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Reducing spin-up time for simulations of turbulent channel flow
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Spin-up of turbulent channel flow forced with a constant mean pressure gradient is prolonged because
the flow accelerates due to an imbalance between the driving pressure gradient and total bottom
stress. To this end, a method ensuring a time invariant volume-averaged streamwise velocity during
spin-up is presented and compared to simulations forced with a mean pressure gradient for both
linear and logarithmic initial velocity profiles. The comparisons are made for open-channel flow
with a friction Reynolds number Re, of 500. Additional simulations with Re, ranging from 1 to 400
are also run to confirm validity of the method for a range of Reynolds numbers. While the method
eliminates spin-up time related to approaching the target volume-averaged velocity, spin-up time is still
required for the flow to transition to turbulence and reach statistical equilibrium. Therefore, the time
evolution of turbulence in response to different initial velocity profiles and random perturbations is
investigated. Simulations initialized with linear velocity profiles trigger turbulence and reach statistical
equilibrium sooner than those initialized with logarithmic profiles given the same initial perturbations,
a manifestation of the increased shear created by linear profiles. The results suggest that, combined
with appropriate initial conditions, ensuring a time invariant volume-averaged streamwise velocity
can reduce the computational time associated with spin-up of turbulent open-channel flows by at least
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a factor of five. Published by AIP Publishing. https://doi.org/10.1063/1.4993489

l. INTRODUCTION

The geometric simplicity and ubiquitous nature of tur-
bulent channel flow have inspired numerical investigations
for decades. By applying large-eddy simulation (LES), Dear-
dorff! and Schumann® were among the first to numerically
simulate wall-bounded turbulence. These pioneering investi-
gations did not resolve the viscous wall region, a challenge
overcome by Moin and Kim?® and later with higher fidelity
by Kim er al.,* the latter applying direct numerical sim-
ulation (DNS). Since then, computing advancements have
enabled resolved turbulent channel flow simulations with ever
increasing Reynolds numbers,’"' domain complexities,!!~!3
and stratification effects.!4-16

Despite tremendous improvements in computing abilities,
the primary challenge of simulating turbulent channel flow is
the required computational expense. Millions of central pro-
cessing unit (CPU) hours are needed to simulate even modest
Reynolds number flows. For example, 6 x 10° CPU hours were
used by Hoyas and Jiménez’ to simulate channel flow with a
friction Reynolds number of 2003. Computational resources
are expended not only in data collection for flow analyses but
also during spin-up when flow evolves from initial conditions
to statistical equilibrium.

Spin-up time is often minimized by initializing simu-
lations with a turbulent dataset expected to be statistically
similar to the target flow conditions. Literature review reveals
progression of simulations in which final conditions of one
study become the initial conditions of the next. For example,
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the initial conditions used by Kim et al.* were obtained from
Moin and Kim,® who initialized their simulations from a
dataset passed on by Kim and Moin.!” Even with a starting
dataset, a series of grid refinement simulations is sometimes
required.'® Furthermore, accurate interpolation of an initial
three-dimensional turbulent flow field can be challenging,
particularly in complex geometries.

If a dataset for initialization is unavailable, channel flow
simulations are typically initialized with a parabolic Poiseuille
or log-law mean velocity profile plus random perturbations
to trigger turbulence. Simulations are then time advanced by
driving the flow with a mean pressure gradient until the flow
becomes statistically steady. The assigned driving pressure
gradient can be constant'®!? or time dependent®>2° if a con-
stant bulk, or volume-averaged, velocity () is desired. Forcing
simulations with a constant pressure gradient is numerically
simple to implement as the driving pressure gradient required
for a given Reynolds number is known a priori for statistically
steady flow. However, during spin-up, the pressure gradient
typically is not balanced by the total bottom stress. This imbal-
ance leads to flow acceleration beyond the target mean velocity,
prolonging the time to reach statistical equilibrium. As will be
shown in Sec. III A, the overshoot is avoided if the driving
pressure force is exactly balanced by the bottom stress.

Since turbulent channel flow is uniquely characterized by
the volume-averaged velocity, the channel height (H), and the
kinematic viscosity (v), the Buckingham Pi theorem implies
that only one nondimensional parameter characterizes the
flow; in this case, the bulk Reynolds number Re, = uH/v.
Alternatively, if instead we use the friction velocity (i), then
the problem is characterized by the friction Reynolds number
Re; = u.H/v. We note that only one of u. or u can be specified
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since u, and u are not independent. Regardless, if u is held
constant during a simulation, then the problem is completely
specified by initializing the flow with the desired volume-
averaged velocity. Holding % constant, however, requires
dynamically adjusting the driving pressure gradient as sim-
ulations evolve.

Numerous studies have implemented methods for main-
taining a constant volume-averaged velocity. However, deriva-
tions of the methods and implementation strategies are
commonly omitted from the literature.>~>° Moreover, many
methods employ ad hoc coefficients,”!>? do not exactly guar-
antee a constant volume-averaged velocity,”>>? or unnecessar-
ily require a depth-dependent correction to the velocity field>*
that is only applicable for simple rectangular domains. To
the best of our knowledge, the reduction in time associated
with constant volume-averaged velocity approaches also has
not been directly compared to the constant pressure gradient
method in the literature.

