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ABSTRACT

A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area

is performed. We first derive a theoretical framework for analyzing internal tide energetics

based on the complete form of the barotropic and baroclinic energy equations, which include

the full nonlinear and nonhydrostatic energy flux contributions as well as an improved eval-

uation of the available potential energy. This approach is implemented in the hydrodynamic

SUNTANS model. Results from three-dimensional, high-resolution SUNTANS simulations

are analyzed to estimate the tidal energy partitioning among generation, radiation, and dis-

sipation. A 200 km × 230 km domain including all typical topographic features in this

region is used to represent the Monterey Bay area. Of the 152 MW energy lost from the

barotropic tide, approximately 133 MW (88%) is converted into baroclinic energy through

internal tide generation, and 42% (56 MW) of this baroclinic energy radiates away into the

open ocean. The tidal energy partitioning depends greatly on the topographic features. The

Davidson Seamount is most efficient at baroclinic energy generation and radiation, while the

Monterey Submarine Canyon acts as an energy sink. Energy flux contributions from nonlin-

ear and nonhydrostatic effects are also examined. In the Monterey Bay area, the nonlinear

and nonhydrostatic contributions are quite small. Moreover, we investigate the character

of internal tide generation and find that in the Monterey Bay area the generated baroclinic

tides are mainly linear and in the form of internal tidal beams. Comparison of the modeled

tidal conversion to previous theoretical estimates shows that they are consistent with one

another.
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1. Introduction

The ocean is a key component of the Earth’s climate system, and mixing processes are

critical in determining its distribution of salt, heat, and energy. The tides are one of the major

sources of energy to mix the ocean. Studies have shown that 25-30% of the global barotropic

tidal energy is lost in the deep ocean (Munk and Wunsch 1998; Egbert and Ray 2000,

2001). Internal tides are believed to play an important role in transferring this energy into

deep ocean turbulence (Figure 1). When the barotropic tide flows over rough topographic

features, a portion of the barotropic energy is lost directly through local dissipation and

mixing, while the other portion is lost to the generation of internal (baroclinic) tides. This

generated baroclinic energy either dissipates locally or radiates into the open ocean.

In the past few years significant effort has been made to estimate regional internal tide en-

ergetics using numerical simulations. Regions studied include the Northern British Columbia

Coast (Cummins and Oey 1997), the Hawaiian Ridge (Merrifield et al. 2001; Merrifield and

Holloway 2002; Carter et al. 2008), the East China Sea (Niwa and Hibiya 2004), the Monterey

Bay region (Jachec et al. 2006; Carter 2010; Hall and Carter 2011), and the Mid-Atlantic

Ridge (Zilberman et al. 2009). All of these studies employed the hydrostatic Princeton

Ocean Model (POM) (Blumberg and Mellor 1987) except for the work by Jachec et al.

(2006), which employed the nonhydrostatic SUNTANS model (Fringer et al. 2006). Some

authors estimated the barotropic-to-baroclinic energy conversion using the hydrostatic por-

tion of baroclinic energy flux divergence (Cummins and Oey 1997; Merrifield et al. 2001;

Merrifield and Holloway 2002; Jachec et al. 2006), while others used the conversion term de-

rived from barotropic and baroclinic energy equations (Niwa and Hibiya 2004; Carter et al.
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2008).

Monterey Bay lies along the Central U. S. West Coast. It consists of the prominent

Monterey Submarine Canyon (MSC), numerous ridges and smaller canyons to the north

and south, and a continental slope and break region (Figure 2). This area is exposed to

the large- and meso-scale variations of the California Current System as well as the tidal

currents. The complex bathymetry is favorable for internal tide generation and energetic

internal wave activity has been observed in the submarine canyon (Petruncio et al. 1998;

Kunze et al. 2002; Carter and Gregg 2002). Jachec et al. (2006) performed simulations using

the nonhydrostatic SUNTANS model to simulate internal tides in the Monterey Bay area.

They determined that the Sur Platform region is the primary source for the M2 internal

tidal energy flux observed within MSC. The total baroclinic energy generated within their

domain (outlined by black lines in Figure 2) is approximately 52 MW.

In this paper we extend the work of Jachec et al. (2006) and perform a detailed analysis

of the energetics in the Monterey Bay area by understanding the relative contribution of

different regions in the Bay to the overall energetics. We provide a theoretical framework for

accurate evaluation of the tidal energy flux budget by including nonlinear and nonhydrostatic

contributions. We conduct numerical simulations of internal tides in the Monterey Bay area

and estimate the tidal energy budget based on the theoretical framework. A brief derivation

of the barotropic and baroclinic energy equations is presented in Section 2. Subsequent

sections focus on the numerical simulations which include the model setup and validation

in Section 3, and the energetics analysis in Section 4. Section 5 examines the generation

characteristics and compares the model estimate with previous theoretical results. Finally,

conclusions are summarized in Section 6.
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2. Theoretical framework

We derive the barotropic and baroclinic energy equations to study the energetics of

barotropic and baroclinic tides. These equations provide a theoretical framework for the

numerical evaluation of the tidal energy budget in subsequent sections. Here we provide

a brief derivation of the equations. More detail is provided in Kang (2010) (available at

http://purl.stanford.edu/sv691gk5449). The derivation is based on the governing equations

in SUNTANS which simulates the three-dimensional Reynolds-averaged Navier-Stokes equa-

tions under the Boussinesq approximation, along with the density transport equation and

the continuity equation,

∂u

∂t
+ u · ∇u = −2Ω× u− 1

ρ0

∇p− g

ρ0

ρk

+ ∇H · (νH∇Hu) +
∂

∂z

(
νV
∂u

∂z

)
, (1)

∂ρ

∂t
+ u · ∇ρ = ∇H · (κH∇Hρ) +

∂

∂z

(
κV

∂ρ

∂z

)
, (2)

∇ · u = 0 , (3)

where u = (u, v, w) is the velocity vector and Ω is the Earth’s angular velocity vector. ν

and κ, in units of m2 s−1, are the eddy viscosity and eddy diffusivity, respectively. ( )H and

( )V are the horizontal and vertical components of a variable or operator. In SUNTANS,

transport equations for temperature and salinity are solved individually, and a state equation

is employed to compute density from temperature, salinity, and pressure (Millero et al. 1980;

Millero and Poisson 1981). Here we only list the density transport equation (2) to make the

derivation clearer. The total density is given by

ρ(x, y, z, t) = ρ0 + ρb(z) + ρ′(x, y, z, t) , (4)
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where ρ0 is the constant reference density, ρb is the background density, and ρ′ is the per-

turbation density due to wave motions. The pressure is split into its hydrostatic (ph) and

nonhydrostatic (q) parts with p = ph + q, where the hydrostatic pressure can be further

decomposed with

ph = p0 + pb + p′ ,

= ρ0g(η − z) + g

∫ η

z

ρb dz + g

∫ η

z

ρ′ dz , (5)

where η is the free surface elevation. The reference pressure p0 and the background pressure pb

include the part due to barotropic heaving by free surface movement since they are integrated

to the free surface in our definition. In SUNTANS, the nonhydrostatic pressure, q is solved by

employing the pressure correction method. In the computation, a three-dimensional Poisson

equation for the nonhydrostatic pressure arises. This equation is the most computational

demanding portion of a nonhydrostatic solver (Fringer et al. 2006).

