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Simulations of shear instabilities in interfacial
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An adaptive numerical method is employed to simulate shear instabilities in open-
ocean internal solitary-like gravity waves. The method is second-order accurate,
employs block-structured adaptive mesh refinement, solves the incompressible Navier—
Stokes equations and allows for the simulation of all of the length scales of interest
by dynamically tracking important regions with recursively-nested finer grids. Two-
dimensional simulations are performed over a range of parameters, which allows us to
assess the conditions under which the shear instabilities in the waves occur, including
a method to evaluate the critical Richardson number for instability based on the bulk
wave parameters. The results show that although the minimum Richardson number
is well below the canonical value of 1/4 in all simulations, this value is not a sufficient
condition for instability, but instead a much lower Richardson number of 0.1 is
required. When the Richardson number falls below 0.1, shear instabilities develop and
grow into two-dimensional billows of the Kelvin—Helmholtz type. A linear stability
analysis with the Taylor—Goldstein equation indicates that an alternate criterion for
instability is given by o;T,, > 5, where &; is the growth rate of the instability averaged
over Ty, the period in which parcels of fluid are subjected to a Richardson number
of less than 1/4. A third criterion for instability requires that L, /L > 0.86, where
L, is half the length of the region in which the Richardson number falls below
1/4 and L is the solitary wave half-width. An eigendecomposition of the rate-of-
strain tensor is performed to show that the pycnocline thickness increases within
the wave because of pycnocline-normal strain and not because of diffusion, which
has important ramifications for stability. A three-dimensional simulation indicates
that the primary instability is two-dimensional and that secondary, three-dimensional
instabilities occur thereafter and lead to strong dissipation and mixing.

1. Introduction

Like surface gravity waves, internal gravity waves propagate until they dissipate,
either in open water or at bathymetric features. Internal wave breaking at bathymetric
features is often caused by wave shoaling in shallow water. Open-water internal wave
breaking can be caused by the growth of shear instabilities at the pycnocline, similar
to the Kelvin—Helmholtz type (Troy & Koseff 2005; Fructus et al. 2009). Both of these
breaking mechanisms lead to enhanced turbulence. In the oceanic context there is
strong evidence in support of the idea that internal wave turbulence results in mixed
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fluid which flows into other regions of the ocean interior (Munk & Wunsch 1998;
Thorpe 2004). It is also believed that internal waves dissipate a significant amount
of energy in the world’s oceans (Egbert & Ray 2000). Therefore, understanding the
physical processes that govern internal wave dissipation is critical to understanding
the detailed energy budget of the global climate system.

In the field, clear signatures of internal wave shear instabilities have rarely been
observed, since fine-scale turbulent structure is difficult to measure. Recently, however,
striking measurements of shear-induced decay of internal waves on the Oregon Shelf
by Moum et al. (2003) shed new light on the poorly understood decay of internal
waves in open water. The measurements depict trains of near-surface, solitary-like
waves of depression that propagate in the absence of significant shoaling effects, with
clear signatures of shear instabilities that are the primary source of turbulence and
dissipation. Owing to a lack of high-resolution velocity data, Moum et al. (2003)
used one-dimensional density profiles to infer fine-scale velocity structure with the
assumption that streamlines were parallel to isopycnals. They found that ‘explosively
growing’ shear instabilities are possible and are the likely source of the observed
billows of the Kelvin—Helmholtz type. Various other researchers have measured field-
scale shear instabilities (see, among others, Woods 1968; Armi & Farmer 1988;
Gossard 1990; Marmorino 1990), yet none are as clearly of the Kelvin—-Helmholtz
type as those in Moum et al. (2003).

Dissipative bottom-trapped internal waves of elevation were studied by Hosegood,
Bonnin & van Haren (2004), Klymak & Moum (2003) and Scotti & Pineda (2004), who
measured bottom-trapped solibores in the Faeroe—Shetland Channel, in the Oregon
shelf and near the Massachusetts coast, respectively, while Carter, Gregg & Lien
(2005) observed highly nonlinear solitary waves of elevation that propagate towards
the shelf break in Monterey Bay. While the generation mechanism for these waves is
not yet clear, dissipation and mixing levels within them are orders of magnitude higher
than surface solitary-like waves because of enhanced bottom-generated turbulence.
Helfrich & Melville (2006) noted that the most significant types of internal wave
dissipation are radiation damping, boundary shear, wave breaking/shoaling and
shear instability. Radiation damping occurs when internal waves, propagating along a
pycnocline, radiate energy by exciting new internal waves that travel into regions with
weaker stratification. This problem was originally studied by Maslowe & Redekopp
(1980) and has been studied numerically by Pereira & Redekopp (1980). Boundary
shear dissipation of internal waves is caused by bottom boundary layers that act as
a drag on the wave as has been studied by Diamessis & Redekopp (2006). When
compared with observations, Helfrich & Melville (1986) successfully accounted for
boundary shear in their one-dimensional numerical study. The shoaling, breaking and
interaction of internal waves because of bathymetric features has received significant
attention in the literature (see, among others, Cacchione & Wunsch 1974; Helfrich &
Melville 1986; Ivey & Nokes 1989; Slinn & Riley 1998; Javam, Imberger & Armfield
1999; Michallet & Ivey 1999; Grue et al. 2000; Ivey, Winters & Silva 2000; Lamb
2002, 2003; Vlasenko & Hutter 2002; Legg & Adcroft 2003; Venayagamoorthy &
Fringer 2007). Shear-instability-based internal wave dissipation typically occurs in the
troughs (or crests) of interfacial waves when shear and stratification conditions are
sufficient, i.e. when the shear effects are not stabilized by stratification.

Numerous methods exist to compute the velocity field and minimum Richardson
number in internal solitary waves without solving the full set of Euler or Navier—
Stokes equations. For example, Lamb (2002) employed the Dubriel-Jacotin—Long
(DJL; Long 1956) equation to compute the flowfield in a stable solitary wave, and
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Fructus et al. (2009) employed a fully nonlinear three-layer model (described in detail
in Fructus & Grue 2004) to calculate the minimum Richardson number in their
experiments on shear instabilities in interfacial solitary waves. While these methods
are accurate, it is often desirable to obtain estimates of the minimum Richardson
number within a solitary wave based on bulk wave parameters, as was done by
Bogucki & Garrett (1993). They developed a scaling relationship to predict the
critical amplitude of the wave at which the Richardson number in the pycnocline is
1/4. They focused on two-layer internal solitary waves in which the upper layer of
thickness H; rests on a lower layer of thickness H,, and the total depth is given by
D = H; + H,. They used a continuity approach to derive the velocity difference across
the layers, such that

aDc
AU ~ , 1.1
(Hr + o)(Hs — o) (D
where the shallow-water solitary internal wave phase speed is given by
a(H, — Hy)

= 14+ ——, 1.2
¢ C°[+ 2H, H, ] (12)

in which the phase speed of infinitely long, infinitesimally small waves is given by

HUHy\

co = <g 1Dz> , (1.3)

with g'=gAp/py the reduced gravity and Ap the density difference between the
layers. The velocity difference given in (1.1) was then used in their expression for the
Richardson number,
Ri ~ 8% % ,
(AU)
with the assumption that Ri is constant across the finite-thickness &, interface. For
long, small-amplitude waves in a deep lower layer, @« < H; < H,, Bogucki & Garrett
(1993) showed that the critical amplitude at which Ri = 1/4 is given by o, = 2(8oH;)"/%.
This is similar to the findings of Troy & Koseff (2005), who showed that the critical
amplitude is also proportional to 85/ for long, progressive interfacial waves in deep
water.

Two-dimensional steady parallel inviscid homogeneous shear flows are unstable to
infinitesimal perturbations under Rayleigh’s inflection point theorem (Rayleigh 1880),
which states that a necessary condition for instability is that there must be at least
one inflection point in the velocity profile. Fjortoft (1950) further generalized this
theorem and showed that for instability, U"” /U’ <0 is also required at the inflection
point, where U is the velocity profile and U"” and U’ are its third and first derivatives,
respectively. If these flows are stratified, then they are stable if Ri > 1/4 everywhere
(Howard 1961; Miles 1963). However, as pointed out by Hazel (1972), Ri < 1/4 is not
a sufficient condition for instability because it is possible to have a stable, stratified
shear layer in which the Richardson number at the pycnocline is less than 1/4.
Furthermore, the Richardson number above and below the pycnocline is identically
zero but does not induce an instability. When the velocity and density profiles change
in time, such as in internal gravity waves, the necessary condition for instability can
be even lower. In laboratory experiments of breaking progressive interfacial gravity
waves, Troy & Koseff (2005) showed that instability occurred when Ri < 0.07540.035,
while in numerical experiments Fringer & Street (2003) showed that Ri < 0.13. Fructus
et al. (2009) obtained a similar value of Ri <0.092+0.016 for laboratory experiments

(1.4)
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on interfacial solitary waves. Because of the large scatter in the critical Richardson
number for instability, Fructus et al. (2009) have pointed out that a sharper criterion
for instability requires the width of the region in solitary waves in which Ri <1/4
to be 86 % of the wavelength of the solitary wave. Troy & Koseff (2005) used the
Taylor—Goldstein equation to derive another criterion for instability in progressive
waves that requires 7;7T,, > 5, where &; is the growth rate of the instabilities averaged
over Ty, the time in which a parcel of fluid is subjected to Ri < 1/4. This implies
that a sufficient condition for instability requires that the time scale of the instability
must be of the order of the time scale in which it is subjected to destabilizing
shear.

