2] peg (36)

U3]peg = 0,
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where v7 is the eddy viscosity. In the near-bottom region
where the vertically refined pancake-shaped cells are pres-
ent in order to resolve strong vertical sediment and velocity
gradients, following the work of Chow et al. [2005], we
implement a near-wall model for momentum by augmenting
the shear stress with

T1,2,nearwall = */CCCI(Z) Uhul,def’n (37)

where C..is a scaling factor related to the grid aspect ratio, and
a(z) (m™') is a function allowing the smooth decay of forcing
as the cutoff height /.. is approached. Since equation (37)
serves as a sink in the horizontal momentum equation, in
addition to accounting for errors due to the pancake-shaped
grid in the near-wall region, it also accounts for the unre-
solved roughness at the wall [Nakayama et al., 2004]. It also
remains as a free parameter to adjust such that the resolved
flow field can statistically match the experimental or theo-
retical results. In the present study, following Chow et al.
[2005], a(z) is set to cos® (7 x3/h.) for x3 < h, = 2Ax; and
zero otherwise, and C, is obtained from Figure 13 of Chow
et al. [2005]. A more detailed description of the present near-
wall model are given by Chow et al. [2005], and successful
applications to simulate steady turbulent channel flow with
different grid resolutions are presented by Chou and Fringer
[2008]. In the present study, as shown in Appendix B,
comparison of planform-averaged profiles of the streamwise
velocity from the present model with the experimental data
of Jensen et al. [1989] shows good agreement for the case of
oscillatory flow over a rough wall.

4. Simulations of the Formation and Evolution
of Sand Ripples in Waves

4.1.

[25] In the present study, the simulation is carried out in a
three-dimensional domain of size L; x L, X L3 = 0.6 m X
0.24 m x 0.15 m. The grid resolution is N; x N, X N3 =320 x
128 x 96 with grid stretching in the x;—direction, resulting in a
minimum grid spacing in the vertical direction of A x3 ,,,;, =
0.0011 m at the bed. The periodic boundary condition is
applied to all horizontal boundaries. Since horizontal peri-
odicity may affect the resulting ripple size, the streamwise
dimension of the computational domain is chosen such that
it contains at least 3 sand ripples throughout the simulation
based on laboratory observations [Lacy et al., 2007].
Therefore, the resulting ripple wavelength is not affected by
the periodic boundary condition.

[26] The oscillatory flow is simulated by forcing a time
periodic pressure gradient with period 7 = 8§ s, yielding a
maximum freestream velocity of U ~ 0.4 m s '. The oscil-
latory flow parameters are chosen to match those in the giant
flume experiment conducted by Lacy et al. [2007] (run 11).
The simulations are first run for three wave periods, after
which time the sediment models are switched on. In what
follows, all times are relative to this point and are normalized
by the wave period T.

[27] The particle diameter of dy = 0.27 mm is used as the
size of the sediment particles, which is the same as the mean
grain diameter of the well-sorted sediment used by Lacy
et al. [2007]. Given this grain size and the flow conditions,

Simulation Domain and Parameters

CHOU AND FRINGER: SIMULATION OF FLOW-BED FORM EVOLUTION

C10041

particle-particle collision is not a dominant momentum
exchange in the near-wall region. The computational time
step is At = 0.002 s at early stages when there are no sig-
nificant ripple marks and Ar = 0.001 s when ripples are
present. At later stages when ripples with large amplitudes
develop, At = 0.0005 s. These time steps are chosen to
maintain a stable flow simulation, i.e., Max(CFL) = 0.8 < 1,
and are small enough to resolve ripple evolution at every
stage because the time scale associated with ripple evolu-
tion is larger than O(0.001 s). The computations are carried
out on the LinuxNetwork Xeon EM64T cluster at the Army
Research Laboratory Major Shared Resource Center using
40 processors (P, x P, x P, = 10 x 4 x 1). The total
simulation wall clock time is roughly 3.3 h for one wave
period (8 s) at early stages and 13 h at later stages, and
simulations require 6.6 Gb of memory. The laboratory
experiment was run for 40 min, and ripples reach a sta-
tistically-steady state at about 10 min. Since we focus on
transient flow and ripple dynamics, and a simulation for the
entire 40 min duration requires considerable computational
time, we only run the simulation for 11 min of physical
time from an initially flat bed, and this requires 47 days of
wall clock time, or 45120 CPU h.