In this paper, we derive (Sec. II B) and outline the imple-
mentation (Sec. II C) of a method that exactly enforces a con-
stant volume-averaged velocity or flow rate as bottom stresses
evolve from a laminar to turbulent state for turbulent chan-
nel or open-channel flow. We also explicitly show that the
method significantly reduces the computational time required
to achieve statistically steady turbulence (Sec. III A). We
present the method as applied to a finite-volume framework
in a curvilinear coordinate system, following Zang et al.,” in
a simple rectangular domain. The method can, however, be
implemented within spectral solvers and can be applied to any
domain shape (for example, with open-channel flow over bed
forms). The method also does not require cumbersome interpo-
lation of a flow field that was precomputed on a different grid.
In Sec. III D, we investigate differences between simulations
initialized with linear and log-law mean velocity profiles with
varying magnitudes of the initial perturbations to assess the
effects of initial conditions on the time required to transition
to turbulent flow.

Il. NUMERICAL IMPLEMENTATION
A. Terminology and notation

In the derivation and analysis that follows, we adopt the
notation of Chou and Fringer.!” For an arbitrary variable ¢",
we represent discrete volume-averaging with an overbar (5"),
planform averaging with a tilde (¢"), and time-averaging with
angle brackets ({¢")), each defined as

¢ = éz ; ;wmmz, (1)

F=r> oy, @)
and J
1 < .
(@' =— ¢, 3)
! Nj:r;V+1

where V is the domain volume, A is the planform area of
the domain, and N is the number of time steps over which
time averaging is performed. Here, x, y, and z are taken as
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the streamwise, spanwise, and vertical directions, respectively,
and the superscripts indicate the time step. Velocity fluctua-
tions are defined as deviations from the planform average with
u! = u; — u;. Finally, a superscript plus (*) implies nondimen-
sionalization of length by the viscous length scale v/u, and
velocity by the friction velocity u..

In contrast to traditional channel flow simulations in
which the top and bottom boundaries employ no-slip condi-
tions (u = v = w = 0), we implement open-channel flow simu-
lations with a free-slip top boundary condition (0,u = d,v =0
and w = 0). Such a boundary condition is employed because
we focus on environmental flow problems which represent
the free surface with a free-slip, rigid-lid at the top boundary.
Although our focus is on open-channel flows, the method can
be applied to traditional channel flow simulations without any
modifications other than changing the boundary conditions.

B. Numerical method

We begin by writing the streamwise momentum (u-
velocity component) update equation as a two-step method
with the addition of a forcing function, S, that varies in time
but is constant in space, Viz.,

7 =u" + AtR™?, (4)
Wl = T+ ALSTE 5)

The splitting of Egs. (4) and (5) is performed to illustrate that
the method is implemented in two primary steps and as a con-
ceptual tool in the method derivation. However it is not related
to pressure projection methods commonly used to simulate
incompressible flows because the added forcing function is
spatially constant and so does not alter the divergence. On the
right-hand side of Eq. (4), R™2 contains the discrete forms
of the advection, diffusion, and pressure gradient terms. Time
and volume averaging equations (4) and (5) give

G = @ + MR ), ©)
@Yy = @y + AKS™ 2y, %

To ensure no net acceleration of the flow, (@"™') = ug is
imposed, where ug is the target volume-averaged velocity.
Rearranging Eq. (7) then gives the evolution equation for

(S"1yy as

(" = 1 (10— @w) ®)

The update for «"*!' [Eq. (5)] requires §™3 and not (S"*2)y.
Therefore, S"™*3 is extracted from the sum in Eq. (8), giving
N -1 1 1
Sy = (Mg + — ST 9
($"2)n N (S"IN-1 N 9

When combined with Eq. (8), S5 s given by

1 N =
§" = (w0 = @x) =V = 1" -1 (10)

During the first few time steps when n < N, time averages
must be taken over the previous n, rather than N, time steps.
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Thus, §"*1 is defined by the piecewise function
R (o - i) = (N = 1S m =N,

Srl+§ —
A (”0 - <ﬁ>n) —(n—=1){8"),-1  otherwise.

(1)

Equation (11) can be simplified if the time-averaging window
is relaxed by letting N = 1. Under this simplification,
sh= L (uo ) . (12)
At

The effect of various time-averaging windows on spin-up time
was tested and had little effect on the method efficiency. We
therefore choose N = 1 in what follows. We note that domains
with fewer grid points or more complicated geometries (bed
forms or steps) may benefit from extending the time-averaging
window (i.e., N > 1) if the physical setup of the problem leads
to a domain-averaged velocity that varies significantly over
time scales that are long relative to the flow-through period.

The method is applied during model spin-up while tur-
bulence evolves. As shown in the Appendix, we assume that
the turbulence is developed when the total stress profile is
approximately linear and

2 ((P) - (&)
P + (&)

where (P) and (€) are the time- and volume-averaged produc-
tion and dissipation, respectively. We refer to criterion (13) as
the total kinetic energy (TKE) balance criterion, and note that,
although the volume-integrated production and dissipation are
in balance, they are locally balanced only in the equilibrium
log layer. The time averaging is taken over one turnover period
Te = H/u., where u,, = /7g/H is the friction velocity, and
7p is the planform-averaged bottom stress. Upon reaching sta-
tistical equilibrium based on criterion (13) with r; = 0.02, we
assume

< 1y, (13)

§™1 = Sp = -5, 14

=g (14)
where St is the forcing required for a given friction Reynolds
number once turbulence is statistically steady.

C. Overall solution procedure

The overall solution procedure is as follows:

1. Solve for u using the Navier-Stokes code of choice with
Eq. (4). u will be the unforced update of u";

2. compute 7 and store for running average calculation in
step 3;
compute (ﬁ)N;
compute §™3 from Eq. (11) and store for running average
calculation in step 6;
compute #"*! from Eq. (5);
compute (S”*% »n—1 for use in subsequent time step;
compute <1_3> and (€) (see the Appendix);
if the TKE balance criterion (13) is met, let Sy = ST,
otherwise repeat steps 1 through 7.