Many researchers have used numerical simulations to study two-dimensional and
three-dimensional shear instabilities evolving into decaying turbulence, and most
studies have focused on billows of the Kelvin—-Helmholtz type and the associated
mixing. Werne & Fritts (1999) carried out three-dimensional simulations to study the
evolution of Kelvin—Helmholtz billows, while Smyth & Moum (2000) performed three-
dimensional simulations to study the turbulence and mixing associated with breaking
of Kelvin—-Helmholtz billows. They found that a significant amount of anisotropy
at all turbulent scales of motion exists during three-dimensional billow breaking.
To assess mixing efficiency, Caulfield & Peltier (2000) studied the mixing transition
of saturated Kelvin—Helmholtz billows, including three-dimensional investigations of
both a ‘hyperbolic’ instability and a convective destabilization for stratified as well as
homogeneous shear flows.

To date, no numerical simulations of breaking open-ocean internal gravity waves
have been presented in the literature. This is because accurate simulation of field-scale
oceanic internal wave shear instabilities is extremely difficult. The numerical method
must not only capture a large range of physical scales (O(10 km) to O(10 cm)),
but it also must capture a virtually dissipation-free propagation process over long
time scales. The key physical processes that must be simulated include the nonlinear
evolution of long waves into kilometre-scale trains of solitary-like waves and the
subsequent nonlinear growth of shear instabilities at the sub-metre scale. These
processes can be accurately simulated with a two-dimensional approach insofar as
understanding the development of the initial instabilities is concerned, because three-
dimensional dynamics only become significant in the subsequent turbulent mixing
stage after the two-dimensional instabilities have developed (see Fringer & Street
2003). Three-dimensional primary instabilities have been studied, but it was found
that they only exist in a low-Reynolds-number (Re < 300) regime (see Smyth &
Peltier 1990). Accurate simulation of these field-scale processes over such a large
range of scales with today’s computational resources, even in two dimensions, benefits
tremendously from an adaptive numerical method.

Adaptive numerical methods for the solution of partial differential equations
concentrate computational effort when and where it is most needed (see Almgren et al.
1998). For over two decades block-structured adaptive mesh refinement (AMR) has
proven useful for overcoming limitations in computational resources and obtaining
accuracy in problems outside of the internal gravity wave community (Berger &
Oliger 1983; Berger & Colella 1989; Berger & Leveque 1989; Skamarock, Oliger &
Street 1989; Skamarock & Klemp 1993; Bell et al. 1994, 2005; Wolfsberg & Freyberg
1994; Almgren et al. 1998; Barad & Colella 2005). Typically, in computational
environmental fluid mechanics, mesh refinement work has focused on static, one-way
nested refinement, in which finer grids are nested within coarser grids and these grids
do not adapt in time. In one-way nesting, there is no feedback between the fine and
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coarse grids, while in two-way nesting, the solution is fully coupled at the coarse—fine
interface.

In this paper the focus is on improving the understanding of shear instabilities in
solitary-like finite-depth interfacial internal gravity waves. Specifically, in §§ 1-3 the
problem and simulation set-up are introduced for the two-dimensional simulations;
in §4 unstable waves are characterized by analysing the density evolution and normal
straining; §5 includes a linear stability analysis with the Taylor—Goldstein equation
and compares the results with theoretical Richardson number scalings; § 6 compares
the results with observations; §7 considers three-dimensional effects.

2. Governing equations and numerical method

The physical processes that are studied in this paper contain spatial scales that span
metres to kilometres, with temporal scales ranging from seconds to hours. Currently,
the only way to accurately resolve this range of scales is to use parallel AMR, which
discretizes the entire flow domain with coarse grids, and recursively finer nested
grids adaptively track the evolution of internal waves. With AMR, one can zoom
in on moving regions and accurately capture the important flow physics at multiple
scales. The mathematical model tracks these moving regions with finer grids as they
evolve throughout the spatial and temporal flow domain and expends computational
resources only where and when they are needed.

The present study uses the fully adaptive block-structured two-way nested second-
order accurate method of Barad, Colella & Schladow (2009). The method solves the
variable-density incompressible Navier—Stokes equations and exhibits second-order
accurate convergence in time and space. The governing equations are composed of a
momentum balance, a divergence-free constraint and density conservation, such that

v
u, + (uV)u =—7p+g+vAu, 2.1)
Veu=0, (2.2)
pr+u-Vp=0, (2.3)

where u is the velocity vector; p is the density; g=—gk is the gravitational
acceleration in the vertical k direction; and v is the kinematic viscosity. The Coriolis
term and diffusion of density are intentionally omitted, and free-surface motions
are eliminated with the rigid-lid approximation. Since density variations are small,
and constant dynamic viscosity is assumed, a constant kinematic viscosity with the
value v=10"°m?s~! is employed. In stratified shear flows the Reynolds number is
typically defined as Rey= AUS,/v, where AU is the velocity difference across the
shear layer with thickness &y (Hogg & Ivey 2003). Others (for example see Lamb
2003) have used the Euler equations to study field-scale internal wave breaking, and
therefore it is anticipated that using a physical value for v is appropriate for the
idealized simulations in this paper given that sufficient care is taken in determining
the appropriate mesh spacing to resolve the scales of interest (see Troy & Koseff 2005
for a discussion of viscous effects on the decay of interfacial gravity waves). It is
assumed that the physics governing the instabilities is independent of physical scalar
diffusion, and hence it is ignored.
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3. Simulation set-up
3.1. Flow domain and parameter space

Idealized simulations are performed in order to understand the nature of the internal
wave shear instabilities observed on the Oregon Shelf by Moum et al. (2003). While
figure 14 in that paper shows a striking image of billows of the Kelvin—-Helmholtz
type in a solitary wave, these large-scale billows are rarely observed (J. Moum, 2009,
personal communication); much more common are the high-backscatter layers that
form at solitary wave troughs and persist at the trailing edge of the solitary waves, as
shown in figure 3 of that paper. These high-backscatter layers are ubiquitous in large-
amplitude solitary waves and contribute to the mixing and dissipation induced by the
waves, which was the premise behind the work of Bogucki & Garrett (1993). They
assumed that interfacial solitary waves propagate into an undisturbed stratification
with a pycnocline thickness that is thickened by shear instabilities that occur at
some point within the wave where billows of the Kelvin—-Helmholtz type originate.
While Moum et al. (2003) hypothesized that the high-backscatter layers were due
to the formation of Kelvin—Helmholtz billows that result from shear instabilities,
the echosounder resolution was insufficient to resolve the details of their evolution.
By employing high-resolution simulations through the use of AMR, we focus in the
present paper on simulating the waves that were observed by Moum et al. (2003)
and the instabilities along the pycnocline that they were unable to resolve with their
measurements.

Based on (1.4) and the analysis of Bogucki & Garrett (1993), the Richardson
number in solitary interfacial waves is a function of three parameters, namely H,/H,,
or the ratio of the upper layer depth to the lower layer depth, §y/H;, or the non-
dimensional thickness of the pycnocline, and «/H;, or the non-dimensional wave

amplitude, such that
H
Ri—Ri (H 20 )
H, H, H

Assuming a critical Richardson number for instability, Ri., then implies that the
non-dimensional critical amplitude for instability, «./H;, can be written as

(02 aQc ( . 50 Hl)

=< = = (Ri,, =, —1).

H, H H, H
In this paper we keep H;/H, fixed and assess the effects of the non-dimensional
interface thicknesses §y/H; on the critical amplitude and Richardson number for
instability. This is similar to the objective of the work of Fringer & Street (2003)
and Troy & Koseff (2005), who also studied the critical amplitude for instability in
progressive waves by varying k8o, where k is the wavenumber. Fructus et al. (2009)
performed laboratory experiments to study instabilities in solitary interfacial waves
and varied H;/H, as well as §y/H;. A discussion of the effects of H;/H, is provided
at the end of §5.2.

Two-dimensional simulations are employed throughout this paper except in
§7, where we assess the effects of three-dimensionality. For the two-dimensional
simulations, the simulation domain is of depth D =100 m and length 10 km. A right-
propagating nonlinear wavetrain is generated by initializing a two-layer density field
with a depression of the pycnocline near the left boundary and allowing it to steepen
into a train of solitary-like waves that propagate into the domain. This initial density
field is composed of two layers which differ in density by Ap=2 kgm™ and are
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Case kdo aO/Hl 50/H1 8o AXmin AYmin AZmin
1F 0.013 2 0.05 1 0.3 - 0.2
2F 0.025 2 0.10 2 0.3 - 0.2
4F 0.050 2 0.20 4 0.3 - 0.2
8F 0.10 2 0.40 8 0.3 - 0.2
16F 0.20 2 0.80 16 0.3 - 0.2
4FSS 0.050 1.28 0.20 4 0.3 - 0.2
4FS 0.050 1.73 0.20 4 0.3 - 0.2
8FL 0.10 2.27 0.40 8 0.3 - 0.2
8FLL 0.10 2.62 0.40 8 0.3 - 0.2
4C 0.050 2 0.20 4 0.6 - 04
8C 0.10 2 0.40 8 0.6 - 0.4
4C3D 0.050 2 0.20 4 0.6 0.6 0.4

TaBLE 1. Summary of the cases simulated in the present paper. The leading number in the case
identifier indicates the interface thickness &p; ‘C’ indicates a coarser resolution; ‘F’ indicates
a finer resolution; ‘S’ indicates a smaller initial wave; and ‘L’ indicates a larger initial wave.
Case 4C3D is a three-dimensional simulation, while the rest are two-dimensional simulations.
Here, 80, AXmin, AYmin and Azpin are in metres.

