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Abstract Internal waves strongly influence the physical and chemical environment of coastal
ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS)

system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow
shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a
perspective of physical processes commonly available only in laboratory settings or numerical models,
including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped
cores, and observations of internal rundown (near-bed, offshore-directed jets of water preceding a breaking
internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into
shallow waters or reflected back offshore—is mediated by local water column density structure and
background currents set by the previous shoaling internal waves, highlighting the importance of wave-wave
interactions in nearshore internal wave dynamics.

1. Introduction

Internal waves propagate in the stratified waters of the subsurface ocean and are ubiquitous and
well-studied features of continental shelves (Garrett & Munk, 1979; Helfrich & Melville, 2006).
Large-amplitude internal waves interact with shoaling bathymetry and can break, run up, and form
bottom-propagating, bore-like features on the shelf as far inshore as the surfzone (Boegman et al., 2005b
in lakes; Klymak & Moum, 2003; MacKinnon & Gregg, 2003; McSweeney et al., 2020; Sinnett &
Feddersen, 2014; Sinnett et al., 2018; Walter et al., 2012; Walter et al., 2014; Winant, 1974). Internal wave
dynamics have important implications for vertical mixing, cross-shelf transport, environmental variability,
and the exchange of heat, nutrients, sediments, larvae, and pollutants in coastal ecosystems globally
(Cheriton et al., 2014; Davis & Monismith, 2011; Emery & Gunnerson, 1973; Henderson, 2016 in lakes;
Hofmann et al., 2011; Leichter et al., 1996; Lucas et al., 2011; Omand et al., 2011; Pineda, 1991; Wolanski
& Pickard, 1983).

Currently, the most comprehensive picture of internal wave dynamics on the shelf, including breaking, the
distribution of energy, and mixing, comes from laboratory and numerical studies (Arthur et al., 2017; Arthur
& Fringer, 2014; Helfrich, 1992; Lamb & Nguyen, 2009; Michallet & Ivey, 1999; Venayagamoorthy &
Fringer, 2007). Field observations of shoaling internal waves are challenging due to the wide variability of
waveforms and spatiotemporal scales that characterize associated processes such as breaking and dissipa-
tion. Despite these challenges, existing observations demonstrate that internal waves on the continental
slope and shelf often occur as steepened internal tides (Martini et al., 2013; Scotti et al., 2007) or remotely
generated internal solitary waves (ISWs) (Li & Farmer, 2011; Zhao et al., 2014). ISWs are nonlinear disper-
sive waves that propagate as waves of depression or elevation, where the displacement of isopycnals is down-
ward or upward, respectively, depending upon the stratification. As ISWs of depression move into shallower
water near the coast, they can change polarity into waves of elevation or fission into trains of smaller ISWs
(Lamb, 2014; Orr & Mignerey, 2003). On the inner shelf, large-amplitude internal waves generally evolve
into bottom-propagating internal bores or boluses (Davis & Monismith, 2011; Pineda, 1999; Sinnett
et al., 2018; Walter et al., 2012; Walter et al., 2017). An internal bore is essentially an upslope-propagating
hydraulic jump that has a shock-like front, or “head” followed by a dense (cold) “tail” of fluid. An
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internal bolus, observed as a discrete mass of dense fluid without a long tail, is an ISW of elevation with a
trapped core of dense fluid (Bourgault et al., 2007; Bourgault et al., 2008; Lamb, 2014). However, the lines
blur between these waveform classifications, and it is not uncommon to see internal motions with both
wave-like and bore-like characteristics on the shelf, that is, “solibores” (Henyey & Hoering, 1997,
Hosegood et al., 2004). What is clear is that the inner shelf is a region of complex internal wave interaction
with topography, rapidly changing stratification and background currents, and that the fate of these waves is
important for nearshore ecosystems (Green et al., 2018; Reid et al., 2019; Wall et al., 2015; Walter et al., 2014).

In this paper, we present observations of internal waves shoaling on the shallow shelf slope of Dongsha
Atoll, a coral reef ecosystem in the South China Sea (Figures 1a-1c). Dongsha is directly in the path of some
of the world's largest ISWs (Alford et al., 2015; Guo & Chen, 2014; Hsu & Liu, 2000; Lien et al., 2005). These
waves evolve from steepened internal tides in the Luzon Strait and propagate westward across the deep basin
of the northern South China Sea with wavelengths of O(3-10 km), often developing into wave trains
(Alford et al., 2015). As the solitary waves shoal up onto the continental slope, they steepen even further with
amplitudes as large as 150-200 m and wavelengths of only a few hundred meters. At this point, they can
become susceptible to both convective and shear instabilities which cause them to break and drive huge ver-
tical overturns, energetic mixing, and energy dissipation (Chang et al., 2006; St. Laurent, 2008).

The shallow (<25 m) slope of Dongsha Atoll is an internal swash zone, where the end of life of these large
internal waves takes the form of bottom-propagating solibores and boluses. They spend their remaining
energy bringing deep water up to the surface where it has significant effects on the reef heat and nutrient
budgets (Reid et al., 2019). From 1-17 June 2014, we deployed Distributed Temperature Sensing (DTS)
instrumentation to capture spatially continuous observations of near-bed temperature on the fore reef slope
of Dongsha Atoll to evaluate the path (or “fate”) of internal waves shoaling onto the shelf and moorings to
measure the vertical structure of velocity and density stratification. A semi-idealized numerical simulation is
used to help interpret the novel perspective provided by the DTS observations. Our results are among the
first reported DTS deployments in the coastal ocean (but see also Connolly & Kirincich, 2018; Reid
et al., 2019) and enable a continuous view of internal wave evolution across a narrow, steep shelf and the
resulting benthic temperature environment.

2. Methods
2.1. Site Description

Dongsha Atoll is 28 km in diameter and has an area of approximately 600 km?. The atoll sits at the eastern
edge of the continental shelf, also known as the Dongsha Plateau (Figure 1a). Our study site is located on the
eastern side of the island where the bathymetric slope is fairly steep. The fore reef has a 0.03-0.05 slope down
to 25-m depth, where a steeper 0.15 slope section extends to a depth of 50 m, after which the slope flattens
slightly (0.07) down to 300-m depth. The “shelf” on the eastern side of Dongsha Atoll is therefore very nar-
row, but here we will define the inner shelf to be shoreward of the 25-m isobath. This definition of the inner
shelf reflects a topographic division (slope change) and is also the location where the time-averaged thermo-
cline depth intersects the bed.