To obtain the barotropic and baroclinic equations, we first split the velocity into its

barotropic and baroclinic parts as u = U + u′. The barotropic velocities are defined as

UH =
1

H

∫ η

−d
uH dz =

1

H
uH , (6)

W = −∇H · [(d+ z)UH ] , (7)

where (·) =
∫ η
−d(·) dz is the depth-integration of a quantity from the bottom z = −d(x, y)

to the surface z = η(x, y, t), and the total water depth is H = η + d. Based on the

velocity decomposition, the kinetic energy density, in units of J m−3, is decomposed as
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Ek = Ek0 + E ′k + E ′k0, where

Ek0 =
1

2
ρ0

(
U2 + V 2

)
, (8)

E ′k =
1

2
ρ0

(
u′2 + v′2 + w2

)
, (9)

E ′k0 = ρ0 (Uu′ + V v′) . (10)

Here Ek0 is the barotropic horizontal kinetic energy density, E ′k is the baroclinic kinetic

energy density, and E ′k0 is the cross term which vanishes upon depth-integration. Following

Gill (1982), the perturbation potential energy due to surface elevation, in units of J m−2, is

given by

Ep0 =
1

2
ρ0gη

2 . (11)

The available potential energy density, in units of J m−3, is defined as

E ′p =

∫ z

z−ζ
g [ρb(z) + ρ′(z)− ρb(z′)] dz′ , (12)

where ζ is the vertical displacement of a fluid particle due to wave motions. Kang and Fringer

(2010) provided a clear graphical interpretation of this and two other APE definitions (Figure

1 in their paper). This definition is an exact expression of the local APE because it computes

the true active potential energy between the perturbed and unperturbed density profiles. It

has been employed in analyzing internal wave energetics by numerous authors (Scotti et al.

2006; Lamb 2007; Lamb and Nguyen 2009; Kang and Fringer 2010).

Applying the variable decompositions and the boundary conditions, we obtain the depth-

integrated barotropic and baroclinic energy equations as

∂

∂t

(
Ek0 + Ep0

)
+∇H · F0 = −C − ε0 −D0 , (13)

∂

∂t

(
E ′k + E ′p

)
+∇H · F′ = C − ε′ −D′ , (14)
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where the depth-integrated barotropic and baroclinic energy flux terms, with the small un-

closed terms neglected (see Kang (2010)), are given by

F0 = UHEk0︸ ︷︷ ︸
Advection

+UHHρ0gη + UHp′ + UHq︸ ︷︷ ︸
Pressure work

−νH∇HEk0︸ ︷︷ ︸
Diffusion

, (15)

F′ = uHE ′k + uHE ′k0 + uHE ′p︸ ︷︷ ︸
Advection

+u′Hp
′ + u′Hq︸ ︷︷ ︸

Pressure work

−νH∇HE ′k − κH∇HE ′p︸ ︷︷ ︸
Diffusion

, (16)

where the contributions from energy advection, pressure work, and diffusion have been la-

beled. The barotropic-to-baroclinic conversion rate, the dissipation rates and the bottom

drag terms are given by

C = ρ′gW − ∂q

∂z
W , (17)

ε0 = ρ0νH∇HUH · ∇HUH , (18)

ε′ = ε′k + ε′p , (19)

ε′k = ρ0νH∇Hu′H · ∇Hu′H + ρ0νV
∂u′H
∂z
· ∂u′H
∂z

+ ρ0νH∇Hw · ∇Hw + ρ0νV
∂w

∂z

∂w

∂z
, (20)

ε′p = gκH∇Hρ
′ · ∇Hζ + gκV

∂(ρb + ρ′)

∂z

∂ζ

∂z
, (21)

D0 = ρ0Cd |uH | (uU + vV ) , at z = −d (22)

D′ = ρ0Cd |uH |
(
uu′ + vv′ + w2

)
, at z = −d (23)

where Cd is the bottom drag coefficient.

The time-averaged forms of equations (13) and (14) are given by

1

T
∆E0 +∇H ·

〈
F0

〉
= −

〈
C
〉
− 〈ε0 +D0〉 , (24)

1

T
∆E ′ +∇H ·

〈
F′
〉

=
〈
C
〉
−
〈
ε′ +D′

〉
, (25)

7



where 〈·〉 = 1
T

∫ t+T
t

(·) dτ is the time-average of a quantity over a time interval T . Therefore,

net changes of the depth-integrated barotropic and baroclinic total energy are given by

∆E0 =
(
Ek0 + Ep0

)∣∣
t+T
−
(
Ek0 + Ep0

)∣∣
t
, (26)

∆E ′ =
(
E ′k + E ′p

)∣∣
t+T
−
(
E ′k + E ′p

)∣∣
t
. (27)

For a periodic system with period T , ∆E0 and ∆E ′ tend to zero and thus the first term

in equations (24)-(25) vanishes. The remaining terms describe the energy balance associ-

ated with tidal dissipation processes. The ∇H ·
〈
F0

〉
term represents the total barotropic

energy that is available for conversion to baroclinic energy,
〈
C
〉

represents the portion of the

barotropic energy that is converted into baroclinic energy, and the ∇H ·
〈
F′
〉

term represents

the portion of the converted baroclinic energy that radiates from the conversion site. Local

dissipation occurs along with the conversion and radiation processes, and they are measured

by the barotopic (−〈ε0 +D0〉) and baroclinic (−
〈
ε′ +D′

〉
) dissipation terms, respectively.

Figure 1 illustrates the tidal energy budget using these terms.