separated by a pycnocline with a thickness 8y, such that at time r =0,
A
plx,z,t =0)= po+7ptanh [=mo(z — ¥ (x,t = 0))], (3.1)

where mo=2tanh™'(8)/8,. The initial (Gaussian) shape of the isopycnal defined by
0 =po=1025 kgm™3 is given by

x2
Y(x,t =0) = Hy — apexp (—0_2> , (3.2)

where the undisturbed elevation of the isopycnal is H, =80 m; the amplitude of the
initial depression is «p; the Gaussian half-width is o =500 m; and 8=0.99, which
implies that our interface thickness is defined by the ‘99 %’ interface thickness, as
was done by Fringer & Street (2003) and Troy & Koseff (2005). In this way, the
interface thickness is defined such that p(z=1v + 80/2) — p(z =¥ — 0/2) = — BAp.
In the present study the interface thickness is varied, such that §,=[1, 2, 4, 8§,
16] m. This range of interface thicknesses was selected because it is similar to the
range of stratifications observed by Moum et al. (2003). The resulting k8, range
(0.013 < k8p < 0.20), where k =2n/4 (and A is the wavelength), is roughly the same
as that studied by Troy & Koseff (2005) and smaller than that of Fringer & Street
(2003). The range of 8o/ H; is slightly smaller than that of Fructus et al. (2009), who
studied waves with 0.27 < §y/H; < 3.67. The amplitude of the initial depression was
held constant at ap=2H, for all but four cases as depicted in table 1. The leading
number in the case identifier indicates the interface thickness &y, while ‘C’ indicates
a coarser resolution and ‘F’ indicates a finer resolution. The three-dimensional run is
denoted 4C3D (as it has §o =4 m and has coarser resolution). As will be shown, case
4F yields billows of the Kelvin—-Helmholtz type, while case 8F does not. Therefore,
we simulated two more cases with §, =4 m (4FS and 4FSS) to show that a reduction
in the amplitude leads to a stable wave and two more cases with §o=8m (8FL and
8FLL) to show that an increase in the amplitude leads to an unstable wave.
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For all runs, a rank-ordered train of solitary-like internal waves of depression
forms, and the leading wave travels at approximately ¢=0.7ms~!. We define the
wavelength A as twice the distance from the trough of the leading wave to the point
at which the p, isopycnal is displaced by 5 % relative to the maximum displacement
in the trough. For the waves in our simulations 4 has a characteristic value of
A.=500m, and we use this length to normalize the x-coordinate in our discussion
because it represents a characteristic value that does not change significantly among
the waves, and it is useful to demonstrate variability in wave width among the cases
by non-dimensionalizing the horizontal coordinate with the same scale (e.g. figure 6).
However, when referring to the time scale of the instability it is important to refer
to L,/L, which is the ratio of half the width of the region within the wave in
which Ri < 1/4 to the wave half-width L, which does indeed vary among the waves.
We non-dimensionalize the x-coordinate by L, rather than A, in §5.1 in which we
present a linear stability analysis with the Taylor—-Goldstein equation. We also define
a characteristic time scale T =1/c =~ 729s as the time it takes for the leading wave
to propagate over one characteristic wavelength. In what follows the characteristic
wavenumber is k=2mn/4, and the normalized trough-centred coordinate is defined
as x, =(x — x;)/4, where x, is the location of the trough of the leading wave. As
expected (see the discussion in Phillips 1977), the speed of the leading wave is weakly
dependent on the interface thickness ;. However, as will be shown, the interface
thickness strongly affects the stability properties of the waves.

3.2. Qualitative features of a simulation

In this section the basic features of a non-breaking simulation are presented. (In the
current paper ‘non-breaking’ implies no overturning billows or that the vertical density
gradient everywhere remains negative, i.e. p, < 0.) This is to provide an overview of the
physics of a non-breaking wave with an emphasis on understanding the wide range
of scales involved. Details of billow formation and breaking are discussed in more
detail later in the paper. Figure 1 shows the nonlinear transformation of case 8C from
an initial Gaussian of depression into a rank-ordered train of solitary-like nonlinear
internal gravity waves after an evolution time of ¢/T =18.5. The figure depicts
individual AMR patches, each of which contains O(10°) grid cells. This run has an
effective resolution (i.e. a single grid without AMR) of 256 x 16 384 computational
cells, while the finest two-dimensional runs in this paper (where Az =0.2m) have an
effective resolution of 512 x 32768 or over 16 million computational cells. For all runs,
although numerous AMR grids are employed with varying resolution, all grid cells
have a fixed aspect ratio of Ax/Az=L/64D =1.5625, which ensures accurate results
and good conditioning for the elliptic pressure solver. Grid refinement is employed
based on the ability of the grid to accurately resolve density gradients and vorticity,
as in Barad et al. (2009).

At the start of the simulation the initial transformation is a lifting of the initial half-
Gaussian of depression. This is followed by a nonlinear transformation in which the
leading edge of the Gaussian translates to the right. Subsequently, nonlinear dispersion
of wave energy leads to a break up into a train of solitary-like waves, whereby the
largest wave propagates to the right followed by slightly slower and successively
smaller waves. With minimal numerical dissipation (see §3.3 for a discussion of
numerical convergence), the waves grow in size until they become solitary-like waves
that slowly decay because of dissipation, leading to a train of rank-ordered solitary-
like waves, as depicted in figure 1(b).



Shear instabilites in interfacial waves 69

(a)

80 - [J.—‘LHH‘HH‘HHlfH!‘!5Hli5H‘{HH‘&Hlii;HJHf&‘HH‘H{"H{HHHK!H
60 [ [ I I I [ I I [ [ [ I [ 1

20

2 4 6 8

I I I [ I I [ [ [ I I [

RO P e L
N M R AR AR

: ] NRREERRRRRAN P
60 - gy
40 4 I—’

9.360 9.380 9.400 9.420 9.440
Kilometre

FiGURE 1. Density contour plots and mesh refinement patches for (a) initial conditions,
t/T =0, and (b) final state, r/T = 18.5. The contours are for p = pg, po + Ap/4, and this is case
8C (see table 1), with three levels of AMR. The vertical scale is in metres, while the horizontal
scale is in kilometres; (a) and (b) have been horizontally compressed for visualization, while
the actual physical aspect ratio of each computational cell is Ax/Az=L/64D =1.5625.
(c) Depiction of the last 1 km of (b), at the real physical aspect ratio, with individual
computational cells in black and block data structure patches in grey. (d) A view of (c¢)
zoomed in by a factor of 10. The refinement ratio is 4 between all levels.

The analysis in the current paper focuses on the leading wave in the wavetrain that
emerges from the Gaussian of depression, as this wave propagates into an undisturbed
medium. The trailing waves behave similarly, although they are ignored in this paper,
as their characteristics are slightly affected by the flow environment created by the
waves that precede them. Figure 2(a) depicts the normalized horizontal position,
x;/7, of the maximum depression of the py isopycnal relative to its undisturbed
depth, while figure 2(b) depicts the amplitude, «, of this depression normalized
by the upper layer thickness, H;. The amplitude is given by a=D — z;, — Hj,
where z, is the vertical location of the p, isopycnal at x =x,. During the period
0<t/T < 2, the maximum amplitude decreases rapidly as the initial Gaussian of
depression is uplifted because of the negative horizontal baroclinic pressure gradient.
Then, during 2 <¢/T < 4, dispersion leads to the formation of a leading wave that
emerges roughly at r/T =4. The emergence of the leading wave is marked by a
discontinuity in x; when the position of maximum amplitude transitions from the
location of maximum amplitude in the initial Gaussian to that in the leading wave that
emerges. After it emerges and as is shown in figure 2(b), the amplitude of the leading
wave continues to grow until it becomes essentially steady at roughly ¢/ T = 10,
after which time nonlinear steepening and dispersion are essentially in balance
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FiGURE 2. Time series of (a) the normalized horizontal position of maximum amplitude, x, /4,
(b) the relative amplitude, o/ Hy, and (c¢) the Richardson number at the trough of the leading
wave for case 8F. The dotted line in (c) indicates Ri =1/4.

in what forms the leading solitary-like wave that slowly decays because of weak
dissipation.
Figure 2(c) depicts the gradient Richardson number, defined by

N2 .
WF T T (3.3)

where N is the buoyancy frequency, p, the vertical density gradient and u, the vertical
shear, all of which are defined at (x,z)=(x;,z/). In (3.3) we use reference density
po which leads to the traditional form for the gradient Richardson number, even
though the governing equations are non-Boussinesq. As described in §4.3, the vertical
gradient in density changes because of vertical strain which acts to decrease the
buoyancy frequency at the wave trough. The reduction of the buoyancy frequency
coupled with the development of strong vertical shear within the wave leads to
marked changes in Ri as the leading solitary-like wave develops. This is apparent
during the transition of the initial Gaussian wave of depression, which is marked
by a sharp decrease in the Richardson number as the flows in the upper and lower
layers accelerate in opposite directions. As the baroclinic pressure gradient subsides,
the Richardson number increases during the period 1 <t/T < 2, during which time
the leading wave in the packet is forming. During 2 <¢/T < 4, the leading wave

Ri =
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continues to form, but Ri remains roughly constant because the shear is roughly
constant at the location of maximum amplitude, even though the shear is decreasing
to the left of this location and increasing to the right during the formation of the
leading wave. Once the leading wave emerges roughly at t/T =4, Ri decreases well
below the canonical value of 1/4 until it reaches a steady value of 0.12 once the
solitary-like wave forms at #/7T = 10. Small oscillations that are present in these time
series cannot be seen because they are too small to be detected at this scale. These
oscillations do not lead to the formation of billows because they do not have sufficient
time to grow, as discussed by Troy & Koseff (2005) and given in more detail in §5.1.