The east reef flat (inshore of the slope) is roughly 3 km wide and ranges from 0.6- to 3.5-m depth. A survey of
the benthic composition of the reef flat shows that the region is dominated by fleshy algae, sea grass, and live
coral (DeCarlo et al., 2017). The reef slope has well-developed spur and groove formations, dominated by
Scleractinia (stony corals) and Octocorallia (soft corals).

General ocean circulation in the northern South China Sea during the summer is controlled by monsoon
winds (Song, 2011). Winds from the southwest drive surface currents generally to the northeast (Morton
& Blackmore, 2001). The barotropic (surface) tide at Dongsha Atoll is mixed semidiurnal, and barotropic

tidal currents are oriented primarily alongshore, with amplitudes of up to 0.5 ms™h.

2.2. DTS Observations

Fiber optic (FO) DTS relies on the relation between the thermal energy state of an optical fiber and Raman
backscatter intensities. Light is backscattered as a coherent pulse of light from a laser propagates through the
fiber. Within the spectrum of the backscattered light, the Raman frequency bands (known as the Stokes and
anti-Stokes peaks) are influenced by the thermal energy state of the scattering site. The ratio of the
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Figure 1. South China Sea internal waves. (a) Map of northern South China Sea indicating experiment location on Dongsha Atoll. (b) Internal waves refracting
around Dongsha Atoll in a Hyperspectral Image for the Coastal Ocean (HICO) taken on 28 May 2014. (c) Image of Dongsha Atoll eastern reef from the Taiwan
National Space Organization with location of DTS fiber optic cable and Mooring E1. (d) Depth-averaged, eastern component of tidal velocity in the Luzon
Strait (20.6°N, 121.9°E). (e) 1-h low-pass filtered near-bed water temperature at Mooring E1 on the Dongsha Atoll fore reef, lagged 50 h behind the tidal velocities
in (d). Vertical lines between panels (d) and (e) are to aid in visual alignment of tidal flow maxima (red is ebb, green is flood) and temperature on Dongsha
fore reef. Time is in local time (GMT+38). Tropical storm Hagibis arrived near Dongsha Atoll near the end of the study period.

anti-Stokes to Stokes signal is exponentially dependent upon the temperature of the fiber at the scattering
site (Tyler et al., 2009). The distance along the cable is determined from the time of flight of the light
through the fiber. Combining the temperature measurement from the Raman spectra with the distance
measurement allows the DTS to measure a profile of temperature along the length of the optical fiber.

The precision of the DTS temperature measurement is a function of the total number of photons detected to
constrain the anti-Stokes/Stokes ratio. Thus, there are trade-offs between temperature measurement preci-
sion and spatial or temporal resolution—the higher the spatial or temporal resolution, the fewer photons
observed per measurement (Hausner et al., 2011). Additionally, the strength of the optical signal decays with
distance from the source, so sections of the cable farther from the DTS instrument require longer integration
times to achieve a desired level of precision. The FO cable is assumed to be in thermal equilibrium with the
surrounding fluid. For a more detailed review of the DTS theory, the reader is referred to several publications
on the topic (Hausner et al., 2011; Rogers, 1999; Tyler et al., 2009; Vercauteren et al., 2011). DTS systems
have been deployed in a number of other environments to measure temperatures at spatial scales from
meters to kilometers (Hausner et al., 2011; Hilgersom et al., 2016; Kobs et al., 2014; Selker et al., 2006;
Sudrez et al., 2011; Tyler et al., 2009; van Emmerik et al., 2013; Vercauteren et al., 2011).

The optimal use of the DTS instrument in coastal ocean environments is where a strong temperature gradi-
ent intersects the bed. This is true for our field site at Dongsha Atoll, where the large-amplitude ISWs have
broken offshore and are running up along the bed as bottom-propagating solibores and boluses. On the
Dongsha fore reef slope, temperature differences across the thermal front at the leading edge of the internal
solibores are typically >2 °C and can be up to 10 °C. Here a four-channel DTS system (Sensornet Oryx) was
used to capture a continuous view of near-bed temperature in a cross-shelf profile on the east fore reef of
Dongsha Atoll. Four kilometers of Kaiphone, a 0.6-cm diameter FO cable was deployed in a cross-shelf
orientation (285°, aligned approximately parallel to the propagation direction of the offshore internal wave
field (Ramp et al., 2010)), beginning at the back of the reef flat (~2-m depth) and terminating offshore at
50-m depth on the fore reef (Figure 1c). In this study, we focus on the offshore-most ~1 km of the FO
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cable—from the reef crest down the fore reef slope. The reader is referred to Reid et al. (2019) for further
information about the shallow reef DTS results. The FO cable followed the bottom contours of the bed,
except in areas with extreme changes in topography (such as a coral groove) where the cable was raised
above the bed by up to 0.5 m. The DTS collected temperature traces along the cable every minute with
2-m spatial resolution from 2-12 June 2014. A tropical storm in the vicinity of Dongsha Atoll reduced solar
power and prevented further DTS measurements after 12 June; however, measurements from vertical arrays
(section 2.3) continued until 17 June 2014.

One limitation of the linear, cross-shore configuration of our cable deployment is that it was not able to
resolve the alongshore component of the internal wave phase speed. However, the relatively singular source
of the internal waves shoaling on the Dongsha Atoll fore reef (Luzon Strait, discussed further in section 3.1)
and the alignment of the cable with the well-constrained direction of propagation of the biggest internal
waves in the northern South China Sea (Ramp et al., 2010 ) give us confidence that the waves are propagat-
ing in approximately the same direction as the cable. For example, observations by Ramp et al. (2010) of ISW
propagation in the northern South China Sea collected over 15 months demonstrate that the waves travel
WNW towards 282°-288° with little variation (i.e., within ~3° of parallel to the FO cable). Additionally,
we assume that the waves have largely refracted to the local bathymetry in depths shallower than 50 m.
Furthermore, even with a 20° angle between the direction of internal wave propagation and the FO cable
line, the apparent phase speed would only be 6% greater than the true phase speed.