W

® N oW
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D. Computational details

We implement the method in the incompressible flow
solver originally developed by Zang et al.”> and later paral-
lelized with the Message Passing Interface (MPI) by Cui.?
The governing equations are discretized using a finite-volume
method on a nonstaggered grid in general curvilinear coordi-
nates. All spatial derivatives are discretized using second-order
central differencing with the exception of advection, where
a variation of QUICK (quadratic upstream interpolation for
convective kinematics) is employed.?’ Time advancement of
diagonal viscous terms is performed with the second-order
accurate Crank-Nicolson method, whereas all remaining terms
are advanced in time with the second-order accurate Adams-
Bashforth method. The fractional step projection method?®
is used to enforce a divergence-free velocity field. Because
the turbulence in our simulations is sufficiently resolved via
the DNS approach, no subgrid-scale turbulence model is
applied.

The computational domain is rectangular with stream-
wise, spanwise, and vertical dimensions of 7.5H x3.12H X H,
discretized with 760x320x 128 cells. Grid spacing is constant
in the horizontal, with Ax* = Ay* = 4.88. In the vertical, 5%
grid stretching is applied, with a minimum Az* at the bottom
wall of 0.60. Grid stretching ceases at a height in which the
vertical grid resolution is equal to the horizontal grid resolu-
tion. The momentum equations are evolved with a time step
size that ensures a maximum Courant number of 0.4. Flow
boundary conditions are periodic in the horizontal, free-slip
at the top boundary (0,u = d,v = 0 and w = 0), and no-
slip at the bottom boundary (u = v = w = 0). Following Moin
and Kim,? two-point correlation functions confirm that the
turbulent statistics are independent of the periodic boundary
conditions. Simulations are run at the Army Research Labora-
tory DoD Supercomputing Resource Center (ARL DSRC) on
Excalibur (Cray XC40) using 480 processors per simulation.
On average, 1600 processor hours are required to simulate one
turnover period.

E. Test cases

A total of 33 simulations are run, all initialized withu = u
approximated by the volume average of a log-law velocity
profile (ujog = u./x In(z/zp)), which gives

mzﬁbﬂﬁyﬂ—q, (15)

K 20 H

where « is the von Karman constant taken as 0.41, and zg
=v/(9u..) is the smooth-wall bottom roughness. Velocity fields
are initialized with either a log law (with a viscous sublayer
from z* = 0 to 11.6) or linear mean profile, u = 2upz/H,
plus a random field uniformly distributed over [—aug, auypl,
where « is varied to test the effect of the initial perturbation
magnitude. We note that it is difficult to determine u( exactly
for a given Re, because of the existence of the wake and the
transition zone between the viscous sublayer and the log law.
Nevertheless, the approximate value is sufficiently close to
the target, and as we will show, the true volume-averaged
velocity is achieved soon after the TKE balance criterion
is met.
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TABLE I. Summary of runs performed.

Run Re; Initial profile «@  Forcing

RO 1 Linear 1.0 Eq.(11)

R1 500 Log law 1.0 Eq. (11) with the TKE criterion
R2 500 Log law 1.0 Constant S

R3a 500 Linear 1.0 Eq. (11) with the TKE criterion
R3b 400 Linear 1.0 Eq. (11) with the TKE criterion
R3c 300 Linear 1.0 Eq. (11) with the TKE criterion
R3d 200 Linear 1.0 Eq. (11) with the TKE criterion
R4a 500 Linear 1.0 Constant S7

R4b 400 Linear 1.0 Constant S7

R4c 300 Linear 1.0 Constant S7

R4d 200 Linear 1.0 Constant Sp

R5-R15 500 Log law 0-1 Eq. (11) without the TKE criterion
R16-R26 500 Linear 0-1 Eq. (11) without the TKE criterion

Table I summarizes the initial conditions for all simulation
runs. Run RO (Re; = 1) is simulated to show that the method
produces the laminar, open-channel, Poiseuille flow solution
when implemented for low Reynolds number flows. Runs R1,
R2, R3a, and R4a (Re; = 500) are compared in Sec. III A to
illustrate differences between spin-up times using the method
relative to equivalent simulations driven by a constant forcing
(S"*112 = §1). Applying §™*2 = Sy is the same as forcing the
flow with a constant pressure gradient. Runs R1 and R2 are
computed for a total simulation time of 157 from identical
initial conditions (log law plus random perturbations with «
= 1), but the method is implemented within R1, whereas R2
is driven by a constant forcing (S"*!/? = 7). The same is true
for runs R3a and R4a, but initialization consists of a linear
rather than a log-law mean velocity profile. In addition to runs
R3a and R4a, runs R3b through R3d and runs R4b through
R4d are simulated to confirm the method’s validity for a range
of Reynolds numbers (Re, varied from 200 to 500). Runs RS
through R26 are simulated for a total time of 107, to investi-
gate the effects of initial conditions on flow development. In
these runs, a varies from O to 1 in increments of 0.1, and the
resulting perturbations are added to both log-law and linear
initial velocity profiles. The purpose of runs RS through R26
is to investigate flow development and the evolution of s S
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Accordingly, rather than imposing $”*!/2 = §7 upon achieving
the TKIE balance criterion, these runs are forced with values
of §™*2 obtained from Eq. (11) throughout the simulations.