4.2. Simulation of Sand Ripple Evolution

[28] Figure 3 shows the bed elevation at different stages of
sand ripple evolution in the presence of oscillatory flow.
The sand bed is initially flat and, other than a few small
perturbations, remains relatively unchanged during the first
three wave periods. During this initial stage, due to the low
near-bed concentration of suspended sediment, the random
distribution of sediment deposition and erosion does not
result in any permanent bed forms (see Figure 3a). Spatially
regular, but not significant, three-dimensional bed forms
only appear roughly at # = 67. As shown in Figure 3b, these
ripples have a wavelength of approximately 6.5 cm and
amplitude of approximately 0.3 cm and exhibit sinuous
crestlines. Due to their small amplitude, the crestlines move
slightly in response to the oscillatory flow field, as shown in
Figure 4. This is consistent with the idea that permanent
local sediment erosion and deposition are enhanced by the
periodic nature of the flow and the local bed geometry. At
this stage, sediment motion is confined to a very thin layer
close to the bed (see Figure 5). Movement of this near-bed
sediment due to the near-bed turbulent events dominates
the bed form initiation. The oscillatory sediment motion
results in a continuous growth of ripple crests, leading to
more significant ripple patterns with increasing amplitude,
as shown in Figure 3c. During the period 0 < ¢ < 187
(Figures 3a—3d), the amplitude of the bed forms is not large
enough to shed strong vortices in their lee. Therefore,
although some sediment is suspended intermittently in the
lee of small sand ripples during flow acceleration, this sus-
pension is not strong enough to alter the shape of the ripples,
as shown in Figures 5 and 6. As a result, ripples are domi-
nated by the three-dimensional structures (e.g., bifurcations
and sinuous crestlines) resulting from initial ripple marks.

[20] After ¢+ = 187, the initial three-dimensional ripples
continue to grow and the lee side of the ripples continues to
increase in steepness (Figure 3e) until vortices are shed
during flow acceleration. Until this stage, bed form evolu-
tion can be described by the following four mechanisms, as
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Figure 3. Bed elevation contours and bed form profiles along the channel centerline marked with the red
dash-dotted line in an oscillatory flow at (a) t =17, (b) t= 6T, (c) t = 12T, (d) t = 18T, (e) t = 25T, (f) t =
407, (g) t = 60T, and (h) ¢ = 817, showing merging of ripples (white squares), vanishing of a small crest-
line (white circles), and vanishing of an initial bifurcation (gray squares).
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Figure 4. Contours of the bed elevation, showing the
response of initial ripple marks to an oscillatory current at
(a) t = 6.25T, (b) t = 6.507, (c) t = 6.75T, and (d) ¢t =
7.007 modeled with the Type 2 BEM (MPM formula).

depicted in Figures 3b—3g: (1) vertical growth due to peri-
odic deposition and erosion; (2) merging of small crests;
(3) vanishing of small crests behind large crests due to
erosion; and (4) and vanishing of initial bifurcations. The
first mechanism is demonstrated in Figure 4, and examples
of the other mechanisms are demonstrated in Figure 3. As
shown in Figure 3e, at # = 257, other than in the region from
x = 0.1 to 0.2 m where the sinuous crestlines remain, the bed
form exhibits a strongly two-dimensional structure. The
transition from three-dimensional to two-dimensional bed
forms results from the second, third and fourth mechanisms.