After deployment, scuba divers surveyed the FO cable above 30-m depth, collecting location and depth data
associated with specific meter markings on the cable. For optimal DTS calibration, it is necessary to main-
tain known temperature reference sections at a range of different temperatures along the FO cable for the
entire deployment (Hausner et al., 2011). In this study, the FO cable was configured with four 20-m coiled
reference sections, each with a known temperature from a colocated, independently logging, temperature
sensor (Seabird SBE-56, accuracy 0.002 °C). One reference section was kept in a recirculating ice bath on
a scaffolding platform. Calibration parameters relating the Raman backscatter intensity to the optical fiber
temperature are derived from independent accurate temperature measurements in the reference sections
following the methods of Hausner et al. (2011). In addition to the temperature loggers used for calibration,
several point temperature sensors were deployed along the cable length for validation purposes. Validation
of the DTS temperature against independent temperature sensors (SBE-56s) gives an average root mean
square error (RMSE) = 0.20 °C and a bias of 0.07 °C.

The spatially continuous temperature data from the DTS instrument allow for the calculation of the exact
nonlinear wave characteristics. Wave characteristic lines were estimated from thermal fronts in the DTS
data that were manually digitized (see e.g., Figure 5b). The phase speed of the internal waves was estimated
from the wave characteristic lines as cp;, = dx/dt, where dx is the change in cross-shore distance and dt is the
change in time.

2.3. Additional Physical Oceanographic Measurements

In addition to the DTS system, currents and vertical water column structure were measured from 3-17 June
2014 at Mooring E1 (Figure 1c). One upward-looking acoustic wave and current profiler (AWAC, Nortek AS)
was deployed at 18-m depth near the FO cable and recorded current measurements at 1-min intervals. Just
downslope, at 24-m depth, a vertical array of thermistors (Seabird Electronics SBE-56s, sampled at 2 Hz) was
deployed with 2-m vertical spacing (between 2.8 and 16.8 m above the bed) with a conductivity-tempera-
ture-depth (CTD) sensor (SBE-37, sampled once per minute) 1.2 m above the bed.

Tidal velocities in Luzon Strait were estimated using the Oregon State Tidal Inversion Software (OTIS;
Egbert & Erofeeva, 2002) and the TMD toolbox (Padman & Erofeeva, 2004). Background stratification, or
Brunt Viisili buoyancy frequency, was calculated as N> = — (g/po)p,, Where g is gravitational acceleration,
Po is a reference density, and p, is the vertical gradient in density. Density was calculated from 1 h averaged
temperature and conductivity data compiled from the vertical array of temperature sensors at E1 and below
25 m from the DTS FO cable.

Apparent internal wave phase speeds measured by the DTS are compared with the phase speed of a long lin-
ear, first-mode internal wave in a stratified fluid, estimated as
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H 1/2
Cph(linear) = ; (Nz_w2) / ) (1)

where H is water depth, N° is averaged over depth and time for the entire deployment period, and w is the
angular frequency of the wave (Kundu & Cohen, 2002; Venayagamoorthy & Fringer, 2007).

2.4. Nitrate Measurements

Water samples were collected at depths from 2-10 m, every 2 or 3 h on 4-5 June 2014 from the R/V Ocean
Researcher III anchored near Mooring E1 and in surface waters around Dongsha Atoll (<40-m depth) in
October 2012 (Wong et al., 2015). Water was collected using a Go-Flo bottle, and nitrate concentrations were
determined according to the methods of Parsons et al. (1984) . A linear fit between nitrate concentrations
and water temperature (R* = 0.74, p < 0.001) was used to estimate nitrate concentration from DTS tempera-
ture (further details and data shown in Reid et al., 2019). Note that while this simple relationship is useful for
estimating nutrient concentrations on the fore reef (very near to the sample collection site), it does not
account for biological transformations of the nutrient fields, such as uptake or remineralization.

2.5. Numerical Simulations

Despite the complexity of the realistic internal wave field, semi-idealized, two-dimensional numerical simu-
lations can be used to improve understanding of field observations of breaking internal waves on slopes
(Bourgault et al., 2007; Walter et al., 2012). Here, a semi-idealized numerical model is used to complement
the DTS observations and to explore how the internal wave structure and dynamics over the entire water col-
umn might lead to the observed patterns in the DTS temperature data. The nonlinear, nonhydrostatic model
SUNTANS (Fringer et al., 2006) is employed along a two-dimensional cross section that extends eastward
offshore of Dongsha Atoll along 20.7°N (bathymetry from field surveys and Wang et al., 2007). The cross sec-
tion used in the model approximately follows that of the FO cable (noting that the cable is not oriented
exactly east-west near the atoll, but the differences in orientation between the observations and model
domain are considered negligible) and extends farther offshore (reaching a depth of 300 m), where a 5-km
flat section is added to allow for wave initialization. The model has a horizontal grid spacing dx = 3 m, a ver-
tical grid spacing dz = 3 m, a vertical grid with 100 z-level cells, 3% stretching, and vertical spacing dz=9.01 m
at depth which decreases to 0.50 m near the surface for increased resolution, and a time step dt = 0.5 s. This
value of dx meets the grid lepticity requirement of Vitousek and Fringer (2011) for resolving nonhydrostatic
effects, which are important in shoaling and breaking internal waves. A drag coefficient C4 = 0.005 is used
with a quadratic drag law formulation for the velocity boundary condition on the bottom, while a free slip
condition is used on the nearshore and offshore walls. The density boundary conditions are gradient free
on all walls. A constant eddy diffusivity of v = 10™* m?/s is used.

SUNTANS simulations were initialized with a smoothed vertical profile of salinity and temperature from
CTD measurements taken just offshore of the east Dongsha fore reef during a hydrographic cruise by the
R/V Ocean Researcher IIT on 6 June 2014. A solitary-like wave structure was initialized in the offshore flat
part of the domain using a two-dimensional mathematical model of the fully nonlinear, inviscid, steady-state
Dubriel-Jacotin-Long (DJL) equation with background current. The DJL model, as given by Stastna and
Lamb (2002), is

N*(z—n)

V2n+ U(z_n))[n)zc_._(nz_z)nz}—i_ 27):07 (2)

c—-U(z—1n

where 7(x,z) is the isopycnal displacement, c is the internal wave phase speed, U(z) is the background cur-
rent (assumed zero for this study), and N(z) is the background Brunt Viisdld buoyancy frequency.
Mode-one solutions to this equation are found iteratively using the DJL equation solver (DJLES)
MATLAB package (Dunphy et al., 2011; Turkington et al., 1991) and the depth-integrated available poten-
tial energy (APE = 18.8 MJ/m) measured by Fu et al. (2012) at a site located at 285-m depth on the slope,
with an initial maximum isopycnal displacement of approximately 75 m.