lll. RESULTS AND DISCUSSION
A. Flow evolution

Methods for identifying statistical equilibrium of turbu-
lent channel flow vary in the literature. Equilibrium is often
identified by a time invariant mean velocity profile and a linear
total stress profile.>* Other definitions include the identifi-
cation of a “quasi-periodic” total kinetic energy (TKE)* or
time-invariant material derivatives of the Reynolds stresses.”’
Regardless of the definition of equilibrium, ¥ must be con-
stant in time when the flow is statistically steady. The time
evolution of u# during model spin-up is shown in Fig. 1(a) for
runs R1, R2, R3a, and R4a. Because the method is imple-
mented in runs R1 and R3a, the volume-averaged velocity
is constant until the TKE balance criterion is met and $"*!/2
=Srisimposed. This switch occurs att =10.4T, forrunR1 and
t = 4.6T, for run R3a, as indicated in Fig. 1(a) by the black
circle and cross, respectively. Once $"*'? = Sy is imposed,
the flow slightly accelerates because the target value of ug is
slightly under predicted owing to the aforementioned lack of
the viscous sublayer or wake in Eq. (15). The mean velocity
and total stress profiles are steady by ¢t = 13.5T¢ and ¢ = 107
for runs R1 and R3a, respectively.

The time evolution of u is different for simulations driven
with a constant $"*'2 = §; (runs R2 and R4a). In these
cases, the flow accelerates during the early stage of spin-up
[Fig. 1(a)]. This acceleration is explained by examining the
forced, volume-averaged streamwise momentum equation for
periodic open-channel flow with a free-slip top boundary, viz.,

u_g T _g

ot poH
where pg is the fluid density, and §' = Sy — 73/(Hpg). If
S’ > 0, the driving force exceeds the bottom stress and the
flow accelerates. As shown in Figs. 1(a) and 1(b), positive
values of §” correspond to periods of accelerating flow, and
negative values correspond to decelerating flow for runs R2
and R4a. Because there is no imbalance between the bottom

(16)

T
L run R1 |
1.8 === = run R2 ———~
12 F = = ==« TuUn R3a - 5\\\ |
13 R I PPPRPTO run R4a PR - T e~ —
S _ -
11+ - 8
RS A T PO
1 L TRV R i ] )
(a) FIG. 1. (a) Time evolution of the volume-averaged
0.9 ‘ ‘ ‘ : : : : streamwise velocity for runs R1, R2, R3a, and R4a, and
T N ‘ ‘ ‘ | | | [ (b) the bottom stress imbalance for runs R2 and R4a. The
sk, —m— -~ 7 - — — run R2 points in time at which the TKE balance criterion was
| N A EETTIRT run R4a met are indicated by the cross for run R1 (r = 10.4T¢)
WS 0 ( \\ ............... S . and circle for R3a (¢ = 4.6T¢).
05 hom = 8
-1 (b) Il Il Il Il Il Il
0 2 4 6 10 12 14 16
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25 LI | T L L L | T L L L B | T "

x  Moser et al. (1999) -
20 A analytical laminar solution —
run RO -

15 F run R1 4
+ = = run R2 FIG. 2. Planform-averaged streamwise velocity profile
S ol |7 R3a ] runs RO, R1, R2, R3a, and R4a. Data from the work of
"""" Moser et al.’ and the analytical solution to laminar, open-

channel, Poiseuille flow are included for comparison.

stress and the forcing when the method is employed, S' = 0
and there is no acceleration of the volume-averaged velocity
for runs R1 and R3a.

Sharp drops in " in Fig. 1(b) indicate the onset of tur-
bulence. Once transition to turbulence occurs, high momen-
tum fluid mixes toward the lower wall, increasing veloc-
ity gradients and the associated bottom shear stress or flow
resistance. As this occurs, S decreases, eventually becom-
ing negative, and the disproportionately high bottom stress
decelerates the flow. The drop in " occurs sooner for run
R4a than it does for run R2, indicating the initial linear
velocity profile transitions to turbulence faster than it does
for the initial log-law profile. Because of the delayed transi-
tion, run R2 accelerates for a longer period before turbulence
is triggered, leading to a larger velocity overshoot than run
R4a.

Planform- and time-averaged streamwise velocity profiles
(u* = (uy/u.) for runs RO through R4a are compared to results
from the work of Moser et al.’ (Re; = 590) in Fig. 2. RO (Re;
= 1) was evolved from a linear velocity profile for one viscous
time scale (H?/v) to confirm that the method produces the lami-
nar, open-channel, Poiseuille flow solution, —Bxp(%z2 —Hz)/u.
Here, u is the dynamic viscosity. In Fig. 2, z was multiplied
by 100 for run RO for visualization purposes. The resulting
streamwise velocity profile is virtually indistinguishable from
the analytical solution. For runs R1, R2, R3a, and R4a, time
averages were taken over the last two turnover periods (27).
Runs R1 and R2 overlap and closely match the work of Moser
et al. except near the top boundary. We apply a free-slip bound-
ary condition at the top, whereas Moser et al. applied no-slip

boundary conditions to the top and bottom boundaries in a
domain with a channel height that is twice the channel height
in our simulations. We only compare our results to those over
half of the channel in the work of Moser et al.