[30] When vortices are shed in the lee of the sand ripples,
considerable sediment is suspended by the strong vertical
flow, and this sediment is transported further into the water
column by the vortices, as shown in Figure 7. Unlike the
intermittent suspension characteristic of the initial phase of
ripple development as in Figures 5 and 6, the strong vortices
induce cross-ripple suspension, which persists throughout
each wave cycle. The sand ripples at this stage become

CHOU AND FRINGER: SIMULATION OF FLOW-BED FORM EVOLUTION
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vortex ripples, and their characteristic wavelength scales with
the particle excursion. As the ripples continue to grow in
amplitude, the size of the associated vortices becomes so
large that adjacent ripples are eroded, as shown in Figures 3f
and 3g. This mechanism leads to an important transition stage
from small three-dimensional ripples to two-dimensional
ripples with a larger wavelength. In contrast to the early
stages of ripple development in which the evolution is
dominated by periodic erosion and deposition of sediment
onto the bed, sediment suspension by the vortices during
this transitional stage dominates the growth of sand ripples.
In addition to suspension due to strong vortices, merging of
small ripples to form larger ripples also accounts for a bulk
of the dynamics during this transitional stage. After this
transitional stage, large and more stable ripples are formed,
as depicted in Figure 3f.

4.3. Comparison With the Laboratory Experiment

[31] Under the action of waves, bed forms are initiated
due to random turbulence-induced near-bed transport.
Ripples first appear as sinuous crestlines which soon
evolve into regular ripple patterns. As the bed forms
continue to grow in amplitude, they shed vortices and
initial small three-dimensional ripples evolve into larger
three-dimensional ripples. Our modeling results reveal all of
these processes, including transition from small perturba-
tions to small three-dimensional ripples, and from small
three-dimensional ripples to larger two-dimensional ripples.
The simulation reveals the pattern coarsening process of sand
ripple evolution under waves which has been consistently
observed in numerous laboratory experiments [O 'Donoghue
and Clubb, 2001; Faraci and Foti, 2002; Andersen et al.,
2002], but never before in three-dimensional numerical
simulations.

[32] Compared with the laboratory observations in run 11
of Lacy et al. [2007], which has the same parameters as we
use in the present simulation, the mechanisms of transition
from two-dimensional to three-dimensional ripple structures
and from the small- to the large-amplitude ripples are
similar. Figure 8 presents the sonar images from the labo-
ratory experiment and bed elevation contours from the
present simulation at certain time steps, which shows that
the present simulation captures similar patterns as observed
in the laboratory. There are two transitional stages of the
wavelength observed in both the numerical simulation and
the laboratory experiment. The first stage is the formation of
ripple marks (Figure 8a), which is immediately followed by
ripple coarsening (Figure 8b). The second stage occurs
when small ripples merge to form larger ripples, which
forms thicker crest lines (Figures 8c and 8d). These two
processes can be observed in both the laboratory and the
numerical results, which demonstrates the model ability of
obtaining real features of ripple evolution.

[33] Time histories of the averaged wavelength obtained
with a two-dimensional fast Fourier transform (FFT) within
+15° of the orientation of the wave ripples for both labo-
ratory and model results are shown in Figure 9, along with
the wavelength data counted visually. The visually-counted
wavelength is obtained by dividing the total distance along a
line in the streamwise direction with the counted crest
number. The counting process is repeated at three different
locations in the spanwise direction to calculate the mean,
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Figure 5. Concentration isosurface of C = 10> (volume fraction) along with suspended sediment con-
centration contours and velocity vectors in a vertical plane for an oscillatory current at y=0.12 m at (a) ¢t =
6.125T, (b) t = 6.250T, (c) t = 6.375T, and (d) ¢t = 6.5007, showing that during the beginning stage of
ripple formation, high sediment concentration is confined to a very thin layer close to the bed.

maximum, and minimum values. The orientation of the
wave ripples is defined as the direction parallel to the crest
over the range —90 to 90°, where 0° is aligned in the
direction perpendicular to the wave direction. In the labo-
ratory setting, the FFT is applied with 1-volt amplitude as
the threshold between the measured data and noise [Lacy
et al., 2007]. In Figure 9, during the initial stage when
ripple marks begin to form (0-2 min), ripple wavelengths

calculated from the model results (=0.065 m) are smaller
than the wavelengths calculated by either the FFT or by
visually counting the laboratory results. This is due to the
fact that at the initial stage, near-wall turbulence is not
strong enough to induce significant sediment suspension,
such that formation of initial bed forms mainly results from
shear-driven bed load, which is not explicitly treated in the
present modeling framework. The present model simulates
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Figure 6. Concentration isosurfaces of C = 10~> (volume fraction) along with suspended sediment con-
centration contours and velocity vectors in a vertical plane for an oscillatory current at y=0.12 m at (a) ¢t =
16.125T, (b) t = 16.2507, (c) t = 16.375T, and (d) ¢ = 6.5007, demonstrating how sediment suspension is
intermittent in the presence of small ripples.