Internal wave energy flux is estimated as F = u ' p’, where u' is the internal wave velocity perturbation (u/,
w'), p' is the internal wave pressure perturbation, and the brackets denote a time average (Kang &
Fringer, 2012). The full expression for F includes additional terms for advection and diffusion, and in a
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field setting on the California coast, Kang and Fringer (2012) found that these terms contribute less than 1%
to the total energy flux budget. In this present study, where we have no barotropic currents in the model,
these additional terms are expected to be very small and are neglected.

3. Results
3.1. Origins of the Internal Waves Observed at Dongsha Atoll

The amplitude and timing of internal waves in coastal waters are often difficult to predict given that internal
waves may originate from multiple generation sites and conditions (currents and water density stratifica-
tion) through which they propagate (Nash et al.,, 2012). However, the origins and properties of the
large-amplitude ISWs in the northern South China Sea are relatively well constrained by past observations
and modeling (Alford et al., 2015; Alford et al., 2010; Buijsman et al., 2010; Hsu & Liu, 2000; Klymak
etal., 2006; Ramp et al., 2010; Simmons et al., 2011; Zhang et al., 2011; Zhao & Alford, 2006; Zhao et al., 2014),
and the timing of their arrival on the narrow Dongsha shelf can be traced back to tidal currents in the Luzon
Strait generation region (Figure 1d and 1e). The arrival of the largest internal waves incident on the Dongsha
shelf, as indicated by sudden, large drops (4-10 °C in <1 min) in water temperature, generally occurs within
1 h of the predicted arrival time of Luzon-generated waves (based on a predicted 50-h lag from maxima in
Luzon tidal currents and propagation speeds of 2-3 m s™* over ~500-km distance) (Alford et al., 2010;
Ramp et al., 2010). Internal wave-driven cooling on the shallow slope is larger in the two days following
spring tides (4 June and again on 16-17 June in our observations, Figure 1e) than following neap tides
(9-10 June in Figure 1e), although there are exceptions. There is no one-to-one correspondence between
maxima/minima in Luzon tidal currents (forcing) and arrival of internal waves on Dongsha, and this could
be due to several factors: weaker tidal currents during neap tides within Luzon Strait may not generate ISWs
(Ramp et al., 2010) (e.g., Figure 1e shows small temperature drops between 2-5 and 12-14 of June that are
associated with weaker flood beats in Figure 1d), the largest ISWs may break down into a train of
smaller-amplitude and higher-frequency internal waves (Duda et al., 2004; Fu et al., 2012; Orr &
Mignerey, 2003), or the internal waves may interact with the Kuroshio current or mesoscale eddies along
the propagation path (Li et al., 2016). There may also be some local generation of internal waves with the
local internal tide interaction with the slope, but the strong correspondence seen in our data with the
Luzon-originated waves suggests that this contribution is likely small.

In addition to ISW arrivals, nearly continuous, smaller-amplitude temperature fluctuations (1-4 °C) are
associated with higher-frequency internal waves that may be generated locally or at a different remote loca-
tion, and their arrival times are thus not correlated with tidal currents in the Luzon Strait. The ISWs in
Figure 1e are superimposed on a tidal timescale fluctuation in water temperature imposed by the local inter-
nal tide. A cooling trend in fore reef waters during 13-17 June 2014 is related to the strong winds of tropical
cyclone Hagibis (Figure 1e).

3.2. Spatially Continuous Measurements of Internal Waves

Internal waves perturb the temperature and density structure of coastal waters, but the nature of the pertur-
bation depends upon the form and amplitude of the waves. Here, we combine spatially continuous measure-
ments of near-bed temperature from the DTS with observations of currents and vertical structure of the
water column by a suite of instruments deployed at Mooring E1 (Figure 2) to examine the form of the inter-
nal waves on Dongsha Atoll, their propagation path, phase speed, onshore extent, and retreat back down
the slope.

The DTS data provide a unique, quasi-3D view of continuous near-bed temperature measurements across
700 m of the Dongsha inner shelf (Figure 2). Sharp, cold temperature fronts (blue and green streaks in
Figure 2a) are internal wave fronts propagating upslope (from bottom to top in the figure) over time. A total
of 543 internal waves were detected over 11 days (2-12 June), averaging two waves per hour (but waves were
not evenly spaced in time).

3.2.1. Upslope Evolution

From previous observations in the Dongsha Plateau shelf region, we know that as the large ISWs advance on
the continental slope, they can develop into a train of waves, some with trapped cores (i.e., a recirculating
mass of fluid transported with the wave) (Lien et al., 2012; Orr & Mignerey, 2003). Over the steep topography
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Figure 2. Nonlinear internal waves on the inner shelf. (a) Example of DTS data for 6 h on 5 June 2014 (representing ~200,000 independent temperature
measurements). Quasi-3D plot shows near-bed temperatures from DTS and estimated nitrate concentration from the reef crest (~2-m depth) to the offshore
terminus of the cable (~50-m depth). Examples of the DTS signature of an internal wave (of elevation) front, wave reflection, and wave relaxation are
indicated with white dashed lines. Time-averaged stratification (N2) for the study period is shown to the right of the DTS data (blue line). The location of Mooring
E1 on the slope and the duration and location of the time series shown in panel (b) are also indicated. (b) Vertical array of water temperature (same color scale
as in panel a) and the vertical and across-shore components of velocity in a stationary reference frame (aspect ratio of velocity quivers is 1:1) at Mooring E1
for 35 min corresponding to the solid white line in panel (a). (c) Enlarged view of the head of the solibore (white boxed region of panel b). Quivers represent
velocities in a reference frame moving with the apparent phase speed of the bore (0.18 m s_l), showing circulation within the core of the solibore head.

east of Dongsha Atoll, they transform rapidly from solitary waves of depression in water depths >400 m to
waves of elevation with amplitudes roughly 100-150 m in water depths <200 m (Fu et al., 2012). Satellite
images (hyperspectral images as in Figure 1b and synthetic aperture radar images such as in Figure 6 of

Guo and Chen, 2014) show evidence of significant refraction and reflection of internal waves around
Dongsha Atoll.