The velocity overshoot for run R2 (constant forcing with
log-law initialization) is evident in Fig. 2. Run R4a (constant
forcing with linear initialization) also overshoots but to a lesser
extent. As indicated in Fig. 1, both flows are decelerating
and will eventually reach the same profiles as runs R1 and
R3a. However, the deceleration is slow. Based on the decay
indicated in Fig. 1(a), we expect run R2 to achieve the cor-
rect velocity profile after roughly = 657, and run R4a after
roughly ¢ = 417. This implies that with constant forcing run
R2 takes 4.8 times longer than run R1, and run R4a takes
4.1 times longer than run R3a. Since the simulations require
roughly 1600 CPU hours for each turnover period, this trans-
lates into 82 400 more CPU hours for run R2 over run R1 and
49 600 more CPU hours for run R4a over run R3a.

The statistically steady state of runs R1 and R3a is con-
firmed by overlapping Reynolds stress profiles. Root-mean-

square velocity fluctuations +/u,u;, (Greek indices imply
no summation), and the vertical Reynolds stress component,
—uw'w’, are shown in Fig. 3. The profiles for run R3a overlap
those for run R1 in all four panels. Owing to the velocity over-
shoot, the magnitude of all Reynolds stress components for
run R2 is larger than those for the equilibrium profiles given
by runs R1 and R3a. The same is true of run R4a, with the

exception of Vo’v’. Runs R2 and R4a have not converged to a
statistically steady state.

500 ’(a) (C) run R1
DO = = run R2
\ run R3a
400 | \ -------- run Rda
300 FIG. 3. Profiles of root-mean-square
+ velocity fluctuations in the (a) stream-
® 9 wise, (b) spanwise, and (c) vertical
200 C\ directions, and (d) the vertical Reynolds
\ x stress component. Runs R1 and R3a
\ overlap in all plots.
100 | \ -\
! -\
- -
0 ) : . . \
0 20 0.5 0 0.5 1
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T T
1.4 | | == = run Rda (Re; = 500) — -
run R4b (Re, = 400) —_—
run Rdc (Re, = 300) - FIG. 4. Time evolution of the volume-averaged stream-
i=)$ 1.2 | | — runR4d (Re; =200) - - 4 wise velocity for runs R3a through R3d and runs R4a
- through R4d. Results are plotted for each case up to the
—
_________ point when the TKE balance criterion is met. The color
1 coding for runs R3a through R3d is the same as for R4a
| | | | | | | | | through R4d, but R3 simulations correspond to solid lines.
0 1 2 3 4 5 6 7 8 9 10
t

Before the onset of turbulence, the flow behaves as laminar
Poiseuille flow. The larger the ratio between the laminar to
turbulent u for a given pressure gradient, the faster the flow
accelerates. This ratio depends on Re, and is given by

1 1 ] -1 ReT
9Re, In(Re;)
(17)

(]aminar _ KRer [1n(9Re )+
— - T
(Wrurbulent 3

Therefore, increasing Re, causes a larger initial acceleration.
This dependency on Re; is evident in Fig. 4, where the time
evolution of u is shown for runs R3a through R3d (Re,; 200
though 500 forced with the method) and runs R4a through R4d
(Re; 200 through 500 with constant forcing). The color coding
for the R3 runs is the same as the R4 runs, but the R3 runs are
represented by solid lines. All simulations presented in Fig. 4
are initialized with a linear velocity profile plus random per-
turbations with @ = 1. u is plotted for each simulation pair, for
example, R3a and R4a, up until the point in time at which the
TKE balance criterion is met for the simulation forced with
the method (R3a for the example pair). The initial slopes of
the R4 runs are similar, yet time is normalized by T, which
implies that higher Re, simulations accelerate faster than lower
Re; simulations (T is smaller for larger Re,). The inflection
points for lower Re, runs occur later in time because the onset
of turbulence is delayed with decreasing Re, for a given ini-
tial velocity profile and perturbation magnitude. The delay is
caused by a reduction in the mean shear stress as will be dis-
cussed in Sec. III D. The large overshoot for run R4d illustrates
that enforcing no net acceleration of the flow is more important
when the onset of turbulence is delayed. Since run R4d does
not transition to turbulence, the flow continuously accelerates
throughout the simulation.

B. Connection between forcing function
and bottom stress

I L L
Because S"*2 ensures a time-invariant i over N steps, (S)y
is expected to exactly balance the discrete, time- and planform-

averaged bottom shear stress, (ﬁé’”% »n. This is shown by first
combining Egs. (6) and (7) to give
—ntl
@y = @y + AR )y + Ay (18)

Recognizing the method ensures @y = @ = uo: Eq.

(18) reduces to

(5™ = —®" )y, (19)

1. . . L
where R"*2 in Cartesian coordinates is given by

Cf) C() n+% l a n+%
R™I = — (—u’?u" vl ) - %ﬁ ) (20)

where p”*% is the pressure, j = 1, 2, 3, and the Einstein
summation convention is assumed. Although the method is
implemented in curvilinear coordinates, we present the deriva-
tion in Cartesian coordinates for simplicity. Taking the discrete
volume average of Eq. (20) over a rectangular domain gives

1

EVH—E _ l R,H_l
1

1 apn+%

1
n.n 8” n+2
po 0x

i —u.u +v—
0)(?}' i ax]'

—

x oy
1
lzz( non 6u”+2)
- = —w"u" +v s 21
Vx S 0z B

where w = u3, and the T and B subscripts correspond to the
top and bottom boundaries, respectively. We move from the
volume integration to the surface integration in Eq. (21) by
applying the discrete form of Gauss’ theorem. Terms contain-
ing fluxes and the pressure gradient evaluated at sidewalls are
eliminated in Eq. (21) due to horizontal periodicity. Assuming
no flow through the top and bottom boundaries, wr = wg =0,
and a free-slip top condition, d,u = d,v = 0, gives

el 1 ou"s
s _sz: Zy:(va_z Z)B_ (22)

Denoting the viscous bottom stress as

1
n+i ou"t2
>B’

Ty = po(va—z (23)

combining Egs. (19) and (22) gives

n+ 1 ”+%
(S 2>N=<pO—VZx:Zy:TB >N
1 1 n+l
(I 2]

1 1
,00_H<TBn+2 NS (24)
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1.2

R15 (log with o = 1)
— — R26 (linear with a = 1)

1

= o8

B )

2l 06
0.4
0.2

FIG. 5. Time evolution of (S"J'%) normalized by S for
runs 15 (initial log law with @ = 1) and 26 (initial linear
profile with @ = 1). Letters indicate the contour plot times
shown in Fig. 6.