3.3. Accuracy

In Barad & Fringer (2007) the same numerical method was used and the sensitivity
of the solution to the mesh spacing was checked to determine the mesh spacing
on the finest AMR level required to obtain a nearly grid-independent solution. This
convergence study approach is common in the numerical solution of partial differential
equations (e.g. see Bell, Colella & Glaz 1989). Resolution tests were conducted, and it
was found that D/Az=512 (or Ax=0.3m and Az=0.2m) was sufficient. In order
to demonstrate convergence, time series of the relative amplitude of the leading wave
were presented, along with time series of the Richardson number at the trough of this
wave. As expected for a second-order accurate method, the time series converge to
nearly grid-independent solutions. It was shown that poor grid resolution leads to the
formation and rapid disintegration of the leading wave because of excessive numerical
diffusion, which is marked by a rapid decay in wave amplitude. The simulations in
Barad & Fringer (2007) indicate that the results in this paper are essentially grid
independent.

4. Characteristics of unstable and breaking waves
4.1. Density evolution

To highlight large-scale wave density structure for a breaking solitary-like wave,
figure 3 depicts the evolution of case 4F in time. As discussed in the previous section,
the initial Gaussian of depression evolves into a train of rank-ordered solitary-like
internal waves. The oscillations that appear at t/T =2 are overturning billows that
form as a result of a shear instability that originates at the location of maximum shear
within the wave (see figure 4 for a detailed view of the billows). Initially, the maximum
shear exists at the centre of the propagating Gaussian and the horizontal extent is of
the order of the width of the Gaussian. However, as the wavetrain emerges, the patch
of unstable fluid becomes confined to the trailing edge of the leading solitary-like
wave. The strength of the billows grows as the amplitude, and hence magnitude of
the shear, in the leading wave increases. This persists until /T ~ 10, at which time
the leading wave has evolved into a solitary-like wave in which billows form and are
left in its wake because of a shear instability along the interface. These billows are
the primary source of dissipation of the solitary-like wave and lead to a small decay
in amplitude, which causes the slight decrease in the strength of the instabilities after
t/T ~ 10 in figure 3.

Figure 4 depicts the detailed structure of the billows at the interface for the leading
wave in case 4F at r/T = 12. As the strength of the shear grows from right to left near
the trough and peaks at x =x;, the flow becomes unstable to perturbations within
the wave trough, leading to the formation of billows of the Kelvin—Helmholtz type
towards the trailing edge of the wave. These are similar to the observations of Moum
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FiGURE 3. The development of a rank-ordered train of solitary-like waves for case 4F. The
panels are ordered top to bottom with t/T =10, 2, 4, 6, 8, 10, 12, 14, 16, 18], and the contours
are of p = py. The horizontal extent covers the entire domain of 10 km, while the vertical scale
is the same for all contours, and for reference the amplitude of the initial Gaussian deflection
is 2p =40m. A detailed view at time ¢/T =12 is shown in figure 4.

et al. (2003), and we make comparisons with the observations in § 6. The size of the
billows increases until the shear within the wave subsides, leaving behind a series of
billows that interact with the velocity field in the trailing waves. Because the shear
within these trailing waves is relatively small, the billows continue to decay, and as
they decay and interact with one another the interface thickness increases because of
enhanced diffusion. The primary billows have positive vorticity induced by the wave,
while secondary billows of both positive and negative vorticity form, as expected for
billows of the Kelvin—Helmholtz type. As will be seen in §7, the three-dimensional
case (case 4C3D) has similar two-dimensional pairing characteristics, and the flow
is mostly two-dimensional. Figure 4 clearly indicates the multi-scale nature of this
problem, since the billows are roughly 5m in diameter, while the wave is roughly
500 m long. This is exceptionally difficult to simulate accurately, and no internal wave
simulations that capture this range of scales have been presented in the literature to
date.

Recalling the definition of Rey from §2, for the simulations in this paper
AU =~ 0.76ms™', and therefore Rey ~ 7.6 x 10° for §o=1m and Rey ~ 1.2 x 107
for §o=16m. As the §o=16m case is less likely to form billows because of the
stratification, viscous effects (discussed in §7) are even less significant for studying
the shear instability in this high-Rey regime. Subsequent mixing will depend heavily
on viscous decay, which is not the focus of this work. This is in agreement with
the calculations of Haigh (1995) and Hogg & Ivey (2003), where they found viscous
damping of high-frequency shear instabilities when Rey < 100.

4.2. Wave amplitude

Figure 5(a) depicts a time series of the maximum amplitude within the domain («)
normalized by the upper layer thickness (H;), while figure 5(b) depicts the minimum
Richardson number at the location of maximum amplitude. As discussed in §3.2, a
stable solitary-like wave emerges roughly at ¢/ T = 10. High-frequency oscillations in
the time series are indicative of instabilities that may grow and lead to the formation
of Kelvin—Helmholtz billows (as are apparent in figures 4 and 6). These are clearly
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FIGURE 7. Relative magnitudes along the py isopycnal of the Richardson number, Ri/Rig
(dashed line); the shear, S?/S3 (solid line); and the buoyancy frequency, N2/N; (thick solid
line). Data are from case 4F, at t/T =12; S5 and N§ are the squares of the maximum vertical
shear and the maximum buoyancy frequency, respectively, over x,, > 0; Rig= N;/S3.

evident in the time series for §y/H; <0.2 (cases 1F, 2F and 4F in figure 5) while
not strong for 8o/H; > 0.4 (cases 8F and 16F in figure 5). In particular, the time
series with large high-frequency oscillations display a much stronger decay in wave
amplitude than the more stable time series, which is because the billows grow by
taking energy from the wave, and this reduces the wave amplitude. Dissipation
and mixing of the billows occurs after sufficient billow growth (see figure 4). How
much dissipation and mixing occurs depends on the strength of the instability. The
magnitude of the amplitude decay increases for waves with thinner interfaces because
of increased velocity shear. Because billows of the Kelvin—Helmholtz type also form
during the formation of the waves (i.e. during the breakup of the initial Gaussian
of depression; see figure 3 at r/T =2), the amplitudes of the leading waves for
small §y/H; are also substantially reduced. As discussed in Fringer & Street (2003),
because these results are two-dimensional, the dissipation is under-predicted owing
to the lack of the three-dimensional lateral instabilities that account for most of the
mixing and dissipation. Furthermore, the mixing is purely numerical because we omit
explicit numerical diffusion of density. A discussion of the three-dimensionality of the
secondary instability is given in § 7.

4.3. Normal straining

Fluid parcels near the pycnocline during the passage of a solitary wave experience
a marked increase in vertical shear while also experiencing a decrease in the vertical
buoyancy frequency, as depicted in figure 7. The reduction in the buoyancy frequency
results primarily from normal strain within the wave, rather than diffusion, which
acts to increase the thickness of the pycnocline. The predominance of strain over
diffusion has important ramifications for stability because an advection-dominated
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FIGURE 8. Vertical normal strain, w, (where the contours are of 0.01, 0.02 and 0.03 s7!),
for case 4F at ¢t/T =12. The outer contours indicate the density interface as defined by

p=pot BAp/2.

process enables parameterization of wave breaking that is independent of diffusion
or mixing. To understand the influence of wave-induced strain on wave dynamics, we
analyse the normal strain at ¢/ T = 12 for case 4F, in the region of the leading edge of
the first solitary wave in the wavetrain. Figure 8 shows a plot of the vertical normal
strain (w,), which is positive in the instability growth region. Values of w, are largest
near the lower boundary of the interface (the p = po+BAp/2 isopycnal) and gradually
decrease vertically. The figure shows that rather than being compressed vertically as
it moves downward, the interface expands vertically from an initial thickness of §, to
just over (5/4)8. As the wave propagates to the right, into the ambient fluid, fluid
parcels are compressed horizontally (u, <0), which leads to vertical expansion as a
result of incompressibility and hence positive vertical strain since w, > 0.

To gain a better understanding of wave straining and the associated interface
thickening process, data are extracted along the p, isopycnal and presented in figures 9
and 10. The along-contour straining is examined by computing the rate-of-strain

tensor
1/ 0u; ou ;
E,‘ i = = ! J 41
5] 2 (axl + axi > ( )

and its eigendecomposition to determine the principle axes and rates of strain.
For the two-dimensional incompressible flow equations, E is symmetric with two real
eigenvalues which are of the same magnitude but have opposite signs, and trace(E) =0
because of the divergence-free constraint. The rate-of-strain tensor is composed of
terms in the velocity gradient tensor (du;/dx;), which are shown in figure 9(b). The

two eigenvectors of E, by and b,, define the principal axes of strain, while the two
eigenvalues 4; and 4, define the strain rates along these principal axes (Kundu 2002).
The principal axes and strain rates can be visualized as ellipses in which the semi-
major and semi-minor axes are aligned with the eigenvectors and stretched by the
eigenvalues. These ellipses can be thought of as deformations of originally circular
fluid elements, as depicted in figure 9(a). The ellipses are angled at roughly w/4
clockwise from the vertical. This /4 rotation can be computed analytically from an
eigendecomposition of a two-dimensional shear flow (e.g. u = tanh(z)). Figure 10(a)
shows the clockwise deviation from vertical for the p, isopycnal, the (n/4 adjusted)
ellipse semi-major axis and the difference € =6, — Oy + /4, where, measured
clockwise from vertical, 6, is the angle of the py isopycnal normal and 6Ogyq, — ©/4
the angle of the strain-rate ellipses. In figure 10, € is scaled by 8 for clarity.