This approach presents an exact measure of the barotopic-to-baroclinic tidal energy con-

version and highlights its relation to the total convertible barotropic energy and the radiated

baroclinic energy. The conversion term includes two parts representing the hydrostatic ρ′gW

and nonhydrostatic −∂q
∂z
W contributions, respectively. Furthermore, we consider the contri-

butions to the energy flux budget from the available potential energy flux and the kinetic

energy fluxes due to nonlinear and nonhydrostatic effects. In many previous studies, only

the dominant hydrostatic baroclinic energy term, ∇H · (u′p′), was calculated to represent the

conversion (Cummins and Oey 1997; Merrifield et al. 2001; Merrifield and Holloway 2002;

Jachec et al. 2006). Niwa and Hibiya (2004) evaluated the conversion using a similar term as
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ρ′gW , which is the hydrostatic part of our conversion term (17). Carter et al. (2008) derived

barotropic and baroclinic equations from POM’s hydrostatic governing equations and thus

did not include the nonhydrostatic contribution. Their approach distinguishes between the

conversion from the barotropic input and the baroclinic radiation. However, they used a

linear APE definition, which may cause error in the presence of strongly nonlinear stratifi-

cation (Kang and Fringer 2010). MacCready et al. (2009) provided the kinetic and potential

energy equations for the hydrostatic Regional Ocean Modeling System (ROMS) (Haidvogel

et al. 2000). They did not derive the barotropic and baroclinic energy equations individually

and thus were unable to estimate the barotropic-to-baroclinic tidal conversion. However,

they split the hydrostatic pressure into barotropic and baroclinic parts and therefore were

able to evaluate the corresponding tidal energy flux budget. Moreover, their approach can

estimate the contribution of the winds to the total energy budget because a wind stress term

was included in their energy equations.

3. Numerical simulations

a. Model setup

We employ the SUNTANS model of Fringer et al. (2006) with modifications by Zhang

et al. (2011) to incorporate high-resolution scalar advection. The simulation domain extends

approximately 200 km north and south of Moss Landing, and 400 km offshore (Figure 2).

The domain of Jachec et al. (2006) (∼200 km alongshore × 90 km offshore) is outlined by

black lines in Figure 2. Compared to their domain, ours is larger and allows the evolution of
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offshore-propagating waves. The horizontal unstructured grid for our simulations is depicted

in Figure 3. The grid resolution smoothly transitions from roughly 80 m within the Bay to

11 km along the offshore boundary. Approximately 60% of the grid cells have a resolution

smaller than 1000 m, and 80% of the grid cells have a resolution smaller than 1600 m. In the

vertical, there are 120 z-levels with thickness stretching from roughly 6.6 m at the surface

to 124 m in the deepest location, which provides better vertical resolution in the shallow

regions. The vertical locations of grid centers are indicated by the black dots in Figure 4.

In total, the mesh consists of approximately 6 million grid cells in 3D.

The initial free-surface and velocity field are initialized as quiescent throughout the

domain. As shown in Figure 4, the initial stratification is specified with horizontally-

homogeneous temperature and salinity profiles obtained from the 2006 AESOP (Assessing

the Effectiveness of Submesoscale Ocean Parameterizations) field experiment (Terker et al.

2011). We use linear extrapolation to extend the observed profiles from 2000 m to 4800 m.

At the coastline, we apply the no-flow condition, while at the three open boundaries the

barotropic velocities are specified as

Ub = U0 cos (ωt+ φ) , (28)

where ω is the M2 tidal frequency, and the corresponding amplitude U0 and phase φ are

obtained with the OTIS global tidal model (Egbert and Erofeeva 2002). Rather than employ

a partially-clamped condition (Blayo and Debreu 2005), we found that a clamped condition

was suitable because the transient barotropic wave decays after two tidal cycles and little

barotropic energy reflects off of the boundaries during the simulations. In order to prevent

transient oscillations associated with impulsively starting the tidal forcing, the boundary
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velocities are spun up over a time scale of τr to approach the imposed forcing with

Ubactual
= Ub

[
1− exp

(
− t

τr

)]
, (29)

where τr is set to one day in the simulations. Furthermore, at all three open boundaries a

sponge layer is imposed to absorb the internal waves and minimize the reflection of baroclinic

energy into the domain. Following Zhang (2010), the sponge layer is applied as a damping

term on the right-hand side of the horizontal momentum equation of the form

SH = −u′H
τs

exp

(
−4r

Ls

)
, (30)

where r is the distance to the closest open boundary and Ls is the width of the sponge layer.

The damping time scale τs is determined with

τs = − Ls
4c log(1− α)

, (31)

where c is the internal wave speed and α is the decay rate. The first mode M2 internal

wave speed in a depth of 3000 m is c1 = 1.98 ms−1 and the corresponding wave length is

approximately 88 km. In our simulations this value is used as the width of the sponge layer,

which absorbs α = 99.99% of the first mode baroclinic wave energy over a time scale of

τs =2750 s.

The simulation begins on August 18th, 2006 (year day 229) and is run for 18 M2 tidal

cycles. A time step size of ∆t = 18 s is used to ensure stability. In the simulation no

turbulence model is employed. Diffusion of scalars is ignored by setting κH = κV = 0. A

horizontal eddy-viscosity of νH = 1 m2s−1 and a vertical viscosity of νV = 5×10−3 m2s−1 are

applied uniformly throughout the domain. In a sensitivity test we found that the energetics

are weakly affected by changing the viscosities by one order of magnitude (see Appendix).
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A constant bottom drag coefficient of CD = 0.0025 and a constant Coriolis frequency of

f = 8.7× 10−5 rad s−1 are specified. For the 18-M2-cycle simulation, the model runs in 1.25

wall-clock days, or 3830 CPU hours using 128 processors on the MJM Linux Networx Intel

Xeon EM64T Cluster at the Army Research Laboratory DoD Supercomputing Resource

Center (ARL DSRC).

b. Model validation

In previous numerical studies of internal tides in Monterey Bay, SUNTANS has shown a

high level of skill in predicting the water surface and velocities in the canyon (Jachec et al.

2006; Jachec 2007). Here we do two more comparisons.

First, the sea-surface predictions are compared with the observations at two water-level

gauges (Monterey and Point Reyes) maintained by the National Oceanic and Atmospheric

Administration (NOAA). The water level data at these two gauges cover our simulation

period (available at http://tidesandcurrents.noaa.gov/). We employ the T-Tide package

(Pawlowicz et al. 2002) to estimate the M2 surface amplitudes and phases. For the observa-

tions, 6-minute NOAA data for August 15-29, 2006 are used for the harmonic analysis, while

for the predictions, 6-minute model outputs of the last 10 M2 cycles are used. To quantita-

tively evaluate the M2 surface discrepancy between observations and model predictions, we

compute the RMS error

E =

√
1

2
(A2

o + A2
m)− AoAm cos(Go −Gm) , (32)

and the relative RMS error

RE =
E

Ao
, (33)
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following previous studies (Cummins and Oey 1997; Carter et al. 2008; Carter 2010). Here

subscripts o and m denote observed and model predicted amplitudes (A) and phases (G).