Upon reaching water depths <50 m, the internal waves are in the form of highly nonlinear solibores and
boluses and are associated with an upslope-propagating cold temperature front in the DTS data (white arrow
indicating “internal wave front” in Figure 2a) and the onshore flux of dense, cold water in the bottom ~10 m
of the water column, as seen in a representative solibore event passing E1 at 21:48 (Figure 2b). The apparent
phase speed (cp, estimated from the DTS wave characteristic and explained in detail in section 3.2.5) of this
bore is relatively constant on the steep slope below 25 m (0.43 m s™*), but slows quickly as it moves up the
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onshore-most position for all events detected with the DTS between
2-12 June 2014 are shown in Figure 3. Many of the events detected in
0.8 the DTS data exhibited a cold (blue) track of discrete cross-shore spatial
extent (~20-40 m in apparent length), which suggests the existence of a
trapped core of cold water (e.g., Figure 5a).

The detailed velocity and temperature structure of the representative soli-
bore event at E1 over a 30-min period shown in Figure 2b exhibits features
characteristic of both a nonlinear ISW of elevation with a trapped core and
of an internal bore with a tail of dense fluid. A sharp front of cold water
(8 °C drop in 15 s) at 21:48 marks the head of the solibore, with onshore
velocities of 0.3 m s™* within the cold core and strongly sheared velocities
near the top of the solibore head (offshore directed). The strong onshore
velocity in the head of the solibore (0.3 m s™') significantly exceeds the
front propagation speed at Mooring E1 (0.18 m s, estimated from the
DTS), suggesting the existence of a trapped core.

(15 w)
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In an enlarged view of the head (Figure 2c), there is evidence of large

400 600 density overturns (~ 4 m high) in the strongly sheared region near the

Figure 3. Smoothed across-shore bathymetry of the Dongsha east fore ~ within the cold head of the solibore at 21:48 in Figure 2c., which shows
reef with instantaneous estimates of apparent internal wave phase speed velocities in a reference frame moving with the apparent phase speed of

(blue dots) and averaged phase speed over all internal waves (blue line).
For reference, a long, linear, first-mode internal wave speed is shown

the bore front as it passes E1 (Helfrich & White, 2010). Very near the

(dashed gray line). Green bars indicate the location of the onshore-most bed (<2 m above the bed, in Figure 2c), there is evidence of a small

extent of internal waves as detected in DTS data.

region of reverse circulation (offshore flow) within the head of the soli-
bore similar to that seen in simulations of bolus propagation on a shelf
(Venayagamoorthy & Fringer, 2007), which may allow dense water to
leak out of the back of the trapped core.

A region of relatively well-mixed temperature fluid follows the head (the green patch between 4 and 10 m
above the bed, to the right of the white box in Figure 2b), partially separating the head from the tail of the
solibore. This region of elevated mixing could be created by an adverse pressure gradient or large-scale vor-
tices (not resolved by our velocity measurements) shedding off of the strongly sheared region in the solibore
head as seen in numerical simulations of shoaling ISWs of elevation (Diamesses & Redekopp, 2006; Stastna
& Lamb, 2008) and could be contributing to the formation of the trapped core in the head region. The
cold-water tail of the solibore continues to propagate onshore past Mooring E1 from 21:53-22:09, where it
loses onshore momentum and the dense water relaxes back offshore.

3.2.2. Internal Wave Reflection

Evidence of internal wave reflection off of the Dongsha shelf has been documented in satellite images and
predicted in numerical simulations of the shelf slope region (Bai et al., 2017; Guo & Chen, 2014). Bai
et al. (2017) estimated that as much as 20% of incident internal wave energy may be reflected back offshore.
Many of the internal waves tracked with the DTS were reflected off the steepest section of the slope (the bot-
tom slope just offshore of E1 is 0.15): distinctive “V”-shaped formations in the temperature data indicate a
rapid change in direction for the internal wave (see example in Figure 2a) and are consistent with previous
observations of internal waves reflecting on a natural slope (Bourgault et al., 2011). Both the onshore and
offshore “legs” of the V-shaped temperature pattern are sharp temperature gradients, giving some indication
that a coherent wave form is maintained throughout the reflection process (Bourgault et al., 2011). However,
the apparent phase speed of the reflected waves is, on average, 60% slower than the incident waves, suggest-
ing a loss in energy during reflection. The reflection of internal waves of elevation off of sloping bathymetry
has been documented in laboratory studies and is consistent with the near-bed temperature pattern observed
here (Chen et al., 2007).
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3.2.3. Internal Wave Relaxation

Internal waves that are transmitted onshore of the steepest slope (onshore of E1) eventually lose their onshore
momentum, and the dense water transported upslope by solibores and boluses gradually accelerates back off-
shore in a relaxation phase. This relaxation phase is visible as “U”-shaped patterns in the DTS temperature
contours (see example in Figure 2a), with progressively less distinct temperature gradients due to turbulent
mixing, which continues throughout the shoaling process (Davis & Monismith, 2011; Walter et al., 2012).
3.2.4. Internal rundown

As internal waves shoal at Dongsha, a strong offshore-directed jet is consistently observed near the bed, with
a coincident onshore flow of warmer water in the upper part of the water column (Figures 2a and 2b). In
many cases, these downslope jets have a strong effect on the water column structure over the slope. For
example, just prior to the cold front of the reference wave (indicated by the white arrow labeled “Internal
wave front” in Figure 2a and in Figure 2b at 21:47), a strong downslope jet pulls water of near-surface tem-
perature (27 °C) down to 40-m depth on the steep fore reef slope. Strong downslope flow preceding a shoal-
ing ISW, “internal rundown” (a term adopted from surface wave nomenclature), has been seen in laboratory
experiments (Michallet & Ivey, 1999; Nakayama & Imberger, 2010; Umeyama & Shintani, 2006) and numer-
ical models (Aghsaee et al., 2010; Arthur & Fringer, 2014) as well as in the field (Bourgault et al., 2005; Fu et
al., 2012; Scotti & Pineda, 2004). This downslope flow occurs as the leading depression phase of the ISW
interacts with the bathymetry and near-bottom water is pulled down the slope prior to the arrival of the wave
of elevation that has formed from the steepened rear face of the ISW. The dynamic internal wave field of the
Dongsha slope makes it challenging to isolate internal rundown from the relaxation phase of the previous
wave. However, the intensity of the observed downslope jets (in some cases up to 0.45 m s™* within a meter
of the bed at Mooring E1) suggests that the gravitational flow of dense fluid down the slope from the previous
wave may not be the only driving force for the observed near-bed current. For example, observed stratifica-
tion and near-bed jet dimensions related to the reference wave in Figure 2 were used to estimate the speed of