The difference |e¢| >0 induces a strain on the interface, and therefore if ¢ =0,
then there is no net strain on the interface. When € > 0 net compression normal to
the interface is expected (with stretching tangential), while for € <0 net stretching
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FIGURE 9. (a) The py isopycnal with rate-of-strain principal-axes ellipses, where the ellipses
represent deformations of circular fluid elements. While the contour is plotted with non-unit
aspect ratio axes, the ellipses are plotted with an isotropic aspect ratio, and so when there is
no strain they are circles. (b) Four components of the gradient of the velocity field, normalized
by the magnitude of u, at x,, =0, where the lines represent u, /|u,| (thin solid), u,/|u,| (thick
solid), w, /|u;| (thin dashed) and w,/|u.| (thick dashed). Note that the presence of billows can
lead to u./|u,| > 1 ahead of the wave crest. Data are from case 4F, at /T =12.

normal to the interface (with compression tangential) is expected. For x,, > 0.3, € >0
and in this region isopycnal normal strain is expected (i.e. ib; - Vp/|Vp]|) to be net
compressive. Progressing into the trough of the wave, for 0 <x, <0.3, € <0, and
therefore the isopycnal normal strain is tensile. The eigenvalues, or stretching rates,
are plotted in figure 10(b), where 4, is the eigenvalue corresponding to the semi-major
axis and /, is the one that corresponds to the semi-minor axis. The stretching rates
increase moving into the wave (i.e. x,, > 0.9 and then — 0) with a maximum magnitude
roughly at x,, =0. Combining figures 10(a) and 10(b), when x,, > 0.3 there is relatively
weak compression of the isopycnals, while for 0 < x,, <0.3 there is strong isopycnal
stretching. Figure 10(c) shows that the interface is in fact thickening as predicted
by the eigendecomposition analysis. The eigendecomposition analysis predicts the
precise location at which the interface rapidly thickens, at x,, < 0.3. It also describes
precisely that the interface thickens because of normal straining rather than diffusion.
A close inspection of figure 10(c) reveals that there is a very slight thickening of
the interface for x,, > 0.4, which is probably diffusion at the front. This thickening is
however countered at 0.3 < x,, < 0.4 by isopycnal normal compression as predicted by
the eigendecomposition analysis. Figure 10(c) also reveals that the interface thickens
at roughly a linear rate for —0.05 < x,, <0.3.

In summary, there are three regimes of normal straining. First, an essentially
strain-free region with very minor interface thickening exists for x, > 0.4. Second, a
compressive region in which the interface is under weak compressive normal strain
exists for 0.3 < x, <0.4. This second region transitions to the third region when the
straining switches from weak compression to strong expansion. The third region is one
of linear interface thickening and occurs when x,, <0.3. In this region, the expansion
of the interface can be approximated by assuming that the interface at a horizontal
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FIGURE 10. (a) The angle of the py isopycnal normal from the vertical, 6, (thick dashed
line), and the angle of the strain rate ellipses, Oqin — 7/4 (thick solid line), where the ellipse
angle is rotated by n/4 counterclockwise (to align with the isopycnal orientation). The angles
are measured in radians, where positive is clockwise from vertical. Also shown in (a) is the
difference € =0, — Oyrain + n/4, magnified by a factor of 8 for viewing (solid line). (b) The
eigenvalues of the rate-of-strain tensor, /; (note that ; = —/,), and (c¢) the normalized interface
thickness, §/8p. Data are from case 4F, at r/T =12.

location in space undergoes vertical strain because of a time-varying vertical velocity
field. If &, is the thickness of the interface after undergoing vertical strain for half a
wave period (i.e. at x,, =0), then assuming that the effects of lateral strain are small,

T2
5, ~ 5+ / (wy — wy)dt, (42)
0

where §, is the undisturbed interface thickness and w, and w,, are the vertical velocities
at the top and the bottom of the interface, respectively. Transforming the integral to
a spatial integral with dx = cdz, assuming that Aw =w; — w, and from V- u =0, we
approximate Aw =~ §oAu/A, and the relationship becomes

1 A2 Sa A

5 ~ 8+ / bodula)y, (4.3)
Cc Jo /1

Assuming Au(x) decays linearly to zero at x,, =0.5, i.e.

Au(x) = AU(1 —2x /1), (4.4)
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FiGure 11. Nondimensional wave amplitude versus normalized horizontal velocity difference
from simulations (O) and the theoretical approximation from (1.1) (——).

this yields

b ., LAU

80 = 4 ¢ ’
where AU is the horizontal velocity difference between the upper and lower layers
at x,, =0 and can be approximated using (1.1). Figure 10(c) shows that §,/8¢ =~ 5/4,
which matches (4.5) for AU =~ ¢ which is the case for these waves. Approximation (1.1)
is depicted in figure 11, which shows that the velocity difference can be estimated
accurately with the bulk wave parameters, which is also the case for progressive deep
interfacial waves as reported by Troy & Koseff (2005). Approximation (1.1) is used
in §5.2, where relationships for the Richardson number are derived as a function of
bulk wave parameters.

(4.5)

5. Wave breaking analysis

As was shown by Troy & Koseff (2005), the canonical value of the critical
Richardson number of Ri=1/4 is not a sufficient condition for instability and
breaking in these waves. This can clearly be seen in the time series of the Richardson
numbers depicted in figure 5(b), which indicate that the Richardson number at the
trough of the waves is subcritical, although the simulations with §,/H; = 0.4 (cases
8F and 16F) are clearly not breaking. An explanation for this behaviour has been
provided by Troy & Koseff (2005) who used laboratory experiments to show that
progressive interfacial waves are unstable to shear only if the Richardson number
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falls below the critical value for long enough periods. In this section the theory of
Troy & Koseff (2005) is extended by first employing a detailed stability analysis (§ 5.1).
This is followed by the development of an improved method to estimate the minimum
Richardson number within a wave based on bulk parameters in §5.2, which builds
upon the work of Bogucki & Garrett (1993).

5.1. Linear stability analysis

To determine the nature of the instabilities that develop in our simulations, a
perturbation wave amplitude o' =« — @ is computed, which is a departure of the
maximum amplitude of the wave from the low-pass value @. The low-pass amplitude
is obtained through a best-fit linear regression of « in figure 5(a) during the period
179 <t/T < 18.9 and represents the amplitude history of the wave as it decays
roughly linearly in time for this short interval. Although the decay is not strictly linear,
the time interval is small enough to eliminate low-frequency bias in the resulting o’
signal. Plots of «’ are depicted in figures 12(a)-12(e). Recalling that not every case
out of cases 1, 2, 4, 8 and 16F exhibits actual breaking through overturning, the
series illustrate that they all exhibit physical oscillations in the amplitude time series
that may or may not lead to instability. These oscillations originate from numerical
errors, both from the stopping tolerance of the elliptic and parabolic solvers and from
O(Ax?) spatial and temporal discretization errors. The instabilities are excited by the
numerical errors and subsequently grow because of physical mechanisms.

The amplitude oscillations in figure 12 are signatures of perturbations that pass
through the trough in a frame of reference that follows the leading wave. The series in
figures 12 (a)-12(c) depict spikes followed by regions of smooth decay. These cusped
signatures result from the discontinuous nature of the amplitude of the py isopycnal
located at x =ux;, since x; jumps between local instability troughs. These are not
apparent in figures 12 (d)-12(e) because of the lack of billows. A possible time scale
that may appear in high-frequency time series of the results is that associated with
AMR regridding or the process of addition and removal of various mesh refinement
patches as the simulation progresses. Frequent regridding is required so that regions
of interest remain at the finest resolution. In the present simulations, regridding occurs
every four time steps or roughly every /T =0.004. Because it is small, the regridding
frequency does not show up as a significant component of the signals of «'.

It is possible to assess whether the disturbances are a result of a growing
shear instability by determining if the root mean square (r.m.s.) amplitude of the
perturbations, {a'), is related to that predicted from theory. Following Troy & Koseff
(2005), one can assume that if a parcel of fluid at the pycnocline is subject to a
subcritical Richardson number for a given period of time, then the amplitude, a;, of
an associated instability will grow exponentially according to

dai
dt

where o; is the growth rate of the instability. This equation can be converted to
a spatially-varying equation in a wave-following coordinate system with x; =(x —
ct)/L =x,A/L, where c is the wave speed and L is the solitary wave half-width, such
that the solitary wave shape can be approximated with ¢ =asech’(x/L). Applying
the coordinate transformation to (5.1) and integrating yields

=0;4a;, (51)

log (“) = 5T, (5.2)
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FIGURE 12. Time series of the perturbation amplitude &' for cases (a) 1F, (b) 2F, (¢) 4F,
(d) 8F and (e) 16F. Note that the vertical scale is different for each plot.

where a;, is the initial amplitude of the perturbation, and the average growth rate
within the region in which Ri < 1/4 upstream of the wave trough is given by

L [Le/t
&=L / &(x) dxy. (53)
Ly, Jo

Here, the non-dimensional distance from the trough of the wave to the location in
which the local Richardson number falls below 1/4 is L,/L (L, is related to the
pocket width of possible instability, L., by Fructus et al. 2009, via L, =2L,). The
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Case 5—0 il ﬁ AU/c log ( (oz’> ) o, T, 0:.Tw /8 Rimn Billows
H] H] 50 (o4}
16F 080 1.38 1.28 1.14 0.37 0.35 1.66 256 0.213 No
4FSS 020 095 106 0.78 - 2.72 4.19 393 0.123 No
8F 040 136 1.20 1.11 375 3.77 4.17 288 0.118 No
4FS 020 115 1.08 0.90 - 5.07 4.81 398  0.095 Yes
8FL 040 143 1.20 1.09 - 5.21 493 2.88  0.109 Yes
4F 020 118 129 094 6.20 5.38 5.50 422  0.085 Yes
8FLL 040 146 120 1.10 - 6.29 5.50 2.88 0.110 Yes
2F 0.10 1.08 117 0.83 7.17 - - - 0.106 Yes
1F 005 1.06 179 081 8.84 - — - 0.093 Yes

TaBLE 2. Computed values for all cases in order of increasing instability growth rate based
on the Taylor-Goldstein analysis (7;7T,,). Initial nondimensional interface thickness &o/Hj,
relative wave amplitude «/ Hy, strained interface thickness 8, /8o, total velocity difference AU/c,
non-dimensional growth rate from the perturbation analysis with (5.4), non-dimensional growth
rate from the Taylor—Goldstein analysis &; T,,, approximate non-dimensional growth rate from
analytical expression (5.11), average wavelength of the most unstable mode normalized by
the interface thickness, 4;/8yp and Richardson number at the wave trough (x;, z;), Rimin. All
data are computed from the simulations at time ¢/ 7T = 12. The last column indicates whether
billows formed.

associated wave time scale over which an instability has to grow from the point of
incipient instability at x; =L,,/L to x; =01is T,, = L,,T /1. We note that the expression
for the average growth rate from (5.3) is different from that of Troy & Koseff (2005),
who computed the average over all, rather than half, of the pocket width. The two
formulations are the same if we assume symmetry about the trough, which is a good
approximation, particularly since the instabilities always develop before or at the wave
trough. Equation (5.2) can then be used to determine the non-dimensional growth
rate from the r.m.s. amplitude of the perturbations at the wave trough with

5T, = log <<"‘,/>> : (5.4)

o)

Table 2 lists these values for cases 1F, 2F, 4F, 8F and 16F when an initial perturbation
amplitude of o)/H; =5 x 107 is assumed, and the results for cases 4F, 8F and 16F
are depicted in figure 14.