For this case, the absolute and relative RMS errors are 0.37 cm and 0.8% at Monterey, while

they are 2.1 cm and 3.9% at Point Reyes.

The model predictions are further compared with the field observations at an R/V FLIP

station (hereinafter referred to as Station K) during the 2006 AESOP field experiment. The

field data was provided by Dr. Jody Klymak and Dr. Robert Pinkel. Station K is located

north of the Sur Platform as indicated in Figure 2. We examine the model performance in

predicting the baroclinic features. Figure 5 compares the M2 baroclinic (total minus depth-

averaged) velocity profiles between observations and model predictions at Station K. An M2

band-pass filter is applied to the original observations to obtain the M2-fit baroclinic velocity

profiles (Figure 5(a)). We implement the M2 band-pass filtering in this way: the observed

time series is first mapped to the frequency space via Fourier transform, then the amplitude of

all frequencies are reduced to zero except for the band within 5% of M2, and finally an inverse

Fourier transform is employed to obtain the M2-fit time series. Intermittent behaviour can

be detected in the observed baroclinic velocities. The intermittency of the internal tide has

been attributed to the variability in background conditions (Manders et al. 2004; Kurapov

et al. 2010). Station K is under the influence of wind-driven upwelling, which may cause

variable background stratification and hence result in the observed tidal intermittency. The

modeled baroclinic velocities do not show intermittent behaviour because the large- and

meso-scale wind-driven features are not considered in this simulation. Due to intermittency,

spectral analysis can underestimate the tidal velocity magnitudes (Kurapov et al. 2010).

This may explain why the strength of the M2-fit baroclinic velocities (Figure 5(a)) are
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slightly weaker than the model predictions (Figure 5(b)). The model predictions capture

the vertical structure of the baroclinic velocities. The multi-mode feature can be seen in

both field observations and model predictions, which indicates the existence of higher-mode

baroclinic tides at this location. We finally compute the relative RMS errors to quantitatively

assess the differences between observed and modeled M2 baroclinic velocities. The average

relative RMS errors for u′ and v′ are 69.4% and 34.6%, respectively.

4. Energetics

We evaluate the depth-integrated, time-averaged barotropic and baroclinic energy equa-

tions (24) and (25) for the energy analysis in this section. They are averaged over the last

six M2 tidal cycles of the 18-M2-cycle simulation. Because the system is periodic, the first

term in equation (24)-(25) tends to zero upon period-averaging. We therefore obtain the

balance relations

∇H ·
〈
F0

〉
= −

〈
C
〉
− 〈ε0 +D0〉 , (34)

∇H ·
〈
F′
〉

=
〈
C
〉
−
〈
ε′ +D′

〉
. (35)

The model computes all the energy terms in the barotropic and baroclinic equations. In the

following analysis, the conversion rate,
〈
C
〉
, and the energy flux divergence terms, ∇H ·

〈
F0

〉
and ∇H ·

〈
F′
〉

, are from direct model outputs. However, the barotropic and baroclinic

dissipation rates are inferred from the above balance relations as in Niwa and Hibiya (2004).

Carter et al. (2008) analyzed the domain-integrated energy budget in the same way. A

set of sensitivity tests have shown that the conversion, divergence, and inferred dissipation
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terms are nearly independent of the dissipation parameters (νH , νV and Cd), while the

directly computed dissipation depends greatly on the dissipation parameters (See Appendix

for details). In the simulations, the values of the diffusion parameters are not the realistic

ocean values but instead are based on the stability requirements of numerical differencing.

Moreover, in the real ocean the eddy viscosities and bottom drag are functions of location

and time, while in the simulations we only apply constant values throughout the domain.

Therefore, even though we are able to compute the dissipation directly, it may not truly

represent the physical dissipation in the real ocean. For this reason, the inferred dissipation,

which is nearly independent of the dissipation parameters, is used for the energy analysis

in this section. Please note that this inferred dissipation includes both the physical portion

and the numerical portion, as described in the Appendix.

a. Horizontal structure

Figure 6 illustrates the horizontal distribution of the depth-integrated baroclinic energy

flux vectors,
〈
F′
〉

. Large fluxes are seen in the vicinity of four topographical features, which

include a northern shelf-slope region (b), the MSC (c), the Sur Ridge-Platform region (d), and

the Davidson Seamount (e). The energy budget within each subdomain is discussed in the

next section. Figure 7 shows the horizontal distribution of the depth-integrated barotropic-

to-baroclinic conversion rate,
〈
C
〉
. Red color represents positive energy conversion rate,

which implies generation of internal tides, and the figure shows that most of the generation

is contained within the 200-m and 3000-m isobaths. Negative energy conversion rate (blue

color) represents energy transfer from the baroclinic tide to the barotropic tide. This is due to
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the phase difference between locally- and remotely-generated baroclinic tides, and therefore

indicates multiple generation sites (Zilberman et al. 2009). Significant negative conversion

occurs within the MSC because the locally generated baroclinic tides interact with those

generated at the North Sur Platform region. Large baroclinic energy can be seen radiating

from North Sur Platform into the MSC following the canyon bathymetry (Figure 6). This

effect was also demonstrated by Jachec et al. (2006), Carter (2010), and Hall and Carter

(2011). Figure 8 illustrates the divergence of the depth-integrated baroclinic energy flux,

∇H ·
〈
F′
〉

. The difference between Figure 7 and Figure 8, which represents the baroclinic

dissipation rate, ∇H ·
〈
F′
〉
−
〈
C
〉
, is shown in Figure 9. Large baroclinic energy dissipation

occurs near the locations of strong internal tide generation.

b. Energy flux budget

The total power within a region is obtained by area-integrating the period-averaged and

depth-integrated energy terms to give

BT Input = −
∑
∇H ·

〈
F0

〉
∆A , (36)

Conversion =
∑〈

C
〉

∆A , (37)

BC Radiation =
∑
∇H ·

〈
F′
〉

∆A , (38)

BT Dissipation =
∑(

∇H ·
〈
F0

〉
+
〈
C
〉)

∆A , (39)

BC Dissipation =
∑(

∇H ·
〈
F′
〉
−
〈
C
〉)

∆A , (40)

Total Dissipation =
∑(

∇H ·
〈
F0

〉
+∇H ·

〈
F′
〉)

∆A , (41)
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where
∑

implies summation of the grid cells within a particular region and ∆A is the area

of each grid cell. We first study the energy distribution as a function of bottom depth.