sediment suspension and saltation but neglects sediment Therefore, one would expect that in reality, transport of the
transport within a layer in which collisions and friction are  bed sediment results in faster ripple formation at the initial
important and transport is mainly driven by the flow shear. stage. This initial ripple pattern, which is called rolling grain

Figure 7. Concentration isosurfaces of C = 1073 (volume fraction) along with suspended sediment concentration contours
and velocity vectors in a vertical plane for an oscillatory current at x, = 0.12 m at (a) t = 40.1257, (b) ¢t = 40.2507, (¢) ¢t =
40.375T, and (d) ¢ = 40.5007, showing that compared with Figure 6, sediment suspension is much stronger and persistent
due to the presence of vortices in the lee of the vortex ripples.
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Figure 8. Model results (bed elevation contours) along with sonar images from the laboratory experi-
ment of Lacy et al. [2007], comparing the evolution of ripples under waves.

ripples, is not captured by the present model. This is dem-
onstrated in section 5, where we employ the MPM formula
to show that it results in faster and larger bed forms at the
initial stage. Since most bed load transport models are
derived from the condition in which flow is so strong that
bed forms are washed out and the bed remains flat, applying
the bed load transport model leads to an unstable bed (see
section 5). The effect of bed load transport soon becomes
minor when bed forms are present because near-wall tur-
bulence is strong enough to entrain significant amounts of
sediment, such that suspension dominates sediment trans-
port, which occurs for £ > 2 min in the present simulation.

After ¢ = 2 min, the modeled wavelength matches experi-
mental data well and is close to the maximum value of the
visually-counted wavelength, which is typically the value
between the visually-counted mean wavelength and the FFT
wavelength. During the final stage approaching the end of
the simulation (¢ > 10 min), the growth rate of the wave-
length becomes much slower and evolution of the ripples
becomes quasi-steady, which is consistent with the labora-
tory observations.

[34] Although the ripple height is not monitored during
ripple evolution in the laboratory experiment, it is reported
by averaging 5 measurements at the end of the experiment.
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Figure 9. Time histories of the FFT-derived wavelength of
sand ripples in the laboratory experiment of Lacy et al.
[2007] (dashed line) and in the present simulation (solid
line), along with the wavelength counted visually in the
work of Lacy et al. [2007].

In the present simulation, the final statistically-steady wave
height is roughly 3 cm, and is close to the final wave height
of 3.4 cm measured at the end of the laboratory experiment.

5. Bed Elevation Model Comparison

[35] To demonstrate the effects of the different bed eleva-
tion model (BEM) implementations, we simulate the evolu-
tion of sand ripples under the influence of waves using three
different models. Equation (26) is used in both the first (base)
and third models (Types 1 and 3) while there is no stratifi-
cation effect due to sediment in the third model (Type 3). In
the second model (Type 2), the MPM formula is employed in
the BEE, and is given by

_oh 00,
_ 127 S,

o1 = Jg s (Eb - Eref)7 (38)

which is the original BEE (equation (25)) but neglects the
time variation of 6z C. Although this is not true in the case
of unsteady flow, it is neglected to allow for comparison of
different BEMs and allows us to demonstrate the effec-
tiveness of different approaches in the literature [e.g.,
Gessler et al., 1999]. The BEMs employed in all three cases
are summarized in Table 1. Simulations are run for 67, and a
smaller domain of size 0.6 m x 0.12 m x 0.1 m but with the
same resolution as in section 4 is used for the BEM com-
parison as well as the resolution study in section 6.