To assess the reliability of the perturbation analysis, we present a linear stability
analysis with the Taylor—Goldstein equation (e.g. Hazel 1972) using the computed
horizontal velocity and density profiles at 10 points within the region of possible
instability (0 < x; < L, /L) at t/T =12. Although cases 1F and 2F did not yield
reliable results because billows formed ahead of the wave trough and made it difficult
to compute growth rates because of strong variability in the velocity and density
profiles, figure 13 depicts peak growth rates within the waves for the other cases,
moving from x; =L, /L to x; =0. As expected, although the peak growth rates
vary significantly with distance from the wave trough, the associated wavelengths,
A; (average values for each wave are shown in table 2), of the growing modes vary
weakly. This is consistent with the findings in other studies (Hazel 1972; Troy & Koseff
2005), which show weak dependence of the optimal wavenumber for instability on
the minimum Richardson number. The results indicate that the region in which the
growth rate is non-zero upstream of the trough is confined to less than roughly one
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FIGURE 13. Maximum non-dimensional growth rates computed at each location ahead of the
wave troughs using the Taylor—Goldstein equation. The dashed line depicts the solitary wave
shape from case 8F for reference. The thick solid line depicts a hypothetical wave for which
L, /L =0.86 (from Fructus et al. 2009) and &;T,, =5 (from Troy & Koseff 2005). Waves with
curves above this case are unstable, while those below it are not. The thick lines with symbols
represent approximations using (5.9). Case 16F, O; case 8F, O; case 4F, A; case 4FSS, ©>; case
4FS, V; case 8FL, x; case 8FLL, +.

quarter of the wave width, and the width of this region increases with increasing peak
growth rates which always occur at the wave trough.

Following Troy & Koseff (2005), an estimate for the peak non-dimensional growth
rate as a function of x; is given by

Oie(x )Ty = %moAu(xL) [—0.8Ri(x.)+0.2], (5.5)

where (1/2)moAu(x,) = tanh™'(8)Au(x.)/8, is an approximation for the vertical shear
at the pycnocline and Au(x,) is the velocity difference across the pycnocline of
thickness 8y. This approximation holds quite well, in particular for use as a guess for
the growth rate when solving the Taylor—Goldstein equation. The terms in (5.5) can
be approximated analytically rather than computing them at each location with data
from the simulations. If the velocity difference across the pycnocline is estimated with

Au(x) = AUsech?(xy), (5.6)
then the Richardson number as a function of x; can be estimated with
Rij,
Ri(x)) = ————, 5.7
(x2) sech4(xL) (57)

where Rij is the Richardson number at x; =0 and can be approximated with
_ _ g'3o

moAU?  tanh '(B)AU?’
which differs from the approximation of Bogucki & Garrett (1993) in (1.4) by an
amount 1/tanh™'(B). Substitution into (5.5) then yields

1 Ri
0:o(x1)T,y = =moAUT, (—0.82" + 0.2sech2xL) . (5.9)
2 sech™x;,

(5.8)

The behaviour of this equation is demonstrated in figure 13 for cases 8F and 16F
and shows that while the peak growth rate is approximated well, the width of the
pocket is underestimated and is probably due to higher-order nonlinear effects not
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captured in assuming sech’ variability for the density and velocity fields. Nevertheless,
these errors still enable the approximation to yield reasonable values for the averaged
growth rates. Distribution (5.9) can be used to determine the location of incipient
instability growth that occurs when o; .(x.)7,, =0 or when

1 L
Rip = —sech* [ =2 ). 1
io 4sec (L) (5.10)

Fructus et al. (2009) indicated that L,,/L was a better indicator of instability than Ri,
in breaking interfacial solitary waves, since their results indicated a clearer distinction
between breaking and non-breaking waves based on the value of L, /L rather than
Riy. Accordingly, they found that waves broke very clearly when L, /L > 0.86, but
there was a spread in the breaking values for the minimum Richardson number,
which for breaking requires Rip <0.1 4+ 0.016. Employing (5.10) with the condition
L,/L>0.86 implies that Riy <0.07, which, although lower than the lowest value
obtained by Fructus et al. (2009), is quite close given the number of approximations
employed and the simplicity of (5.10).

While Fructus et al. (2009) found a threshold for breaking based on the value of
L, /L, Troy & Koseff (2005) found that instability occurred in progressive interfacial
waves when &;T, > 5. In terms of a growth time scale, 7; =2mn/o;, this condition
requires that T,/t; > 5/2n ~ 0.8, which implies that for instability the instability
growth rate must be shorter than 1.25 times the wave time scale. Alternatively, the
condition of Troy & Koseff (2005) can be thought of as a spatial restriction on the
wavelength of the instabilities if they are to develop in the region in which Ri < 1/4.
In this case the optimal wavelength of the instability must be smaller than the width
of the region in which Ri < 1/4 and satisfy 4;/L, < (2n/5)c;/c, where ¢; =2mo;/A; is
the imaginary part of the phase speed associated with the growing instability.

Using the two criteria for instability from Fructus et al. (2009) and Troy &
Koseff (2005), it is possible to construct a distribution of growth rates that satisfies
L,/L=0.86 and 7,;T, =5 by scaling the distribution of growth rates for case 8F. This
curve is indicated in figure 13 and falls directly below the curves for the unstable waves
and above the curves for the stable waves. To assess whether or not an instability
occurs given these growth rate curves, average non-dimensional growth rates are
obtained by integration of the growth rates obtained from the Taylor—Goldstein
equation using (5.3). These can then be compared with the average non-dimensional
growth rate obtained via integration of (5.9), which is given by

o 1 ) 1L . 2L, L L,
Gielw = I—OmOAUTw {—4R10 (1 + EL—w smh( 7 >> + Lwtanh( 7 )] . (5.11)

The average non-dimensional growth rates are depicted in figure 14, which shows that
(5.11) approximates the values computed with the Taylor-Goldstein equation quite
well. Furthermore, the plot indicates that the perturbation analysis also provides
a good measure of the non-dimensional growth rate via (5.4). The three methods
all indicate that waves develop instabilities when the non-dimensional growth rate
exceeds the critical value of o.T,, =5. This is the same value that was computed
by Troy & Koseff (2005) for progressive interfacial waves but is larger than the
value of Fructus et al. (2009) for solitary waves. Fructus et al. (2009) computed
non-dimensional growth rates with F =y L,/(2|c — ¢,|), which is related to the non-
dimensional growth rates in the present study via F =0,,,6,T,,/|1 —c,/c|, where c, is
the propagation speed of the most unstable modes and the factor «,,, =max(o;)/o;
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FiGure 14. Comparison of the non-dimensional average growth rates computed with the
Taylor—Goldstein equation, &, T,,, with those approximated using (5.11) to obtain &; . T;,: Case
16F, O; case 8F, O; case 4F, A; case 4FSS, >; case 4FS, V; case 8FL, x; case S8FLL, +.
Growth rates computed from the perturbation analysis with (5.4) are also shown, denoted
by filled symbols. The vertical dashed line corresponds to the breaking thresholds of Troy &
Koseff (2005) and Fructus et al. (2009), which imply breaking for &;T,, > 5 or, equivalently,
L, /L >0.86, as indicated by the top x-axis label.

accounts for the fact that the average growth rate is smaller than the maximum
growth rate by, on average for the present simulations, a4, =1.4. The minimum
non-dimensional growth rate in Fructus et al. (2009) for the breaking waves was
0.9, while the maximum non-dimensional growth rate for the stable waves was 1.16,
indicating that the breaking threshold for their waves was roughly &;T, > 1. We
hypothesize that the smaller threshold may be due to the disturbances present in
the laboratory experiments that may lead to instability for a lower threshold than
in the present simulations, which develop out of perturbations associated with small
errors in the numerical method. Furthermore, they employ linear stratifications in
their pycnocline (at least as close to one as they could get in laboratory experiments).
This could also contribute to differences in the breaking threshold. Nevertheless, the
perturbations in the laboratory experiments indicate that the threshold value obtained
in the present simulations is probably an upper bound relative to what may happen
in the field, where the threshold is probably much smaller because of the presence of
perturbations associated with background turbulence.