Each term in equations (36)-(41) is summed over cells bounded by isobaths at increments

of 200 m. The lower panel in Figure 10 compares the energy distribution in 200-m isobath

bounded bins, while the upper panel compares the cumulative sum. In the region shallower

than 200 m, only a small portion of the input barotropic energy is converted into baroclinic

energy, and the negative baroclinic energy radiation implies that baroclinic energy generated

in deeper regions flows into this shallow region and is then dissipated. In the region deeper

than 2200 m, nearly all of the input barotropic energy is converted to baroclinic energy. The

radiated baroclinic energy is large in the region between the 1400-m and 2600-m isobaths,

and is much smaller in other regions. Most of the barotropic energy dissipation occurs in the

region shallower than 2000 m, while the baroclinic energy dissipation occurs at all depths

with two peaks near 1200 m and within 200 m. Figure 11 illustrates a schematic of the

energy budget for the shelf and slope regions bounded by the 200-m and 3000-m isobaths.

Barotropic energy is lost at a rate of 147 MW to the slope region and approximately 87%

of this energy is converted into baroclinic energy. Most of this generated baroclinic energy

is dissipated locally, while the remaining portion (38%) is radiated. The shelf region acts

as a baroclinic energy sink because it dissipates both the energy generated locally and the

portion flowing into it from the slope region.

We list the detailed M2 energy budget (Table 1) for the five subdomains (a)-(e) indicated

in Figure 6. Subdomain (a), a 200 km × 230 km domain, is used to represent the Monterey

Bay area because it includes all typical topographic features in this area. For this area,

approximately 133 MW (88%) of the 152 MW barotropic energy is converted into baroclinic
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energy, and 56 MW (42%) of this generated baroclinic energy radiates away. The baroclinic

dissipation (77 MW) is roughly four times as large as the barotropic dissipation (19 MW).

The tidal energy budget depends strongly on topographic features as shown in Table 1. The

Davidson Seamount and the Northern shelf-break region are the most efficient topographic

features to convert (∼ 94%) barotropic energy into baroclinic energy and then let it radiate

out into the open ocean (> 70%). The Sur Platform region also converts a large portion

(87.5%) and radiates about half of the barotropic energy as baroclinic energy. The MSC

acts as an energy sink because it does not radiate energy but instead absorbs the baroclinic

energy from the Sur Platform region (Figure 6). In particular, the energy budget for the

Davidson Seamount (subdomain (e)) is quite similar to that for the Hawaiian Islands by

Carter et al. (2008), which shows that 85% of the barotropic energy that is converted into

baroclinic energy, and 74% of this baroclinic energy radiates into the open ocean.

c. Energy flux contributions

As discussed in Section 2, our method computes the full energy fluxes and thus allows

us to compare the contributions of different components. Here we choose subdomain (a) as

our study domain. The baroclinic energy radiation within this region is computed by equa-

tion (38) as
∑

(a)

(
∇H ·

〈
F′
〉)

∆A. Based on equation (16), this baroclinic energy radiation

has five contributions from kinetic energy advection (
∑

(a)

(
∇H ·

〈
uHE ′k + uHE ′k0

〉)
∆A),

available potential energy advection (
∑

(a)

(
∇H ·

〈
uHE ′p

〉)
∆A), hydrostatic pressure work

(
∑

(a)

(
∇H ·

〈
u′Hp

′
〉)

∆A), nonhydrostatic pressure work (
∑

(a)

(
∇H ·

〈
u′Hq

〉)
∆A), and en-

ergy diffusion (
∑

(a)

(
∇H ·

〈
−νH∇HE ′k − κH∇HE ′p

〉)
∆A). Table 2 compares these five con-
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tributions to the total baroclinic energy radiation in subdomain (a). The component due to

hydrostatic pressure work (the traditional energy flux) is the dominant term. If we consider

the total energy radiation as 100%, the hydrostatic contribution is ∼ 101% while the other

terms account for the remaining -1%. The small advection and nonhydrostatic contributions

imply that the internal tides in the Monterey Bay area are mainly linear and hydrostatic.

Vitousek and Fringer (2011) show that the horizontal grid spacing must be smaller than

roughly half of the water depth to begin to resolve nonhydrostatic effects. Therefore, al-

though the contribution of the nonhydrostatic pressure in our smulations is small and may

be on the same order as errors in evaluating the overall tidally-averaged energy balance, the

resolution we employ is sufficient to assess the role the nonhydrostatic pressure may play in

the energetics. Figure 12 shows that the hydrostatic and nonhydrostatic energy fluxes op-

pose one another within MSC. This occurs because the effect of the nonhydrostatic pressure

is to restrict the acceleration owing to the impact of vertical inertia. Hydrostatic models

therefore tend to overpredict the energy flux particularly for strongly nonhydrostatic flows.

5. Generation characteristics

a. Parameter Space

Four nondimensional parameters are generally employed to discuss the character of in-

ternal tide generation, which is governed by the dimensional parameters listed in Table 3.

The first parameter is the steepness parameter defined by

ε1 =
γ

s
, (42)
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where the topographic slope is given by

γ =

√(
∂h

∂x

)2

+

(
∂h

∂y

)2

, (43)

and the internal wave characteristic slope is given by

s =
k

m
=

√
ω2 − f 2

N2 − ω2
. (44)

The steepness parameter is used to distinguish between subcritical (ε1 < 1) and supercritical

topography (ε1 > 1). The topography is referred to as critical when ε1 = 1. Many studies

have been carried out to understand the barotropic-to-baroclinic conversion over subcriti-

cal (Bell 1975; Llewellyn Smith and Young 2002; Balmforth et al. 2002) and supercritical

topography (Khatiwala 2003; St. Laurent et al. 2003; Balmforth and Peacock 2009).

The second nondimensional parameter is the tidal excursion parameter defined by

ε2 =
U0kb
ω

, (45)

which measures the ratio of the tidal excursion U0/ω to the horizontal scale of the topography

k−1
b . Here U0 is simply the maximum magnitude of the local barotropic flow. A better way

night be to include the angle of the principle axis of the barotropic tidal ellipse with respect to

the topography, but this produces results that were too noisy and therefore we just keep U0.

In general the excursion parameter is computed for a single ridge or shelf slope. However,

since the local topographic scale is not generally known, we estimated it with kb = γ/h0

following Garrett and Kunze (2007), where h0 = H0−d is the topographic amplitude. In this

study, the reference depth H0 is defined by the maximum water depth in the studied domain.

The excursion parameter is used to examine the nonlinearity of the waves (Balmforth et al.