0

where the domain volume is V = AH. Eq. (24) shows that
(S"+%>N is the driving force that exactly balances the time-
and planform-averaged viscous bottom stress over N time
steps.

The time evolution of <S”+l/ 2> (or just since N = 1)
is plotted for runs R15 (initial log law with @ = 1) and R26
(initial linear profile with @ = 1) in Fig. 5. These simulations
are forced with S™? defined by Eq. (11) for their entirety
(i.e., without setting 1 = St when the TKE balance cri-
terion is met) to study the behavior of the forcing function
itself. Normalizing (S"*!) by St ensures values near 1 indi-
cate turbulent flow. Over the first 77, for run R15, the forcing
exponentially decays as the initial log-law profile (which has
relatively high bottom shear stress) is smoothed by viscous
diffusion until reaching a parabolic profile (which has rela-
tively low bottom shear stress). This transition to Poiseuille
flow occurs because the laminar flow lacks turbulent vertical
momentum fluxes required to sustain the log-law profile. The
resulting lower near-wall velocity gradients lead to a reduction
in the bottom stress and hence the value of (S”“/ 2>.

Instantaneous velocity magnitude contoured over a
streamwise plane is shown in Fig. 6 to illustrate flow evo-
lution. The time corresponding to each panel is indicated
by letters in Fig. 5. Figure 6(a) is a representative of the
flow before the onset of turbulence. As the simulation pro-
gresses, disturbances develop near the bottom and initiate
three-dimensional flow structures shown in Fig. 6(b). (S’”%)
then increases to balance the increasing bottom shear stress as
turbulent fluxes vertically mix momentum over a time scale of
roughly one turnover period (from approximately 7 < Te < 8
for R15 and 0.6 < T¢ < 1.6 for R26 in Fig. 5). The log-law

Sn+l/2

profile is attained in the time-averaged sense. Figure 6(c)
is representative of the flow after it has become fully tur-
bulent. Flow evolution for run R26 is similar to run R15,
with one notable difference. Because run R26 is initialized
with a linear velocity profile, the initial bottom shear stress
is small and is not significantly affected by viscous diffusion.
As a result, (S’”%) is nearly constant until the transition to
turbulence.

C. Global turbulence production and dissipation

Volume average turbulent kinetic energy production (P)
and dissipation (€) are computed at each time step from
the discrete evolution equation for the volume average tur-
bulent kinetic energy, k = 0.5u/u; (see the Appendix for
derivation). As shown in the Appendix, the exact discrete

time rate of change of the volume-averaged TKE is given by
—n+1

& -k"YAr=P-=C

Time series of the TKE budget terms and the volume-
averaged TKE are shown in Fig. 7 for run R1. During the
early part of run R1 (0 < ¢ < 7T¢), production and dissipation
are negligible. However, k steadily increases as instabilities
develop and eventually lead to turbulence (¢ =~ 7T¢). Produc-
tion and subsequently dissipation increase rapidly, although
the growth of € lags slightly behind that of P. During tran-
sition to turbulence (77¢ < t < 8T¢), production exceeds
dissipation, causing the TKE to grow beyond its equilibrium
value, followed by a decay over the next three turnover periods
when dissipation exceeds production. Beyond ¢ ~ 117 (when
the TKE balance criterion is met), production and dissipation

are roughly in balance, leading to a negligible (E’Hl - %n)/At.

2

FIG. 6. Normalized velocity magnitude [(u?> + v® +
0.6 whHl 2/uo] along the channel centerline at different flow
development stages for run 15. The time corresponding

04 to each panel is indicated in Fig. 5.
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normalized TKE budget term

FIG. 7. Time evolution of P, —¢€, and (Z’Hl —E”) /At (left
vertical axis) and instantaneous k (right vertical axis) for
run R1. The black circle indicates the point in time at
which the TKE balance criterion is met. All budget terms
are normalized by Aeu;f /H, where A¢ = 6.2 (see the
Appendix).

log
—— = linear

0.8

10
H 0u
uy 0z

FIG. 8. Nondimensional vertical shear for a log law and a linear velocity
profile, demonstrating how the constant shear for the linear profile exceeds
that for the log law over 93% of the domain (above dotted line).

D. Effect of initial conditions

With the exception of the bottom 7% of the channel, the
mean shear for a linear velocity profile is greater than that
for a log-law profile with Re; = 500 when both have the
same volume-averaged velocity (Fig. 8). Therefore, because
production of TKE is a function of the mean velocity shear,
runs initialized with a linear mean velocity profile transition
to turbulence sooner than those initialized with a log law. The
uniform shear over the channel for the linear profile generates
turbulence within ¢ = 107, throughout the domain when ini-
tializing simulations with @ > 0.3. However, for simulations

initialized with a log law, transition to turbulence occurs much
later in time and only after instabilities develop in the strongly
sheared, near-wall region.

