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Understanding the influence of buoyancy on the formation number is important for analyzing the
development of a starting buoyant jet and the interactions between its vortex ring and trailing stem.
Numerical simulations with a large-eddy simulation model are performed to reproduce the starting
buoyant jet in conditions ranging from pure jet to lazy plume. From the results, an improved method
to determine the formation number is proposed based on the occurrence of a step jump in the vortex
ring circulation. A comparison of the numerical results with the experimental data for a starting pure
jet is first performed. The widely accepted formation number (=4.0) is obtained, which implies that
the method is satisfactory. The effect of buoyancy on the formation number is then investigated for
two turbulent discharge conditions of Re=2000 and 2500 and with a wide range of buoyancy flux.
Best-fit results are obtained that correlate the formation number with the Richardson number.
Finally, a slug model that incorporates buoyancy is developed to allow prediction of the “buoyant
formation number” for the starting buoyant jet using a limiting value of 0.33 for the dimensionless

energy, which is the same value for a pure jet. © 2009 American Institute of Physics.

[doi:10.1063/1.3275849]

I. INTRODUCTION

Starting buoyant intrusions are common in natural and
engineered systems and span multiple time and length scales.
Examples include volcanic eruptions, piston engine fuel in-
jection, delivery of scent to a theater through an air canon,’'
and microscale heat exchange in microelectromechanical
systems. The significance of such intrusions has drawn nu-
merous studies in the past to understand and quantify their
behavior (see Ref. 2).

A significant aspect of the starting buoyant intrusion is
the relationship between the starting head vortex and the
trailing stem formation. The behavior of the starting head
vortex closely resembles a discrete vortex ring, which has
been extensively studied (a good recent summary can be
found in Ref. 3). Yet the phenomenon cannot be examined
solely by the starting vortex as the trailing stem can continue
to feed mass, circulation, and energy to the vortex. A well
known illustrative example is provided by Gharib et al.’
who performed an experimental study on the vortex ring
generated by a piston/cylinder arrangement. They showed
that two distinct states exist depending on the “formation
time,” 5, which is defined as the ratio of the stroke distance
over the nozzle diameter, L/D. Note that Iy is referred to as a
nondimensional time because it is the ratio of the release
time, L/U,, where U, is the release velocity, divided by the
time, D/U,, required for the released fluid to travel a dis-
tance D. With a short formation time of 2, an isolated vortex
ring was formed without the development of a trailing stem
(i.e., the intrusion was totally absorbed in the starting vor-
tex), whereas with a longer formation time of 14.5, the trail-
ing stem was observed following the front vortex ring. The
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critical value of the formation time was called the “formation
number,” above which a trailing stem is present. They found
that the formation number is approximately equal to 4.0 and
is relatively invariant through various nozzle conditions and
velocity histories. The formation number was proposed as
the criterion for the “pinch-off” occurrence (i.e., detachment
of the starting head vortex from trailing stem). This is be-
cause the starting vortex could not absorb the additional in-
trusion from the piston if the formation time was higher than
the formation number and would physically separate from
the trailing stem. In other words, when the formation number
is reached, the vortex ring has reached the upper limit of
circulation by the driving mechanism.

The existence of the formation number has also been
confirmed by numerical simulations. Rosenfeld et al* simu-
lated the formation of nonbuoyant vortex rings by symmetri-
cal laminar flow configurations and observed the different
flow structures below and above the formation number. They
reported that the formation number was strongly affected by
the initial velocity profile but less by the velocity history,
while Zhao et al.’ clearly illustrated the circulation absorp-
tion process between the vortex ring and the trailing stem.
Mohseni ef al.® extended the simulation to include a variety
of nonconservative body forces and concluded that a varying
nozzle diameter can delay the pinch-off. Their work stimu-
lated an interest to further examine nozzles with changing
diameters, such as those studied by Dabiri and Gharib’ and
Allen and Naitoh.®

Taking advantage of the observations and understand-
ings from these numerical and experimental studies, quanti-
tative models were developed to describe the initial starting
behavior. They include Mohseni and Gharib,” Linden and
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Turner,lo Mohseni,11 Kaplanski and Rudi,12 and Shusser et
al.” Gharib_et al” defined a dimensionless energy E 4
=E/ \f'pIF:y’T/Z(D/L), where E, T', and [ are the kinetic
energy, circulation, and impulse of the starting jet (detailed
further in Sec. IV C). They calculated a limiting value of E,,
or Ej,,, to be 0.33 (referred to as « in their paper), below
which pinch-off would occur. Since E, 3=0.33 corresponds to
L/D=3.8, pinch-off would thus occur for L/D greater than
about 4. Analytically, they demonstrated that Ej;,, represents
a level beyond which the piston cannot deliver more energy,
circulation, and impulse to the starting vortex steadily ac-
cording to the Kelvin-Benjamin variational plrinciple.14
Mohseni and Gharib® formulated a model to describe the
phenomenon of the formation number based on the Nor-
bury’s family of vortices and the slug model, which was
extended to various piston velocity programs by Shusser et
al” Similarly, Linden and Turner'® matched the properties
of the injected plug of fluid and the Norbury’s family of
vortices to show that Ej;,, reflects the constraint due to the
volume limitation of the vortex ring core. Kaplanski and
Rudi'? refined the model of Linden and Turner"' by incorpo-
rating the viscosity.