2002; St. Laurent and Garrett 2002; Vlasenko et al. 2005; Legg and Huijts 2006; Garrett
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and Kunze 2007). When ε2 � 1, linear internal tides are generated mainly at the forcing

frequency ω. Over subcritical topography (ε1 < 1) most of the energy generation is in

the first mode internal tide, while over critical or supercritical topography (ε1 ≥ 1), higher

modes are generated and their superposition creates internal tidal beams. At intermediate

excursion (ε2 ∼ 1), nonlinearity becomes important, and nonlinear internal wave bores,

weak unsteady lee waves, and solitary internal waves may be generated depending on the

topographic features. It has been found in numerical models that lee waves are also generated

for ε2 < 1 over tall and steep topography (Legg and Huijts 2006; Legg and Klymak 2008;

Buijsman et al. 2010). When ε2 > 1, in addition to bores and solitary internal waves, strong

unsteady lee waves may form (Vlasenko et al. 2005).

The third nondimensional parameter is the ratio of topographic amplitude to the total

water depth, which is given by

δ =
h0

H
. (46)

This parameter has been used to investigate the role of finite ocean depth on internal wave

generation (Llewellyn Smith and Young 2002; Khatiwala 2003; St. Laurent et al. 2003).

The last nondimensional parameter is the Froude number defined by

Fr =
U0

Nh0

, (47)

which has been used to examine the obstruction of the flow by the topography (Legg and

Huijts 2006; Legg and Klymak 2008). The Froude number and the first two nondimentional

parameters are related to one another via

ε2
ε1

= Fr
kN

mω
. (48)
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Based on (44), in the mid-frequency case (f � ω � N) or the nonrotating and hydrostatic

case (f = 0 & k � m), we have k/m = ω/N and hence ε2/ε1 = Fr. This relation was

demonstrated in the parameter space diagram of Garrett and Kunze (2007) .

b. Energy distribution vs. parameters

Although internal wave generation is a complex process, we can summarize the behavior

of the internal wave generation in Monterey Bay by plotting histograms of the conversion and

divergence terms as functions of the criticality and excursion parameters. Here we compute

the two parameters throughout subdomain (a). Figures 13(a) and (b) demonstrate the

distribution of conversion and BC radiation as a function of the nondimensional parameters

ε1 and ε2. The energy terms (37)-(38) as functions of the parameters are computed as

the total sum of the energy within 20 bins. As seen in Figure 13, barotropic-to-baroclinic

conversion (green bins) occurs predominantly in regions within which ε1 = γ/s < 5 and

ε2 = U0kb/ω < 0.06. Under these conditions, baroclinic tides generated in this region are

mainly linear and in the form of internal tidal beams (St. Laurent and Garrett 2002; Vlasenko

et al. 2005; Garrett and Kunze 2007).

As expected, conversion of barotropic energy into baroclinic energy peaks for critical

topography near ε1 ∼ 1 as shown in Figure 13(a). More interesting, however, is that there

is also a peak in conversion for a particular value of ε2 ∼ 0.005, as shown in Figure 13(b). A

peak in the conversion for a particular value of ε2 implies that narrow ridges relative to the

tidal excursion (i.e. large ε2) do not efficiently convert barotropic energy, and wide ridges are

weak converters as well. This may arise because the dissipative effects that are not included
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in the parameter space strongly impact the generation physics for small and large values of

ε2 but play a minimal role for the optimal excursion parameter. One possible explanation is

that narrow topography with respect to the tidal excursion (large ε2) is relatively rough and

so dissipates too much energy and is a poor converter of barotropic energy. The same may be

true for relatively wide topography (small ε2) in that dissipative mechanisms dominate when

the topography over which the internal wave action occurs is extensive even if the associated

currents are weak. This behavior was observed by Venayagamoorthy and Fringer (2007) in

idealized simulations of internal waves interacting with slopes. They showed that there was

an excursion parameter that optimized on-slope internal wave energy propagation. Too small

an excursion parameter led to extensive bottom friction relative to the weak internal waves,

while too large an excursion parameter led to extensive turbulent dissipation and mixing.

Although the present simulations do not directly simulate these dissipative and turbulent

processes, the model may be accounting for them through elevated numerical dissipation or

simply via bottom friction due to the quadratic drag law. This is highlighted by the fact that

the BC radiation terms are always negative for small values of ε1 and ε2. In these regimes

the baroclinic energy is being lost to (modeled) dissipation and mixing.

c. Comparison to linear theory

A number of theoretical estimates of tidal energy conversion have been presented in pre-

vious studies (Bell 1975; Llewellyn Smith and Young 2002; Balmforth et al. 2002; St. Laurent

et al. 2003; Balmforth and Peacock 2009). Using linear theory, Bell (1975) examined the

tidal conversion by two-dimensional topography in the limits of ε1 � 1 and δ � 1. Con-
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sidering an ocean of constant N and an isolated ridge represented by the Witch of Agnesi

profile,

h(x) = h0

(
1 +

x2

b2

)−1

, (49)

Bell’s estimate of the tidal conversion, in units of W, is given by

CBell =
π

8
ρ0U

2
0h

2
0L
N
√
ω2 − f 2

ω
, (50)

where L is the length of the topography. Note that CBell is independent of the width b of the

ridge. Llewellyn Smith and Young (2002) extended Bell’s result to an ocean of finite depth

but assumed ε1 � 1 and ε2 � 1. For the same ridge, they estimated the tidal conversion, in

units of W, as

CLSY =
π

8
ρ0U

2
0h

2
0L

√
(N2 − ω2)(ω2 − f 2)

ω

c2e−c

(1− e−c)2 , (51)

where c =
(
33/2π/4

)
(δ/ε1). Balmforth et al. (2002) kept the infinite depth assumption

(δ � 1) but extended the small slope limit (ε1 � 1) to the full subcritical range (0 ≤ ε1 < 1).

As ε1 increases, the conversion rate is enhanced smoothly and modestly above Bell’s estimate.

As ε1 → 1, the enhancement is 56% for sinusoidal topography while only 14% for a Gaussian

bump and roughly 6% for random topography. St. Laurent et al. (2003) further examined

the tidal conversion at abrupt topography. For a knife-edge ridge (ε1 →∞), their estimate

of the tidal conversion, in units of W, is given by

CStL =
1

2π
ρ0U

2
0H

2L

√
(N2 − ω2)(ω2 − f 2)

ω

∞∑
n=1

n−1a2
n , (52)

where n is the vertical mode number, an are obtained by solving the matrix problem

Amnan = cm. The formation of matrix Amn and vector cm are given by equations (17)-

(20) in St. Laurent et al. (2003).
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We compare our simulated tidal energy conversion to the theoretical estimates (50)-(52).