We define the normalized volume-averaged mean kinetic
energy as

= 5
uj; — ul
og

Y= (25)

ufog

to quantify the departure of the simulated mean velocity pro-
files from a log-law distribution. For a log-law velocity profile,
v is close to but not identically zero because of the viscous sub-
layer and wake. For a linear mean velocity profile, y = 0.29
when Re; = 500. As shown in Fig. 9, before the onset of tur-
bulence, the velocity profile approaches the laminar parabolic
velocity profile (for which y = 0.17) regardless of the initial
condition. As a result, the value of y increases for simula-
tions initialized with a log law and decreases for simulations
initialized with a linear profile. However, after transition to
turbulence, y — O for all simulations because they approach
the log law.

The magnitude of the initial perturbation given by «
affects the onset of turbulence since production also depends
on the velocity fluctuations. Simulations initialized with larger
perturbations transition to turbulence sooner, as indicated by
the drop in the value of y which occurs earlier in time for
increasing values of « in Fig. 9. In order for turbulence to
develop over the period simulated (107¢) with an initial linear
velocity profile, @ > 0.3. However, owing to the weak shear
away from the bottom, turbulence only develops when @ = 1.0
when the flow is initialized with a log law. Instabilities begin
to develop toward the end of the simulation when a = 0.9

FIG. 9. Time evolution of y, a measure of the departure

from the log-law velocity profile, for different values of
B the initial perturbation, «, with initial linear (runs RS-
R15) and log-law (runs R6-R26) profiles. The crosses
il indicate inflection points in 7y to quantify the turbulent

— transition time, 7. For the linear initial profile, the flow
transitions for values of @ = 0.3,0.4,0.5,...,1.0, with

the transition time becoming smaller for increasing a.
| The flow transitions for the initial log-law profile only

0.4 T T
log (R5-R15)
03k — — — linear (R16-R26)
A INSINRN T E=sE===———— — - _ _ __ |
NS N
o2f N\
\
a Mok X
01 \RY N
3 —
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when a = 1.0.
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FIG. 10. Effect of the initial perturbation magnitude, @, on the turbulent
transition time, 7, for initial linear and log-law velocity profiles.

for the log-law initialization, although the flow does not have
time to transition (Fig. 9). Smaller values of @ would even-
tually lead to transition at later times, but this would incur
significant computational cost. We note that simulations with
initial perturbations drawn from a Gaussian distribution were
also tested (not shown), although the difference in turbulence
transition times compared to a uniform distribution with the
same variance was negligible.

To quantify the time required for the onset of turbulence,
we define the turbulent transition time, 7, as the time of the
inflection point in y (denoted by crosses in Fig. 9), which
corresponds to the zero crossing of the second time deriva-
tive of y. This transition time is plotted against « in Fig. 10
for runs RS through R26. Simulations that do not transition
to turbulence are omitted. For simulations initialized with a
linear velocity profile, the turbulence transition time exponen-
tially decays with increasing «, asymptotically approaching
one eddy turnover period. The eddy turnover period phys-
ically represents the time required for the largest turbulent
motions to vertically mix momentum over the channel height
and hence is the expected minimum amount of time needed for
transition to turbulence. Because of the exponential behavior,
smaller values of the initial perturbations significantly delay
transition. However, increasing o does not lead to monotonic
decrease in the computation time because of the constraint on
the time step size to ensure numerical stability for large initial
perturbations.

IV. SUMMARY AND CONCLUSIONS

We developed a method to ensure a constant volume-
averaged streamwise velocity during spin-up of turbulent
channel or open-channel flow. The method computes a stream-
wise force that exactly balances the bottom stress at each time
step, thus preventing flow acceleration. Without our method,
simulations imposing the target force accelerate beyond the
target velocity, resulting in a significant increase in computa-
tional time required for the flow to become statistically steady
as the volume-averaged velocity slowly decays to the target.

Phys. Fluids 29, 105101 (2017)

Although the method guarantees a constant volume-
averaged velocity, the time to reach statistical equilibrium is
highly dependent on the initial velocity profile and perturba-
tion magnitudes. The initial velocity profile affects the time
required to reach equilibrium because it sets the mean shear
contributing to the production of TKE. At the same time,
the magnitude of the initial perturbations also contributes to
TKE production by altering the Reynolds stresses. We find
that initialization with a linear mean velocity profile leads
to statistically steady turbulence faster in time than initial-
ization with a log-law velocity profile. This time reduction
occurs because the vertical shear in a log law is confined to the
near-wall region, whereas it is constant and larger over more
than 93% of the domain for a linear profile with the same
average velocity. When the magnitude of the perturbations is
smaller than @ = 1, simulations initialized with a log law do
not transition to turbulence in less than 10 turnover periods
for Re; = 500. However, simulations initialized with a linear
profile transition to turbulence for perturbations as small as «
= 0.3, although the time to reach equilibrium asymptotically
approaches one turnover period with increasing perturbation
magnitude. Therefore, there is no optimum « that minimizes
the time to reach equilibrium, and large values of @ can impact
numerical stability through the Courant number restriction.
Our results imply a good balance is achieved with a value of
a = 0.7 for Re; = 500, which does not impact stability and
transitions the flow to turbulence in 1.2 turnover periods when
initialized with a linear velocity profile. Although other initial
velocity profiles might further accelerate transition to turbu-
lence, it is unlikely that transition would occur in less than one
turnover period.