a gravity current on a sloping bed (8~3-5° for the slope shoreward of mooring E1) as Ugrqy = ghcs%{ where

g’ = gp/p is reduced gravitational acceleration calculated by a representative density (o) difference between
fluids, & is the depth of the gravity current, and Cy is the coefficient of drag estimated from nearby measure-
ments of flow over the reef flat (Reid et al., 2019). Estimates of Uy, are 0.18-0.22 m s~!, which is consistent
with the offshore-directed, near-bed velocities observed at the end of the bore (0.16-0.18 m s™* at
22:15-22:20 in Figure 2b), but significantly slower than the downslope jet that precedes the arrival of the soli-
bore head (0.35 m s™* at 21:45-21:46 in Figure 2b). This suggests that the strong, bottom-intensified offshore
jet preceding the wave is driven, at least in part, by internal rundown. We examine this mechanism further
using idealized numerical simulations in section 4.1.

3.2.5. Variable Propagation Speed of Nonlinear Internal Waves Across the Shelf

The phase speeds of the internal waves were estimated from the wave characteristic lines as ¢, = dx/dt,
where dx is the change in cross-shore distance and dt is the change in time. This method assumes that the
dense fluid within the core is traveling up the slope at the same speed as the wave front (even though velo-
cities within a trapped core may exceed the wave speed). This assumption is tested below in numerical simu-
lations of a “virtual DTS” (section 4.1). Based on digitization and analysis of the DTS data, we estimate the
phase speed of observed internal waves—both incoming and reflected—as well as the onshore terminal posi-
tion of each wave (Figure 3). Below 25-m depth on the steep slope, the onshore component of the speed of
observed internal waves is approximately constant at 0.36 m s~ (Figure 3), 20% faster than a linear,
first-mode internal wave speed (gray dashed line in Figure 3; see section 2.3 for further details on calcula-
tion). As the bores and boluses run up past the topographic slope change at 25-m depth (near E1), they slow
in speed (see also Figure 2a). Along this gentler portion of the bed slope, the temperature gradient becomes
less sharp as the cold fluid within the bolus mixes with the ambient temperature water. Eventually, the
boluses lose their onshore momentum, leading to the relaxation of cold water back down the slope.

4. Discussion
4.1. Comparisons With Numerical Modeling

A 2D semi-idealized numerical model using realistic bathymetry and stratification is used to complement
the DTS observations and to explore how the internal wave structure and dynamics over the entire water
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Figure 4. Numerical simulation of internal wave on Dongsha atoll. (a, b, c, e, f, g) Snapshots of cross-shore density structure and across-shore component of
velocity (positive u is offshore-directed flow) from a SUNTANS simulation. Green line on slope corresponds to the location of the field deployment of the DTS
instrument. (d, h) Onshore-directed (red), offshore-directed (blue), and total (black) internal wave energy flux integrated vertically and over the period of the
internal wave. (i) Near-bottom, across-shore velocity, up, and (j) near-bed water temperature (“virtual DTS”) plotted over the slope and period of internal wave
shoaling. Vertical dashed lines in (i and j) correspond to snapshots of time in panels (a, b, c, e, f, g). Contour lines in (i and j) are for up = 0.

column might lead to the observed patterns in the DTS temperature data (Figure 4). In the numerical run, a
solitary wave of depression propagates onshore (Figure 4a) where it begins to interact with the slope. This
interaction causes a strong downslope flow near the bed (“internal rundown”) and steepening of the rear
face of the wave (Figure 4b). A solitary wave of elevation then forms on the steepening rear face of the
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Figure 5. (a) Near-bed temperature from DTS measurements for 24 h on 4 June 2014. Dotted line indicates location of reef crest (~2-m depth) and quivers show
velocity 1 m above the bed (black) at Mooring E1. Note: Color bar in Figure 5 is different from Figure 4. Black triangles at top indicated the predicted arrival
time of waves generated in Luzon Strait. Incoming waves are the yellow, blue, and green streaks extending downward and to the right, whereas downslope flow
events (relaxation or internal rundown) are marked by yellow and orange streaks projecting upward and to the right. (b) Same as in (a), but with wave
characteristics highlighted. Solid white lines and dashed white lines indicate incident and reflected internal wave-induced temperature fronts, respectively.

(c) Number of internal waves reflected offshore of steep slope (blue bars) and transmitted onshore of Mooring E1 (red bars) for each hour of 4 June 2014. 1-h
low-pass filtered depth of the maximum buoyancy frequency (green line).

initial wave of depression (Figure 4c) and propagates onshore as a dense bore with large instabilities forming
behind the head of the bore (Figures 4c and 4e). Additionally, some of the internal wave energy is partially
reflected off of the steep reef slope (near 0.4 km from the reef crest), causing a reversal in the flow direction
near the bed (Figure 4f).

The numerical simulation was used to create a “virtual DTS”: a plot of density in the bottom-most grid cell as
a function of cross-shore distance (x) and time (t) (Figure 4j). The key features and behaviors of waves
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observed in the field are also evident in the model-derived virtual DTS. For example, the virtual DTS shows
warm water drawn offshore and downslope ahead of the incident internal wave (internal rundown; ¢ = 3.5-
4 h or “C” in Figures 4i and 4j), followed by the same form of wave observed at E1 in Figure 2: an
onshore-directed front of dense water, marking the head of an internal bore, surges upslope (t = 4.25-
6.5 h, or “E” and “F” in Figures 4i and 4j). A V-shaped reflection off of the steep section of the slope (just
before ¢ = 5 h in Figures 4i and 4j) matches the DTS signature and location of the internal wave reflections
seen in observations (Figure 2a, see also Figures 5a and 5b ). Gradual rewarming of the slope is also seen in
the model, with a prolonged period of offshore flow and the “U”-shaped relaxation of dense water back
down the slope in the model (¢t = 5-7 in Figure 4j).

Because the model shows a single shoaling internal wave on an initially quiescent slope, the results also help
to isolate the internal rundown (before) and relaxation (after) phases of shoaling waves that are difficult to
separate in our field observations. The model results thus support our hypothesis that internal rundown is
contributing to the downslope current just before the arrival of a large-amplitude internal wave.