The Davidson Seamount is a relatively isolated, ridge-like feature (ε1 = 2) with its peak

∼1500 m below the sea surface. It has a length scale of roughly L = 40 km and an amplitude

of h0 = 1500 m (δ = 0.5). The mean barotropic tidal current over this region is approximately

3 cm s−1. At the depths of the Davidson Seamount the ocean stratification is close to linear,

which results in a nearly constant N = 1×10−3 s−1. Using these numbers and constant values

of ρ0 = 1000 kg m−3, ω = ωM2 = 1.4053 × 10−4 rad s−1, f = 8.7 × 10−5 rad s−1, we obtain

Bell’s estimate from equation (50) as CBell = 24.98 MW, and Llewellyn Smith and Young’s

estimate from equation (51) as CLSY = 22.92 MW. The estimate of St. Laurent et al. is

obtained from equation (52) as CStL = 37.02 MW for 1000 vertical modes. These theoretical

results and our model estimate (28.24 MW) are of the same order of magnitude. The first

two theoretical estimates are derived in the limit of ε1 � 1 and therefore underestimate the

supercritical conversion by the Davidson Seamount based on the studies of Balmforth et al.

(2002) and St. Laurent et al. (2003). The third theoretical estimate is derived in the limit

of ε1 →∞, and thus may overestimate the conversion by the Davidson Seamount.

We do not compare the model and theoretical estimates for the entire domain because

δ → 1 in the shelf-slope and the stratification of the upper ocean is strongly nonlinear (i.e.

N increases by an order of magnitude from a depth of 1500 m to a depth of 25 m). With

such variable N , finite ε1 and δ → 1, it is difficult to estimate the energy conversion using

equations (50)-(52) (Garrett and Kunze 2007).
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6. Summary and discussion

We have performed a detailed energy analysis of the barotropic and baroclinic M2 tides

in the Monterey Bay area. A theoretical framework for analyzing internal tide energetics

is derived based on the complete form of the barotropic and baroclinic energy equations.

These equations provide a more accurate and detailed energy analysis because they in-

clude the full nonlinear and nonhydrostatic energy flux contributions as well as an improved

evaluation of the available potential energy. Three-dimensional, high-resolution simulations

of the barotropic and baroclinic tides in the Monterey Bay area are conducted using the

hydrodynamic SUNTANS model. Based on the theoretical approach, model results are ana-

lyzed to address the question of how the barotropic tidal energy is partitioned between local

barotropic dissipation and local generation of baroclinic energy, and then how much of this

generated baroclinic energy is lost locally versus how much is radiated away for open-ocean

mixing. Subdomain (a), a 200 km × 230 km domain, is used to represent the Monterey

Bay area because it includes all typical topographic features in this region. Of the 152 MW

energy lost from the barotropic tide, approximately 133 MW (88%) is converted into baro-

clinic energy through internal tide generation, and 42% (56 MW) of this baroclinic energy

radiates away for open-ocean mixing (Figure 14). The tidal energy partitioning depends

greatly on the topographic features. The Davidson Seamount and the Northern shelf-break

region are most efficient at baroclinic energy generation (∼ 94%) and radiation (> 70%).

The Sur Platform region converts a large portion (∼ 88%) and radiates roughly half of the

barotropic energy as baroclinic energy. The MSC acts as an energy sink because it does

not radiate energy but instead absorbs the baroclinic energy from the Sur Platform region.
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The energy flux contributions from nonlinear and nonhydrostatic effects are also examined.

The small advection and nonhydrostatic contributions imply that the internal tides in the

Monterey Bay area are predominantly linear and hydrostatic.

We also investigate the character of internal tide generation by examining the energy

distribution as a function of two nondimensional parameters, namely the steepness parameter

(ε1 = γ/s) and the excursion parameter (ε2 = U0kb/ω). The generation mainly occurs in

the regions satisfying ε1 < 5 and ε2 < 0.06, indicating that baroclinic tides generated in the

Monterey Bay area are mainly linear and in the form of internal tidal beams. The results

highlight how description of the conversion process with simple nondimensional parameters

produces results that are consistent with theory, in that internal wave energy generation

peaks at critical topography (ε1 ∼ 1). The results also indicate that conversion peaks for

a particular excursion parameter (ε2 ∼ 0.005 for this case). This implies that it may be

possible to parameterize conversion of barotropic to baroclinic energy in barotropic models

with knowledge of ε1 and ε2. For example, a parameterization of internal wave generation

based on the steepness parameter has been widely used in global barotropic tidal models

(Jayne and St. Laurent 2001; St. Laurent et al. 2002) and ocean general circulation models

(Simmons et al. 2004; Jayne 2009).

To demonstrate that parameterizations of internal wave energy generation produce results

that are valid even in complex domains with complex topography and tidal currents, we

compare the model estimate of the barotropic-to-baroclinic conversion with three theoretical

results. The Davidson Seamount (ε1 = 2) is chosen as a comparison region because it mostly

satisfies the assumptions under which the theoretical estimates were derived. The theoretical

and model estimates are of the same order of magnitude. The model estimate is slightly
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larger than the first two theoretical estimates that were derived in the limit of ε1 � 1

(Bell 1975; Llewellyn Smith and Young 2002), while it is smaller than the third theoretical

estimate that was derived in the limit of ε1 → ∞ (St. Laurent et al. 2003). Moreover, the

energy budget for the Davidson Seamount is quite similar to that for the Hawaiian Islands

in a previous model study by Carter et al. (2008). They showed that the Hawaiian Ridge

converts 85% of the barotropic energy into baroclinic energy, and then radiates 74% of this

baroclinic energy into the open ocean. In our study, the Davidson Seamount converts 95% of

the barotropic energy into baroclinic energy, and then radiates 81% of this baroclinic energy

away for open-ocean mixing.

This work outlines a systematic approach to analyze internal tide energetics and estimate

tidal energy budget regionally and globally. The results draw a picture of how the M2 tidal

energy is distributed in the Monterey Bay region. However, the simulation is limited to only

one stratification taken in late summer of 2006. The stratification is specified as horizontally

uniform throughout the domain as an initial condition. Earlier internal tide observations

(Petruncio et al. 1998) and simulations (Rosenfeld et al. 2009; Wang et al. 2009) indicate that

the internal tides are sensitive to stratification. The Monterey Bay area is exposed to the

large-scale California Current System and meso-scale eddies and upwelling. The seasonally

varying dynamics may affect the stratification and thus the generation and propagation of

internal tides in this area. Therefore, it may be necessary to consider seasonal effects of

stratification and to include mesoscale effects by coupling with a larger-scale regional model

such as ROMS (Haidvogel et al. 2000; Shchepetkin and McWilliams 2005).
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APPENDIX

Inferred vs. Modeled Dissipation

A set of M2-forced numerical simulations are carried out to examine the sensitivity of

model results to the dissipation parameters. The reference simulation (simulation 0) is

that discussed in Section 4, which employs the constant eddy viscosities (νH = 1 m2s−1 and

νV = 5×10−3 m2s−1) and a constant bottom drag coefficient (Cd = 0.0025). In simulations 1-

6, the values of νH or νV or Cd is changed by one order of magnitude. For each simulation, we

calculate the domain-integrated, period-averaged baroclinic energy terms for subdomain (a)

in Figure 6. They are the barotropic-to-baroclinic conversion (37), the baroclinic radiation

(38), the inferred baroclinic dissipation (40) and the directly computed baroclinic dissipation

(
∑〈

ε′ +D′
〉

∆A). Detailed comparisons are listed in Table 4.