[36] Figure 10 illustrates different bed forms at ¢t = 6T
resulting from different BEMs under the influence of waves.
As shown in Figure 10b, using the Type 2 BEM results in
ripples with a larger wavelength than those produced by the
Type 1 model. This is due to the overestimate of bed load
transport using the MPM formula (equation (22)) along with
equation (38), which, as shown in Figure 11, leads to faster
movement of the ripples and a much shorter evolutionary
time scale when compared to laboratory observations [Lacy
et al.,2007]. As aresult, the Type 2 BEM is unable to produce

Table 1. Summary of Components Used in Different BEMs

BEM Mass Balance Density Stratification
Type 1 equation (33) yes
Type 2 equation (38) yes
Type 3 equation (33) no

CHOU AND FRINGER: SIMULATION OF FLOW-BED FORM EVOLUTION

C10041

) Type 1,t=6T )

Figure 10. Contours of the bed elevation in an oscillatory
flow at ¢+ = 67T using the (a) Type 1, (b) Type 2, and
(c) Type 3 BEMs.

the stationary ripples that are produced by the Type 1 model.
Furthermore, the fast movement and growth result in a steep
slope in the lee of the ripple crests during flow acceleration,
and during flow reversal the local velocity becomes strong in
the stoss of the crests (the original lee side before reversal)
due to their steep slope. The steep slopes and fast moving
ripples also lead to numerically induced oscillations in the
bed evolution. As a result, a restrictive constraint on the
simulation time step is required to maintain computational
stability. For example, at ¢ = 97, in the Type 1 BEM, a time
step of At = 0.001 s results in CFL,z,, = 0.62 while in the
Type 2 BEM, a time step of A¢r=0.0005 s results in CFL, =
0.72. In the Type 3 BEM, due to the absence of the effects of
stratification, the sediment has no effect on the flow once it
is ejected from the bed. As shown in Figure 10c, the result is
to suppress the formation of ripples while enhancing small-
amplitude and short-wavelength streamwise variability in
the bed forms. Due to the lack of the stratification effect of
the near-bed suspended sediment, the near-bed turbulence is
enhanced and the bed simply responds to the shear induced
by the streamwise coherent structures in the turbulent flow
which is unimpeded by stratification. Figure 12 depicts the
planform-averaged concentration from the Type 1 and
Type 3 models at ¢ = 4.257, which is defined by

1 w L o
:W‘/O /0 C(X17X27X3,t)dxldXQ.

The results show that without density stratification, the
Type 3 model results in more sediment entrainment and
turbulent mixing in the water column. Because the turbu-
lence is so strong, there is no near-bed region to effectively
act as the bed load model and lead to the formation of
ripples.

[37] By comparing the three approaches that are widely
used in the study of sediment transport, these results show

ak

(39)
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Figure 11. Contours of the bed elevation in an oscillatory
flow at (a) t = 6.25T, (b) t = 6.507, (c) t = 6.75T, and (d) ¢ =
7.007 modeled with the Type 2 BEM (MPM formula),
showing how ripple motion is too fast when compared to
that using the Type 1 BEM in Figure 4. Line plots depict
bed form profiles along the channel centerline and indicate
that the fast ripple motion induces numerical oscillations in
the bed forms.

that the most effective means of simulating bed load trans-
port is to model it as a highly stratified region near the bed
(using the Type 1 BEM) rather than explicitly trying to
compute it with only a bed load model (Type 2 BEM). The
disadvantage to this approach is that it implies that the bed
load transport must effectively be simulated rather than
modeled, in that the simulation code must resolve the near-
bed turbulent structures that are tightly coupled to the
dynamics of the stratified layer near the bed. The importance
of resolution is discussed in section 6.