We can also directly compare the phase speed of the shoaling waves in the model with the slope of the
onshore-propagating dense front seen in the virtual DTS. The average phase speed of the modeled internal
bore from 0.5 <x < 1.3 kmisc,=0.3m s~!, which agrees well with the virtual DTS estimate (slope of the
density front in distance-time space) as well as the observed DTS apparent phase speed averaged over all
internal wave paths offshore of the slope break (Figure 3).

Internal wave energy flux is integrated in time (over the entire period of the wave shoaling and reflec-

tion, from ¢ = 0 to t = 9 h) and over the depth of the water column, as F, = ﬂ(u’p’) dz dt (Figures 4d
and 4h). Because the simulation contains one wave event, we approximate negative wave energy flux

Whenf(u " p') dz < 0 (primarily beginning of the simulation) and positive energy flux as times where

j(u " p’) dz > 0 (primarily end of the simulation). Results from this simple 2D numerical experiment
suggest that approximately 70% of the incident internal wave energy is dissipated after the wave breaks
into a wave of elevation and, eventually, an internal bore (0.5 < x < 3 km). The reflection coefficient, R,
defined as the ratio of the reflected to incident wave energy, was estimated for the modeled internal
wave at a point far offshore of the reflection (x = 6 km) as 0.21, a value consistent with the estimate
of energy reflected from Dongsha Atoll by Bai et al. (2017).

Compared with the energetic wave environment offshore, very little internal wave energy makes it to the
shallow reef since much of it is dissipated along the slope in depths >100 m (Figure 4d) and much of the
remaining energy is reflected at x = 0.5 km (Figure 4h). Nevertheless, the overall effect of the wave is to
deflect the isopycnals upward in the shallows and draw the cooler water up to the reef. And, while a signifi-
cant fraction of the incident internal wave energy is reflected off of the steep slope at x = 0.5 km, some energy
is transmitted shoreward, as evidenced by the cold bore that propagates eventually all the way to the reef
crest (x = 0) in the simulation (as well as in observations, e.g., Figure 5a).

The bands in the plot of bottom across-shore velocity (Figure 4i) around 5 < t < 8 h represent
offshore-directed internal waves, which are a result of the unsteadiness created by the internal bore colliding
with the steep section of the slope at x = 0.5 km. The propagating bore creates many deflections to the density
in its wake, and these forms propagate away as a series of nonlinear waves (Figures 4e and 4i).

4.2. Fate of Internal Waves on the Inner Shelf

Ultimately, the influence of internal waves in nearshore environments is determined by the fraction of wave
energy that is transmitted onto the shelf, where it can transport deep water masses shoreward or drive mix-
ing inshore of the shelf break, versus reflected off the slope, where the energy is dissipated in deeper waters.
The limitations of this observational data set for evaluating the fate of internal wave energy on the Dongsha
shelf are twofold: first, the one-dimensional aspect of the FO cable deployment does not allow for detection
of the alongshore component of the wave speed (see section 2.2 for detailed discussion) or other alongshore
variability in dynamics; second, Mooring E1 lacks measurements of velocity and water column structure in
the top third of the water column, preventing a reasonable estimate of the nonlinear terms of the internal
wave energy flux (Nash et al., 2005; Scotti et al., 2006). Nevertheless, the spatially continuous perspective
of the DTS data, paired with the vertical array at E1 allows us to track the cross-shelf path of internal
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waves on Dongsha—which at this location on the shelf are largely bottom-intensified waves of elevation or
internal solibores—and examine the dynamic conditions controlling their fate.

Of the total internal waves (543) detected by the DTS over the 11-day deployment, a subset of 233 internal
waves was tracked to determine how their fate (i.e., transmitted onshore of E1 or reflected offshore of E1)
was related to background conditions (stratification and currents on the shelf). This subset of tracked waves
contained waves that occurred during the 9-day period of overlap in DTS and Mooring E1 measurements and
waves that could be detected in the DTS within 100 m of Mooring E1. In addition to the 233 internal waves we
categorized, 40 waves detected onshore of Mooring E1 did not have a temperature signature offshore of the
shelf break, perhaps because their amplitudes were too small to detect in deeper water with the cable located
on the bed or because they were generated during the breaking of another wave on the steep slope.

In some cases, an incident internal wave is partially reflected offshore and partially transmitted past the
slope break—a partitioning of internal wave energy that is expected from theory. Examples of this can be
seen in Figure 5b at times 01:00-05:00, where an incident wave corresponds to a thermal front propagat-
ing both offshore (dashed white line) and onshore (solid white line) of the steep slope. In the case of par-
tial reflections, the wave was counted as both reflected and transmitted. Strictly speaking, it is likely that
none of the incident internal waves are perfectly transmitted or reflected from the shelf as they are
already highly nonlinear events and are dissipating energy as they shoal shoreward. Here, however, we
will assume that the path described by the strongest thermal fronts is the primary direction of internal
wave propagation and energy flux.

As an example of the patterns of wave reflectance and transmittance, we first focus on 4 June 2014 (Figure 5).
A total of 42 internal waves were observed during this 24-h period. Strong near-bed flows (black quivers at
E1 in Figure 5a) are associated with the onshore propagation (onshore flows) and relaxation or rundown
phases (offshore flows) of the internal waves. Figure 5b shows the wave characteristic lines estimated from
DTS measurements (see details in section 3.2.5), and Figure 5c shows the corresponding counts of waves
reflected (blue bars) and transmitted (red bars) past the slope break at 25-m depth (i.e., mooring E1) for each
hour of the time series. Between 02:00-08:00 GMT and again between 16:00-23:00 GMT (gray shaded
regions in Figure 5c¢), 17 reflected waves were detected and only 9 were transmitted onshore, while in the
intervening period between 09:00-15:00, only 1 reflected wave was detected and 11 transmitted, in some
cases bringing cool water all the way past the reef crest at x = 0 (Figures 5a and 5b). This time series high-
lights how dramatically the fate of internal wave energy incident on the steep fore reef can change at time
scales shorter than a day. In total over the 11-day deployment, 76% of the internal waves analyzed had a
clean transmission past the slope break at 25-m depth with no detectable reflection; 18% reflected back off-
shore on the steep slope with no detectable thermal front onshore of the slope break; and 6% had a partial
reflection with a detectable thermal front heading both onshore and offshore of the slope break.