If we consider the effect of numerical error, the period-averaged baroclinic energy equation

(25) gives the following balance relation

Conversion− Radiation

= Inferred Dissipation + Error ,

= Modeled Dissipation + Numerical Dissipation + Error , (A1)

where “Numerical Dissipation” results primarily from the numerical diffusion associated with

scalar and momentum advection and “Error” arises from the assumption of periodicity. For

a periodic system, “Error” should tend to zero. This is what we saw in the last six M2
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tidal cycles of the simulations. Table 4 shows that changing the dissipation parameters by

one order of magnitude has a minor effect on Conversion, Radiation and hence the Inferred

Dissipation. However, the directly computed dissipation (or Modeled Dissipation) depends

greatly on the dissipation parameters. For example, increasing/decreasing νV by one order of

magnitude roughly doubles/halves the modeled dissipation. Similarly, increasing/decreasing

Cd by one order of magnitude causes a 74% increase/9% decrease in modeledl dissipation.

Interestingly, an increase/decrease of νH results in a decrease/increase in modeled dissipa-

tion. This may imply that increasing νH smears out gradients so that the impact is to

reduce νH∇Hu′ · ∇Hu′ since ∇Hu′ decreases by more than νH increases. Overall, this set of

sensitivity tests show that the Inferred Dissipation is nearly a constant, while the Modeled

Dissipation is a strong function of the dissipation parameters. Based on the balance relation

(A1), the Numerical Dissipation also depends greatly on the dissipation parameters.

In the numerical simulations, the values of the diffusion parameters are set by the stability

requirements of numerical differencing and are not necessarily the realistic ocean values.

Moreover, in the real ocean the eddy viscosities and bottom drag are functions of location

and time, while in the simulations we only apply a constant value for each throughout

the domain. Therefore, although we are able to compute the dissipation directly, it may

not represent the true physical dissipation in the real ocean. For this reason, the inferred

dissipation, which is virtually independent of the dissipation parameters, is used for the

energy analysis in Section 4.
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Table 1. M2 tidal energy budget for the five subdomains indicated in Figure 6. The energy
in estimated in MW.

Domains (a) (b) (c) (d) (e)
BT Input 151.95 31.04 8.30 44.80 29.82

(100%) (100%) (100%) (100%) (100%)
BT-BC Conversion 133.39 29.17 5.85 39.20 28.24

(88%) (94%) (70.5%) (87.5%) (94.7%)
BC Radiation 56.20 22.05 -3.64 24.02 22.91

(37%) (71%) (-44%) (53.6%) (76.8%)
BT Dissipation -18.56 -1.87 -2.45 -5.60 -1.58

(12%) (6%) (29.5%) (12.5%) (5.3%)
BC Dissipation -77.19 -7.12 -9.49 -18.42 -5.33

(51%) (23%) (114.5%) (33.9%) (17.9%)
Total Dissipation -95.75 -8.99 -11.94 -20.78 -6.91

(63%) (29%) (144%) (46.4%) (23.2%)
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Table 2. Contributions of different energy fluxes to the total baroclinic energy flux diver-
gence for subdomain (a). The contributions are estimated in percentages.

∑
(a)

(
∇H · F′

)
100%

KE Advection -0.54%
APE Advection 0.18%
Hydrostatic Work 100.87%
Nonhydrostatic Work -0.51%
Diffusion 0.002%

41



Table 3. Key physical parameters governing internal tide generation and propagation.

Parameters Descriptions
ω tidal frequency
f Coriolis frequency
N buoyancy frequency
U0 amplitude of the barotropic tidal current
k horizontal wavenumber of the internal tide
m vertical wavenumber of the internal tide
c phase speed of the internal tide (c = ω/k)
kb horizontal wavenumber of the topography
h height of the topography
h0 amplitude of the topography
d water depth
H total water depth
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Table 4. Sensitivity test of various simulation parameters.

Sim. νH νV Cd Grid Bathy. Conversion BC BC Diss. BC Diss.
Radiation (direct) (inferred)

[m2s−1] [MW] (relative change to Simulation 0)
0 1 5×10−3 2.5×10−3 Fine Fine 133.39 56.20 23.36 77.19

1 0.1 5×10−3 2.5×10−3 Fine Fine 133.90 56.40 24.43 77.50
(+0.38%) (+0.36%) (+4.59%) (+0.40%)

2 10 5×10−3 2.5×10−3 Fine Fine 132.39 54.71 21.00 77.68
(-0.75%) (-2.65%) (-10.09%) (+0.63%)

3 1 5×10−4 2.5×10−3 Fine Fine 133.19 56.48 11.06 76.71
(-0.15%) (+0.50%) (-52.64%) (-0.62%)

4 1 5×10−2 2.5×10−3 Fine Fine 133.19 54.34 54.12 78.85
(-0.15%) (-3.31%) (+131.68%) (+2.15%)

5 1 5×10−3 2.5×10−4 Fine Fine 133.67 56.26 21.18 77.41
(+0.21%) (+0.10%) (-9.32%) (-0.62%)

6 1 5×10−3 2.5×10−2 Fine Fine 132.46 56.08 40.54 76.38
(-0.70%) (-0.21%) (+73.54%) (-1.05%)
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Fig. 3. The unstructured grid of the computational domain (left) and zoomed-in views for
subdomain (a) indicated in Figure 6 (middle) and Monterey Bay (right). In the left two
plots, only cell centers are shown for clarify, while in the right plot, cell edges are shown.
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Fig. 12. Baroclinic energy flux contributions from (a) hydrostatic, and (b) nonhydrostatic
pressure work in the Monterey Submarine Cayon region. Bathymetry contours are spaced
at -100, -500, -1000, -1500, -2000 m.
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Fig. 13. Distribution of the conversion and BC radiation as a function of (a) ε1 = γ/s, and
(b) ε2 = U0kb/ω for subdomain (a) in Figure 6.
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Fig. 14. Schematic of the M2 tidal energy budget in percentages for subdomain (a) in Figure
6. The bold percentages are relative to the total input barotropic energy, and the thin italic
percentages are relative to the generated baroclinic energy.
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