The equality of the breaking threshold for the progressive waves of Troy & Koseff
(2005) and the solitary waves in the present study probably results because the
horizontal wavelength of the most unstable modes in the present study and that
of Troy & Koseff (2005) is much smaller than the horizontal scale of the waves
(from table 2, 4;/4<0.08). The weak spatial variability, and hence weak temporal
variability of the flow relative to that of the instabilities, justifies use of the Taylor—
Goldstein equation to compute the local growth rates of the instabilities within the
pocket of potential instability. Effectively, the instability in the present study and
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FiGURE 15. Normalized vertical profiles of (a) density and (b) horizontal velocity at /T =12
and at x,, =0. The symbols indicate cases 1F (O), 2F (x), 4F (+), 8F (O) and 16F (V).

that of Troy & Koseff (2005) is a modified shear instability in a stratified shear flow
that is well approximated with hyperbolic tangent density and velocity profiles that
vary weakly in the horizontal and slowly in time. Although validity of the Taylor—
Goldstein equation enables its use for determination of threshold values for ;T,, and
L, /L, these are not as practical for determination of instability in the ocean because
they require knowledge of the spatial distribution of growth rates. Instead, a more
reasonable method of assessing instability is based on the value of the minimum
Richardson number within the wave, which we discuss in the next section.

5.2. Critical Richardson number based on bulk wave parameters

When Bogucki & Garrett (1993) derived the critical breaking amplitude for solitary-
like interfacial waves, the result was approximate for two reasons, the first of which
is assumption of the canonical Richardson number of 1/4 which is too large, and
the second of which is due to errors in the approximation for Ri in (1.4). These
errors arise mostly because it is difficult to determine the actual minimum Richardson
number within a wave based on the bulk wave parameters because of the nonlinear
behaviour of the shear and stratification profiles and simply because it is always
not clear how to define the actual thickness of the pycnocline, as demonstrated by
the profiles depicted in figure 15. In what follows, we refer to the approximation in
(1.4) as method BG which, when compared to the minimum Richardson number,
Rini, in the waves in the present study is an overestimate. However, method BG can
be adjusted by a constant to yield method BGC such that Riggc =y.Ripg, Where
y.=0.62 is obtained through a least squares linear fit between the values of Riggc
and Riy, for the non-breaking simulations (cases 4FSS, 8F, 16F). The results are
depicted in figure 16, which shows that the approximation Ripgc closely follows
the values of Riyy,. When billows form, however, method BGC underestimates the
minimum Richardson number for the breaking cases because the computed solution
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FiGURE 16. Comparison of the estimate for the minimum Richardson number based on the
corrected value of Bogucki & Garrett (1993), Rigge, with the minimum value computed in
the present simulations, Rinmi,. The open circles are stable waves, while the closed circles
are unstable waves, and the filled squares are unstable waves with billows that degrade the
accuracy of Riggc. The shaded region corresponds to Ri. =0.1+0.01. Note that axes maxima
are given by the canonical Richardson number of 1/4.

contains billows that have formed and lead to interface thickening and a reduction
in the vertical shear which causes Riy, to increase. The severest cases in figure 16
(indicated by the squares in the figure for cases 1F and 2F) contain strong billows
which effectively inhibit the minimum Richardson number. This critical value can be
estimated by taking the average minimum Richardson number for all breaking cases
to be Ri.=0.1 4+ 0.01, which is indicated by the shaded region in figure 16 and is
within the ranges predicted in other studies, i.e. Ri. =0.075 4+ 0.035 (Troy & Koseff
2005) and Ri.=0.092 +0.016 (Fructus et al. 2009).

Based on the bulk parameters, the simulation results indicate that a sufficient
criterion for instability in internal solitary-like waves is given by

0.62Rigc = Rigge <0.1+0.01. (5.12)

This can be interpreted either as a modified threshold for the approximations of
Bogucki & Garrett (1993), such that Rigg <0.16 +0.02, or as a modification of the
estimate Ripg to obtain Riggc given a critical Richardson number of Ri. =0.1+0.01.
Modification of Ripg can be interpreted as approximating the Richardson number
using a modified interface thickness §’ =0.6238y, which represents a more accurate
estimate of the vertical gradients in the velocity and density fields. From figure 15 it
is clear that the maximum vertical derivatives are greater than simple estimates based
on p, = Ap/dy and u, = AU/S,. Insight into the effects of the vertical profiles on the
estimate of Ri can be obtained through analysis of idealized profiles of p(z) and u(z)
of the form

A
p(z) = po— Tptanh (m,2), (5.13)

u(z) = A—zUtanh(mMz), (5.14)
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where
2tanh™!
o = mnsi(m’ (5.15)
P
-1
u = w, (5.16)

and where 8, and §, are the effective thicknesses of the pycnocline and shear layer,
respectively. These profiles imply

p(z=+8,/2) — p(z = —=3,/2) = —BAp, (5.17)
u(z =+6,/2) — p(z = —8,/2) = BAU, (5.18)
so that the vertical derivatives at z =0 are given by
ap 1
= = A
az 2mp p?
ou 1 AU
T
8Z 2 u )
and the Richardson number at z=0 is given by
1 1) )
Ri=——— () 80 (5.19)
tanh™ (B) \8,/ AU

which differs from the approximation for Rig by the constant §2/(88, tanh™'(8)). If
8, = 8, =8y, then the approximation for Ripg reverts to Riggc if an effective interface
thickness of &y/tanh™'(8) is used with B=0.925, since 1/tanh'(0.925)=0.62.
Although the velocity and density profiles in solitary-like interfacial gravity waves are
given only approximately by hyperbolic tangent distributions, this analysis highlights
how the approximation Rizs can be improved through derivation of a constant that
requires assumptions about the velocity and density fields beyond linear distributions
in the vertical coordinate.

With improved estimates for Ri and a sufficient condition for instability that
requires Ri <0.1, the critical amplitude for instability as a function of the non-
dimensional interface thickness §y/H; is presented in figure 17. Method BG is used
to predict the critical steepness by assuming the canonical value of Ri=1/4, as
was done by Bogucki & Garrett (1993), while method BGC is used to predict
the critical amplitude using the critical Richardson number of 0.1 obtained in
the present paper (5.12). The relationship derived by Troy & Koseff (2005),
(oo /Hy)?> =80/H1/(5.3Ri.kHy), with Ri.=0.075, is also included for comparison. The
results indicate that (5.12) (method BGC with Ri. =0.1) is the most reliable predictor
of the critical amplitude leading to instability for the parameter space employed in this
paper. Use of method BG along with the canonical value for the critical Richardson
number would imply that cases 8F and 4FSS should be unstable, but it is evident that
Ri=1/4 is not a sufficient condition for instability, since these cases do not exhibit
billows of the Kelvin—-Helmholtz type.

In an effort to limit the parameter space employed in this study, we ignored the
effects of varying the depths of the upper and lower layers, H; and H,, or simply the
parameter H;/H,, by keeping H;/H, =0.25 fixed. The effects of H;/H, are depicted in
figure 18, which uses the BGC estimate for Ri and shows contours of Ri = Ri,=0.1
in the o/ Hi—H;/H, plane for different values of §y/H;. The figure enables evaluation
of the critical amplitude for breaking as the point in which the Ri = Ri. contours
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FiGURre 17. Non-dimensional critical breaking amplitude as computed using three different
approximations: method BG with Ri. =1/4 (dashed line), method BGC with Ri, =0.1 (solid
line) and the approximation of Troy & Koseff (2005) with Ri.=0.075 (dash-dotted line).
Simulation results that exhibit breaking are represented by the filled circles, while those that
do not are represented by the open circles.
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FiGure 18. Contours of Ri = Ri. in the o/ H;—H;/H, plane for different values of §y/H;. The
dotted line depicts the case for the present study, Hy/H, =0.25. The dashed line is the solitary
wave amplitude limit for a two-layer stratification, where the maximum amplitude is H,. Waves
are stable to the left of the contours, as indicated by the arrow.

intersect a line of constant H;/H,. For example, the critical breaking amplitudes for
each 8o/ H; in the present study are indicated by the points at which the Ri = Ri.
contours intersect the dashed line representing H;/H, =0.25. For fixed 8,/H; and
H,/H,, increasing the amplitude can lead to instability because of a reduction in the
Richardson number. At the same time, for fixed 8¢/ H; and «/H;, increasing the depth
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of the upper layer thickness H; relative to the lower layer thickness H, can also lead
to instability. The sensitivity of the breaking amplitude to the layer depths is weak for
small 8o/ H;, while it is stronger for larger §y/H;. This behaviour is indicated by the
slope of the Ri = Ri. contours, which decreases in absolute value as 8,/ H; increases,
particularly for small values of H;/H,. Future studies could verify the sensitivity of
the instability to changes in H;/H,, and we suspect this will not change the critical
value of Ri.=0.1 given that a similar value has been observed in other independent
studies (Fringer & Street 2003; Troy & Koseff 2005; Fructus et al. 2009).

6. Comparison to observations

The qualitative features of the formation of small-scale Kelvin—-Helmholtz billows
as depicted in figure 4 are similar to those in the wave in figure 5 of Moum et al.
(2003), which depicts a solitary wave with undisturbed stratification ahead of it and
instabilities that form at its trough and persist in the wake of the wave. The zoomed-
in view in figure 4 of the current paper depicts what high-resolution backscatter
imagery of field observations would likely reveal, in that, as hypothesized by Moum
et al. (2003), billows of the Kelvin—Helmholtz type form at the wave trough and
lead to enhanced mixing and dissipation along the pycnocline downstream. However,
because the observed stratification is much more complex than the stratification
employed in the present paper, in that it consists of several density steps, it is difficult
to make direct comparisons with our simulations. We hypothesize this to be the
reason why our simulations do not reveal any pronounced billows of the Kelvin—
Helmholtz type as shown in figure 14 of Moum et al. (2003), which reflect a rarely
observed phenomenon (J. Moum 2009, personal communication) that depends on
how a particular solitary wave interacts with the local stratification, which itself may
be a result of the passage of numerous solitary waves.