The breaking-type and reflectance properties of ISWs and their run-up structure on the shallow shelf are
dependent upon the characteristic length scales of the incoming wave and topographic slope. These length
scales have typically been classified using a dimensionless ratio of the bathymetric slope, s, to the wave steep-
ness, quantified in the internal Iribarren number as & = s/ \/m, where a is wave amplitude and A is the
wavelength (Aghsaee et al., 2010; Boegman et al., 2005a; Iribarren & Nogales, 1949; Shroyer et al., 2009).
Dongsha has a relatively steep bathymetric slope (0.03-0.15), but the incident internal waves can also be
quite steep (Fu et al., 2012) (a/A ~ 0.3-0.7), resulting in a wide range of £ (0.1-0.9) for incoming waves.

In our observations, the strength of water column stratification (i.e., vertically averaged N°) was not signifi-
cantly different in magnitude for periods with reflected versus transmitted waves, but the vertical position of
the pycnocline (region of maximum N?) was deeper during periods with reflected internal waves compared
with times without (Figure 5b), suggesting that the vertical position of the pycnocline relative to the depth of
the slope break and the steep section of the slope below it may govern the transmission or reflection of inci-
dent internal waves (Hall et al., 2013). This idea is supported by laboratory and numerical experiments on
interfacial waves in a two-layer fluid, which find that the degree of “blocking” (B) of a topographic obstruc-
tion is an important factor controlling the scattering of energy into transmitted and reflected waves (Diebels
et al., 1994; Vlasenko & Hutter, 2001; Vlasenko & Hutter, 2002; Wessels & Hutter, 1996). When B < 1, the top
of the obstruction is completely within the lower layer (below the undisturbed density interface), while B> 1
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Figure 6. Blocking parameter, B, versus near-bed cross-shore currents
vertically averaged from 1-4 m and for 5 min before wave arrival at slope
break. Each point represents a transmitted (O) or reflected (X) internal
wave. The horizontal dashed line represents Bg = 0.6, the limit found in
laboratory experiments, below which an incident wave is essentially
transmitted past an obstruction without much reflection.

observed reflections (e.g., 02:00-08:00 and also 16:00-23:00) were asso-
ciated with a pycnocline positioned deeper than the top of the slope break
(~25 m) or a blocking parameter By > 1, while in the 7-h period with only
one observed reflection, the pycnocline was shallower, as high as 16 m.
This pattern is consistent with the full 9-day analysis period where
reflected waves are associated, generally, with a larger blocking parameter
(average for all 70 reflected waves analyzed B; = 0.99) than internal waves
transmitted to the inner shelf (average B; = 0.63 for 133 internal waves
traced from offshore to onshore of E1) (Figure 6). Some internal waves transmitted to the inner shelf were
also associated with a high blocking parameter (B; > 0.6). However, these waves, on average, had 34% higher
phase speeds than the incident waves that were eventually reflected and thus were likely higher-amplitude
ISWs capable of overcoming the slope break obstacle despite the localized depression of the pycnocline.

The presence of a background current can also change the amplitude, speed, and breaking point of shoaling
internal waves, and this influence is most pronounced when the maximum shear layer is aligned with the
center of the pycnocline (Stastna & Lamb, 2002). The offshore-directed jets common to the Dongsha fore reef
slope likely create strong shear conditions at the slope break region, which is also located at the same depth as
the maximum stratification (~25 m) during the June 2014 experiment and is thus likely to modify the char-
acteristics of internal waves approaching the shelf. It may be that strong offshore and downward-directed
(due to the slope angle) currents act to depress the thermocline at the slope break, encouraging the interac-
tion of the following waves with the steepest section of the slope. For example, reflected waves detected in the
DTS data were primarily associated with near-bed, offshore-directed currents on the shelf just prior to their
arrival at the steepest part of the shelf (Figure 6). On 4 June 2014, we can see examples of this in the DTS and
current meter data for internal wave events at approximately 16:30 and 19:00 (Figure 5b). The leading inter-
nal wave in these packets is transmitted to the inner shelf (past E1), and the relaxation of this dense water
back offshore creates a near-bed jet of water (black quivers pointed upwards). Internal waves arriving at
the steep shelf break during the strong offshore flow are reflected back offshore until a larger-amplitude wave
capable of overcoming the local slope break conditions arrives on the slope.

We conclude that the transformation and path of internal waves incident on the Dongsha slope are
dependent upon the highly dynamic stratification and near-bed currents at the slope break. Our observa-
tions suggest that the stratification and current conditions on the shelf are strongly influenced by previous
shoaling internal waves, highlighting the importance of wave-wave interactions for inner shelf internal
wave dynamics.

4.3. Consequences for Coastal Ecosystems

The spatially continuous perspective of temperature afforded by the DTS instrument reveals that internal
waves, often thought of as deep-ocean phenomena, are not uncommon in shallow coastal waters, transport-
ing heat (or cold) and nutrients to coastal benthic communities and creating small-scale physical variability
in the benthic environment (Leichter et al., 2003; Stokes et al., 2011).
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At Dongsha Atoll, the internal wave delivery of nutrients nourishes a shallow reef community (Wang et al.,
2007), likely contributing to what has been recently reported as the fastest calcification rate found to date on
any reef system (DeCarlo et al., 2017). Nitrate concentrations estimated from temperature (Figure 2a, see
section 2.4 for details) illustrate how nutrient-rich water is periodically pushed up onto the shallow fore reef
slope by internal waves. For example, in the trapped core of the example internal solibore (Figure 2b), nitrate
concentrations reach up to 3 uM, greatly elevated above levels typical of the oligotrophic northern South
China Sea.

Future work can build on the methods we have introduced to quantify the spatial distribution of energy,
heat, and nutrients across the shelf, investigate wave-wave interactions, and assess seasonal or interannual
variability of internal wave influence in nearshore regions of the South China Sea and elsewhere. Given the
impending changes in climate (including changes in ocean stratification, sea surface temperatures, oxygen,
and pH), the presence, magnitude, and periodicity of internal waves may ultimately be a critical factor in the
health and persistence of coastal ecosystems such as the coral reef at Dongsha (DeCarlo et al., 2015; Schmidt
et al., 2016; Tkachenko & Soong, 2017; Wall et al., 2015).
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