6. Resolution Study

[38] Because initiation of the bed forms results from near-
bed turbulence that must be resolved rather than modeled, in
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Figure 12. Planform-averaged near-bed sediment concen-
tration profiles in an oscillatory flow at ¢ = 4.25T from simu-
lations with the Type 1 and Type 3 BEMs.

this section we present a resolution study that assesses the
importance of the grid resolution on the ability to model bed
form evolution. We designate the results of using the Type 1
model as presented in section 4 as the base case, and
compare it to the results of using the Type 1 model with four
different grid resolutions, namely an isotropic decrease in
grid resolution (grid spacing is increased by 4/3 in all three
directions), an anisotropic decrease in grid resolution (grid
spacing is decreased by a factor of two only in the x; and
x5 directions), a reduction in the spanwise grid resolution
by a factor of two, and an increase in the resolution in the
x; and x3 directions by a factor of two (see Table 2).

[39] Figure 13 depicts the resulting bed forms for all five
cases at the end of the sixth wave cycle, which is approxi-
mately when the bed forms appear in the base case. The
results show that only Case 4 leads to the formation of bed
forms that are similar to those in the base case (Figure 13e).
This implies that the base case grid resolution is sufficiently
resolved because increasing the grid resolution as in Case 4
does not significantly alter the results. For the other cases,
although certain nonuniform and somewhat regular patterns
are found in Cases 1 and 2, the amplitudes are significantly
less than those found in Case 4. In Case 3, a streamwise
streak structure is found, which is similar to the bed forms
that result with use of the Type 3 BEM and the same res-
olution as the base case. As the simulations proceed well
beyond the time depicted in Figure 13 (not shown), the bed
forms in Cases 1, 2, and 3 remain relatively unchanged.

Table 2. Summary of Different Grid Configurations for the
Resolution Study in section 6

Aspect Ratio

Case le X Nx2 X Nx3 At (S) (t =0~ IT) (Axl/Ax?y,min)
Base 320 x 64 x 64 0.001 1.73
1 240 x 48 x 48 0.002 1.73
2 160 x 64 x 32 0.002 3.46
3 320 x 32 x 64 0.001 0.86
4 480 x 64 x 96 0.001 1.15
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Figure 13. Surface contours of the bed elevation in an oscil-
latory flow using the Type 1 BEM at ¢ = 67T from (a) Case 1,
Nyp X Nyp X N3 =240 x 48 x 48; (b) Case 2, 160 x 64 x 32;
(c) Case 3, 320 x 32 x 64; and (d) Case 4: 480 x 64 x 96.
(e) Base case, 320 x 64 x 64.

[40] Vertical profiles (equation (39)) of suspended sedi-
ment concentration with different resolutions averaged over
the first wave cycle (indicated by ()) are plotted in Figure 14.
We only show the near-wall region (x3/6, < 15 above the bed)
because significant concentrations (>10~¢ g L") after the first
wave cycle are confined to a very thin layer near the bed.
Other than the upper region in Case 3, no significant differ-
ences are found when comparing the near-bed profiles. This
demonstrates that although on average suspended sediment
transport is similar for each case (other than Case 3), the
resulting bed forms vary significantly with grid resolution.
This is because a fine grid resolution is essential to resolve the
small-scale eddies in the near-wall region for the initiation of
bed forms. The profile for Case 3 shows more vertical mixing
than others because of the effects of vertical grid resolution on
the LES formulation. With coarse vertical resolution, the
unresolved subgrid scale turbulence, which is modeled by
Smagorinsky-type turbulent diffusion, becomes large and
overwhelms the turbulent transport by the resolved flow field.

7. Conclusions

[41] We present a formulation for coupling fluid flow
simulation with a sediment transport model that enables the
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numerical simulation of flow problems with transient bed
forms. The method employs large-eddy simulation (LES) for
modeling the subgrid scale (SGS) turbulence, the Eulerian
approach for modeling the transport of suspended sediment,
and a mass balance equation for modeling evolution of the
bed elevation. The present approach is implemented in a
curvilinear coordinate Navier-Stokes solver in which the
bottom boundary can arbitrarily move in response to the
complex turbulent flow field above the bed. In order to ensure
mass conservation during grid movement, a consistent arbi-
trary Lagrangian-Eulerian (ALE) scheme with second-order
time accuracy is employed to guarantee local conservation of
sediment mass. A lid velocity is imposed at the domain top to
guarantee global conservation of fluid volume for the
incompressible Navier-Stokes solver.