7. Three-dimensional effects: primary and secondary instabilities

To demonstrate that the two-dimensional approach is valid for investigating
the primary instability mechanism that leads to overturns and breaking, a three-
dimensional simulation was conducted to show that the instabilities are primarily two-
dimensional. For the three-dimensional simulation the initial conditions are identical
to those for case 4C but with an effective resolution of 16384 x 128 x 256 (see case
4C3D in table 1). Without AMR this would result in over 536 million grid cells, but
with AMR the number of cells is reduced by roughly one order of magnitude, and the
calculation is tractable using 1024 processors for three weeks on a parallel machine.
This represents a computational effort of roughly 500000 processor hours or 60
processor years. The three-dimensional discretization yields Ax =0.6m, Ay =0.6m,
Az=0.4m for a 10 km long, 78.25m wide and 100 m deep domain. This resolution,
for a field-scale flow, is unprecedented in numerical simulations of environmental
flows.

Periodic boundary conditions are imposed in the lateral (y) dimension. To trigger
possible three-dimensional instabilities the initial interface is perturbed as follows:

2

Wyt =0) = H—avenp (2 )+t ()

where —0.0058p < r(x, y) <0.0058, is a uniformly-distributed random number. In
figure 19 a sequence of progressively zoomed-in isosurfaces of py coloured by the
lateral velocity is shown, where red is positive and blue is negative. The figure
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FIGURE 19. A three-dimensional simulation for case 4C3D, at r/T = 2.4. The density isosurface
is of the py isopycnal, and the colour indicates lateral velocity (red is positive lateral velocity
and blue negative lateral velocity). In (a), the nearly solitary wave is truncated on the right side,
and the trough is roughly where the instabilities become visible. In (¢), the lateral disturbances
are of the order of the billow diameter (which can be measured in figure 20).

demonstrates that the incipient instability is a two-dimensional instability, followed
by three-dimensional lateral instabilities, much like those found by Fringer & Street
(2003). It is likely that the waves are not susceptible to an incipient three-dimensional
instability, such as that found by Smyth & Peltier (1990), because the initial three-
dimensional instability in that work occurred for low Reynolds numbers (Re < 300),
while in the present simulations Re > 300. The two-dimensional and then the three-
dimensional instability sequence that we observe is in agreement with that of Squire
(1933), in whose work it was shown that for parallel shear flows, two-dimensional
instability growth rates are larger than three-dimensional instability growth rates.
This can be seen by scanning from right to left in figure 19(b).

To further verify that three-dimensional effects do not alter the behaviour of
the incipient two-dimensional instability, figure 20 presents a comparison between the
two-dimensional and three-dimensional simulations at /7 = 1.5. The initial instability
occurs at the same location in both simulations, although the amplitude of the
isopycnal displacements in the two-dimensional simulation is slightly larger. This is
as expected, since three-dimensional lateral instabilities quickly lead to dissipation that
reduces the lateral vorticity magnitude of the overturning billows. This dissipation also
leads to a slightly slower and smaller wave in the three-dimensional case, which causes
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FiGURE 20. Comparison of the py isopycnal for the two-dimensional (black) and
three-dimensional (red) simulations at time /7 = 1.5. The resolution in the x and z directions
for these two simulations is identical (cases 4C and 4C3D).

the two-dimensional wave to slightly lead the three-dimensional wave in the figure.
The slight discrepancy in the wave amplitude (@) between the two is also a source of
a weaker incipient two-dimensional instability for the three-dimensional run. While
this reduces the amplitude of the incipient billows for the three-dimensional run, it
is suspected that most of the reduction in amplitude of the overturning billows that
is evident in the figure is due to dissipation resulting from three-dimensional lateral
instabilities. These dynamics do not affect the incipient instability which is primarily
two-dimensional and independent of the mixing and dissipation, a discussion of which
we leave to a future work on three-dimensional dynamics and energetics.

8. Conclusions

While ubiquitous, shear instabilities in open-ocean internal solitary-like waves are
rarely observed because the size of the associated billows of the Kelvin—Helmholtz
type is beyond the resolution of typical echosounder data. Numerical simulation of
these instabilities is equally difficult because of the resolution required to resolve the
large range of scales involved. We have shown that the problem is tractable with AMR
because of the ability to refine only where high resolution is needed, thereby enabling
simulation that resolves billows that are roughly 5m in diameter that form within
waves that are roughly 500 m long in a domain that is 10 km long. Our simulations
compare well in a qualitative sense with those of Moum et al. (2003), although the
simulations do not exhibit the observed large-scale billows that are of the order of the
amplitude of the waves upon which they form. These large-scale billows are probably
rare, and most billows that form at the interface in solitary-like waves behave much
like those in our simulations. However, because the open-ocean environment in which
solitary-like waves propagate is far from quiescent, billow formation in solitary-like
waves in natural waters probably occurs under less restrictive criteria than we have
derived in this paper, since the solitary-like waves in our simulations propagate into
a quiescent fluid. Therefore, we note that although the length scales in this paper
are representative of real open-ocean solitary-like waves, the stability criteria are
representative of idealized settings.

Using the AMR technique, two-dimensional simulations were conducted over a
parameter space that held the depth of the pycnocline constant and focused on the
influence of the interface thickness and wave amplitude on the development of a shear
instability. The interface thickness affected the amplitude of the waves that we studied
because of the formation of shear instabilities and associated dissipation as the leading
solitary-like waves emerged from the initial Gaussian of depression. As a result, waves
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with thinner interfaces emerged from the wave trains with smaller amplitudes, and
the subsequent amplitude decay was stronger in the presence of billows. Nevertheless,
the waves that emerged formed a set of waves in which instability could be analysed
as a function of wave amplitude and interface thickness. It was shown that vertical
strain at the interface was always positive, leading to thickening of the interface at the
wave trough that, coupled with an increase in the vertical shear, led to a pronounced
drop in the Richardson number that was always a minimum at the wave troughs. All
of the minimum Richardson number values in the nine waves that were studied were
below the canonical value of 0.25, the largest of which was 0.213 (case 16F) and the
smallest of which was 0.085 (case 4F). However, three of the cases did not lead to
the formation of billows. For waves that exhibited overturning, billows formed in the
wave trough, and a three-dimensional simulation showed that the initial instability
is two-dimensional, while subsequent billow breakdown is three-dimensional. Waves
with a particular interface thickness that did not exhibit overturning could be made to
exhibit billows by increasing the wave amplitude. In particular, case 8F was stable, but
instability occurred when its amplitude was 5 % larger, as in case 8FL. Likewise, case
4FS was unstable, but decreasing its amplitude by 17 % led to stability, as exhibited
by case 4FSS. One could imagine this situation in the field in which solitary-like wave
amplitude changes may result from the presence of topography or lateral variability
in the stratification.

Although all waves did not exhibit billows of the Kelvin—Helmholtz type, all waves
did exhibit oscillations of isopycnals at the wave trough. Because of the presence of
destabilizing shear in the waves, growth rates as computed by the Taylor—-Goldstein
equation along different locations upstream of the wave trough where Ri < 1/4 were
always positive. However, unless the instabilities had time to grow and manifest
themselves as billows, they were simply advected past the wave trough (in a frame
moving with the waves) and appeared as perturbations in the isopycnal displacements.
It was shown that the amplitude of these oscillations compared favourably with those
predicted with an analysis of the instabilities with the Taylor—Goldstein equation.
Using the Taylor—Goldstein equation with vertical velocity and density profiles at
different locations upstream of the wave troughs, the distribution of growth rates
within the waves could be determined. The distance from the wave trough to the
point upstream of the trough at which the growth rate first became positive (which
occurs when Ri < 1/4) was defined by L,, and we found that waves that exhibited
instability all had L, /L > 0.86, where L is the wave half-width. This value agrees
with that of Fructus et al. (2009), who noted that L, /L, or the non-dimensional
width of the ‘pocket’ of instability, was a more precise indicator of instability than the
minimum Richardson number. Calculating an average growth rate of the instabilities
within the pocket of instability showed that instability also occurred when &;7T,, > 5,
where o; is the average growth rate and T, is the time in which fluid parcels are
subjected to Ri < 1/4. This condition agrees with that of Troy & Koseff (2005) and
implies that the time scale of the instability must be less than 1.25 times the time
scale in which it is subjected to destabilizing shear in order for billows to form.

While the criteria for instability based on L, /L or o,;T, are sufficient, a more
attractive criterion is based on the minimum Richardson number within the wave
because instability can be assessed via a pointwise value of Ri rather than via
quantities that require information about the distribution of Ri within the wave.
Our simulations show that a sufficient criterion for instability requires the minimum
Richardson number within a wave to fall below Ri. =0.140.01 and is consistent with
the findings in other studies. After employing a correction derived from use of an



Shear instabilites in interfacial waves 93

effective interface thickness, the approximation of Bogucki & Garrett (1993) provides
for a convenient way to determine stability properties of solitary-like interfacial
gravity waves based on bulk wave parameters. The approximation can then be used
to assess the critical amplitude for instability given H;/H, and 8,/ H;. Although our
study assumed H;/H, constant, we hypothesize that because the critical Richardson
number required for instability falls within the range of other studies, one of which
employed infinitely deep fluids (Troy & Koseff 2005) and the other of which studied a
wide range of H,/H, (Fructus et al. 2009), the minimum Richardson number required
for instability should not be a strong function of H;/H,. Whether or not a universal
critical Richardson number exists that forms a sufficient criteria for instability in all
unsteady stratified shear flows, of course, remains to be seen.
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