Given that a simulation driven with a constant force and
initialized with a log law and 100% perturbations could take
over 65 turnover periods to reach statistical equilibrium, the
results in this paper suggest that the simulation time can be
reduced by a factor of 6.5 when employing our method, since
the same simulation initialization with a linear velocity profile
and @ =0.7 is statistically steady after just 10 turnover periods.
We note that any method ensuring a constant volume-averaged
or bulk velocity will result in a similar spin-up reduction time,
given the same initial conditions. Although these findings
were obtained with Re; = 500, the time to reach equilib-
rium could be longer with larger Re; when driving the flow
with a constant forcing because flow acceleration increases
with increasing Re,. However, our method guarantees that the
volume-averaged velocity is constant independent of Re.

Although we focused on ensuring a constant volume-
averaged velocity, the method can also be implemented in a
way that ensures a constant planform-averaged bottom stress
by imposing a force that ensures a desired planform-averaged
velocity for the first grid cell above the wall. However, during
flow spin-up, the lack of the correct Reynolds stresses needed
to balance the force outside of the viscous sublayer would
lead to significant acceleration of the volume-averaged veloc-
ity. Turbulence would likely develop quickly in this case due to
the strong near-wall shear, but significant computational time
would be needed for the volume-averaged flow to decelerate
to the target. Therefore, it is more appropriate to enforce a con-
stant volume-averaged velocity than a constant bottom stress.
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Our method can be applied to open-channel flow with a
variable bottom, although the force that is computed to main-
tain a constant volume-averaged velocity would be one that
balances both the viscous stress and form drag. Both of these
forces are automatically accounted for in the method regard-
less of the shape of the wall or the Reynolds number. Since
the force by the wall in such a case is typically not known a
priori, the only option would be to impose a force that ensures
a constant volume-averaged velocity, rather than a force that
imposes a constant planform-averaged bottom stress.
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APPENDIX: DISCRETE TKE EVOLUTION EQUATION

Local production and dissipation of TKE can be computed
from spatial discretizations of

P = I/tl.l/tja—xj, (A])
€= v%%, (A2)
0x; 0x;

where everything under the tilde is planform-averaged. How-
ever, statistical equilibrium is not necessarily indicated by
(ﬁ) = (€) when calculating P and € from volume-averaged,
discrete approximations of Egs. (A1) and (A2) due to numer-
ical errors. While these errors are small, we find it important
to compute an exact discrete evolution equation for the TKE
in order to ensure the TKE balance criterion.

The exact discrete evolution equation for the TKE is
derived by first combining Egs. (4) and (5) and expanding R™3
into its individual terms. For the time advancement scheme

employed by Zang et al.,” this gives

Phys. Fluids 29, 105101 (2017)

M:/l+1 - u:,l 3 n n+x
St =30 () - 50 () + 6 ()
+;D( n+l ')+Sn+%’ (A3)

where C, G, and D are the discrete operators for advection,
the pressure gradient, and diffusion, respectively. The discrete
form of the evolution equation for u; is found by subtracting
the planform average of Eq. (A3) from itself to obtain

u/:z+l —u'n 3

A () e )

1 n—1 ~ (., n—1 s n+d
- (e) -2 ) o ()

1
+§D( W', (A4)
The discrete evolution equation for the TKE is then found by
multiplying Eq. (A4) by 1/2[(u’);1+1 +@")!], giving

Ei;ﬂzlwruM74%@lﬂ—5@9)

() -2 ()]

/n+1 +u/n) [ '(p/n+%)

| =

+
—_ N =
A

+§D( '"+1+u';")]. (A5)
In the continuous sense, the term containing the discrete dif-
fusion operator D in Eq. (AS5) is responsible for both diffusion
and dissipation of TKE. However, volume averaging elimi-
nates the diffusion because there is no diffusive flux of TKE at
the boundaries. Therefore, the volume average of the diffusion
term in Eq. (A5) equals the volume-averaged dissipation, viz.,

= _ 1 7 n+l rn 7 n+l rn
€= J@ v w D (Wit +u). (A6)
Following similar arguments, the volume average of the
advection operators in Eq. (A5) gives the volume-averaged
production of TKE, viz.,

P= i(u' ) [3(C () = C () = (€ () - € ()]

so that the discrete evolution of the volume-averaged TKE

is given by (%n ~% )/At = P — €. Time averagmg over
one turnover period (Ne = T¢ / At time steps) gives (k -
7 _Ne 2 N — . .

Kt )/Te = (P) — (€). The TKE balance criterion then
implies

—n+l  —n—-Ne+2

k -k _
T (I(P)I + 1()1)

(P)—(®)
(P + K@))

< 7k, (A8)

(A7)

where r; < 1. During equilibrium, we can assume (P) = (€)
= Acul /H, where the constant is given approximately by

R 1
ln( fT)— - —l],
Zref Kzref

< Re; and z
height introduced by Vertlcal averaging. Eq. (A9) is derived by
assuming a log-law mean velocity profile and a linear Reynolds
stress distribution with height (with a correction in the viscous

1
Ae = — (A9)
K

where we have assumed z is a reference
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sublayer, following Ref. 29) and vertically averaging over z,of
to H (Z;ef to Re;). Choosing Z;ef = 11.6, which is where the
theoretical velocity profiles in the viscous sublayer and log law
intersect, and Re, = 500 gives A = 6.2. Substitution gives the
simplified TKE balance criterion,

—n+l  —n-N+2

kK -k < reAcu?. (A10)

Therefore, employing the exact discrete forms of the produc-
tion and dissipation terms in Egs. (A6) and (A7), we guaran-
tee that the volume-averaged TKE change over one turnover
period is small, and the maximum change based on Eq. (A10)
is much smaller than A.u?.
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