[42] To demonstrate the effectiveness of our approach, bed
form evolution is simulated in the presence of oscillatory
currents. When fine enough grid resolution is employed, the
model reveals several details of the transient process of ripple
evolution under waves. Most notably, our model is able to
reproduce the transition from two-dimensional to three-
dimensional bed forms and the merging of small ripples to
form larger ripples. The simulation results agree well with
those of laboratory experiments employing similar parameters.

[43] Our approach models the bed elevation through a mass
balance equation that ignores the bed load transport formula
derived from experiments, and instead relies on the pickup
function to account for erosion from the bed. We also include
the effects of gravitational settling which effectively amounts
to diffusion of bed forms with a diffusion coefficient that
depends on the degree to which the bed slope exceeds the
angle of repose. Although omission of the bed load transport
formula enables realistic simulation of bed forms under an
oscillating flow, use of the pickup function to account for
near-bed sediment transport relies on sufficient resolution to
resolve the near-bed suspended sediment dynamics which
effectively acts as a model for bed load transport. Sufficient
near-bed resolution of turbulent structures provides the cor-

15
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Figure 14. Spatiotemporally averaged near-bed sediment
concentration profiles during the first wave cycle from simu-
lations with different grid resolutions.
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rect bed shear stress distribution which in turn enables the
pickup function to inject the correct amount of suspended
sediment into the flow. The high near-bed suspended sedi-
ment concentration leads to strong stratification, however,
that correctly prevents the near-bed turbulence from
becoming too strong and injecting too much sediment into the
flow. This behavior is demonstrated via comparison of the
Type 1 to the Type 3 bed elevation models (BEMs), the latter
of which ignores the effects of stratification. Neglecting
stratification effects results in strong spanwise variability and
weak streamwise variability as the sediment responds to the
turbulent spanwise streaks which are unaffected by stratifi-
cation, and therefore transport sediment into the water column
and inhibit the formation of the important near-bed highly
concentrated layer of sediment. If stratification is retained
and only bed load transport is included (as in the Type 2
BEM), simulation results of ripple evolution in the presence
of oscillatory flow show that the model induces an exceed-
ingly high bed load sediment transport rate, resulting in fast
moving ripples with an excessively large initial wavelength.
The fast ripple formation results from an overprediction of
bed load transport because it is already mostly accounted for
by the pickup function and the thin near-bed suspended
sediment layer. Inclusion of the bed load model not only
overpredicts the growth rate and ripple size, but it prevents
the formation of quasi-steady ripples.

[44] While the Type 1 model can predict realistic evolu-
tion of bed forms under the action of steady or oscillatory
flows, the predictions are only realistic when sufficient grid
resolution is employed. As demonstrated by the similarity of
the profiles when different grid resolutions are employed,
insufficient grid resolution may predict realistic suspended
sediment concentration profiles. However, without suffi-
cient grid resolution, near-bed turbulent features are under
resolved and the important fine-scale instantaneous shear
stress distribution required for bed form initiation is incor-
rectly computed. Therefore, without sufficient resolution,
bed forms do not evolve regardless of the type of BEM that
is employed. In addition to an incorrect shear stress distri-
bution, insufficient grid resolution also makes it impossible
to resolve the highly concentrated and strongly-stratified
near-bed sediment layer that effectively acts as the model
for transport of bed load.

Appendix A

[45] Gravity induced sediment flow occurs when the local
slope is larger than the angle of repose (6,,). This flow is
zero when the local bed slope is less than 0,,,. Therefore, we
treat this flow as an avalanche flow down an incline with
slope = tanf,,. In a two-dimensional configuration, as
shown in Figure A1, one can simply model the momentum
of the avalanche flow down a slope as

Oug Oug\ . op or
”“‘( or Tl ax) = /g sngy = 5o+

oz’
where the variables associated with the subscript g repre-
sent physical quantities for the gravity-induced avalanche
flow, 65 is the thickness of the bed load layer, g’ = g(s—1)/s
(s is the specific weight of sediment) and all the other
variables are as defined in section 2. Assuming that the

(A1)
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b [

Figure A1. A two-dimensional configuration showing the
avalanche flow down an incline to model sediment transport
when the local bed slope exceeds the angle of repose, 0,,,.

X3:0

pressure is hydrostatic inside this avalanche flow layer, we
have

p= Psg, cos ¢Fp(6B - Z)- (AZ)

Substitution of equation (A2) into equation (A1) results in

Ou ou . obp  Or
Ps (Ttg + Ug aixg) = psg/ sin ¢rp - psg, cos ¢rpa + & .

(A3)
Since the nonuniform bed geometry evolves from a flat bed,
at the moment when is taken into account, u, is small, and
the avalanche flow time scale is much longer than the flow
time scale. Therefore, it is reasonable to ignore the nonlinear
and unsteady terms in equation (A3) to obtain the steady
state approximation,

or . 6
o = _psg/ sin ¢’rp + psg/ COS P a—; . (A4)

0z
It should be noted that this steady state approximation only
applies to the present case in which the local slope is not
large enough to induce high-velocity flow. In the case where
an abrupt change in geometry is present (e.g., slumping
flows), all terms in equation (A3) must be retained. Inte-
grating equation (A4) and using the boundary condition

T|,_o = hpsg’ cos ¢, (tan brp — %) , (AS)
ox
the shear stress 7 is written as
06,
7(z) = —(z — 8) psg’ cOS Py (tan brp — 8—;)
0 0bp
= —(z — 85)psg’ cos ¢y, (—a (h—6p) — a) (A6)

= _(53 - Z)psg, cos QS,], % .

Assuming Newtonian behavior for the avalanche flow, we
have

T= s (A7)
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Figure B1. Planform-averaged streamwise velocity profiles of an oscillatory flow from laboratory
observations of Jensen et al. [1989] (dots) and the simulation (solid line) using the present model at
different time steps in the first wave cycle during flow (left) acceleration and (right) deceleration.

and using the boundary condition u,|.—o = 0, the velocity
profile within the avalanche layer is

ug(z) = — Psg CcOoS (brp% ((532 — 122)7 (A8)

Hs 2

where i is the diffusion coefficient for the granular flow.
The flow rate ®, thus becomes

55
o, = / ug(z)dz
o oh (A9)
_ Ps8 37"
=3 COS ¢y 03 e

Therefore, when the bed load time scale is large compared to
the hydrodynamic time scale and the flow velocity of the
gravity-induced granular flow is small, the gravity-induced
avalanche flow can be modeled as a diffusion process with
the diffusion coefficient k = p,g'/(3/15)c086,,05°.

[46] In the above derivation, we have assumed a simple
Newtonian flow model to describe the relationship between
the shear stress and the velocity gradient (equation (A7)),
which may not be true for bed sediment in natural waters.
Readers may refer to other references for a comprehensive
derivation for non-Newtonian flow models, e.g., the Bing-
ham fluid as a mudflow model [Liu and Mei, 1989]. Never-
theless, regardless of the non-Newtonian assumption, it is
always possible to derive an equivalent diffusion coefficient
to represent gravitational settling as a diffusion process that
acts to smooth steep bed forms.

Appendix B

[47] We simulate the turbulent oscillatory boundary layer
over a rough wall given by Case 12 of Jensen et al. [1989]
to validate the present numerical model. Flow is simulated
with the same computational setup as in section 4.1 except
we apply a different driving pressure gradient to yield an
amplitude of the freestream velocity Uy = 1.02 m s ' and a

different oscillatory time period 7= 9.72 s, which gives a
Stokes-layer thickness &, = /2v/w = 1.8 x 107> m. Profiles
of the planform-averaged streamwise velocity along with
the experimental results are plotted in the first half cycle in
Figure B1. Although small differences between model and
experimental results are found, in the near-wall region,
where the vertical grid size is refined, model results agree
well with experimental data. This demonstrates the model
capability of obtaining correct planform-averaged flow
characteristics by resolving fine-scale features in the near-
wall region.
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