Most studies on the starting phenomenon so far have
focused on nonbuoyant intrusions with the piston-cylindrical
configuration. The equivalent situation of a starting buoyant
jet with a strong buoyancy component (in cases such as the
eruption of a volcano and open-water disposal of a sediment
mass whereby the buoyancy effect is prevalent due to the
large density difference between the intrusion and ambient
fluid) has not been well investigated. For the asymptotic case
of a thermal (lazy plume without initial momentum), Potte-
baum and Gharib" confirmed the existence of the maximum
circulation by performing experiments with plumes gener-
ated by a heat disk; and Shusser and Gharib'® suggested
based on an analytical model that the equivalent formation
number would be 7=4.73, where 7 is the duration of the
release divided by the characteristic time T,=\D/2g' re-
quired for an effective gravitational force of g’ to accelerate
the mass a distance equal to the cylinder diameter D.

Neither the starting pure jet models (e.g., Mohseni and
Gharib’) nor the starting thermal models (e.g., Shusser and
Gharib'®) are able to fully address the dynamics of a starting
buoyant jet with a combination of initial momentum and
buoyancy fluxes. As far as the formation number is con-
cerned, it is not clear a priori whether the initial buoyancy
would delay or speed up the pinch-off process after the tur-
bulent intrusion occurs. In addition, at present the formats of
the formation time and formation number are distinctly dif-
ferent between the existing pure jets and thermal models. A
suitable analytical model that can bridge the two asymptotic
cases and cover the buoyant jet situation would be highly
desirable. It is noted that such unified analyses have been
conducted for steady state buoyant jets (e.g., Wang and
Law'’), but a similar investigation for starting buoyant jets
has not been reported in literature as far as the authors are
aware.

In this study, a series of numerical experiments is per-
formed using the large-eddy simulation (LES) approach to
examine the formation dynamics of a starting buoyant jet. In
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the following, the numerical approach and the flow configu-
ration are first introduced in Sec. II. In Sec. 111, the numerical
model is verified with the asymptotic case of a starting pure
jet, for which the experimental data regarding the formation
process have been reported previously in literature. Subse-
quently, extensive simulations are performed covering a
broad range between the pure jet and the lazy plume in Sec.
IV, and a slug model is developed to include the buoyancy
effect on the formation number. Finally, the conclusions from
the current study are listed in Sec. V.

Il. NUMERICAL MODEL
A. Governing equations

The governing equations of the grid-filtered continuity,
Navier—Stokes, and temperature transport equations with the
Boussinesq approximation can be expressed as follows:'®
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In the above equations, the overbar variables represent the
grid-filtered quantities. ¢ is time, u; (i=1,2,3) are the Carte-
sian velocity components in the direction of x, y, and z.
Other quantities are defined as follows: p is the pressure, g is
the gravity, ¢ is the temperature, ¢, is the background tem-
perature, B=(1/¢y)(dp/ d¢p) is the coefficient of thermal ex-
pansion, v is the kinematic viscosity, and « is the thermal
diffusivity. Note that all the equations are subjected to the
Einstein rule of summation.
The subgrid terms 7;; and x; are specified as

Tijz u;u; — I/til/_tj, (7)

Xj=ujp—i;p. (8)
These two terms can be modeled by the dynamic mixed
subgrid-scale model, the details of which can be found in
Refs. 19 and 20.

The governing equations are discretized by a finite vol-
ume formulation on a single nonstaggered grid.19 Various
discretization schemes are applied: (1) a semi-implicit
scheme with Crank—Nicholson method on the diagonal vis-
cous and diffusive terms, and Adams—Bashforth method on
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FIG. 1. The computational domain.

the other terms in time; (2) accurate upwind-difference
schemes on the convective terms; and (3) second-order cen-
tral difference on all the other spatial differential terms. The
convective terms of the momentum equations [Eq. (2)] are
discretized using the QUICK scheme to minimize the ex-
pense of computation, whereas the convective terms of the
scalar transport equation [Eq. (3)] are discretized using the
SHARP scheme to avoid spurious oscillation.'**!

The numerical model has been verified by a series of
comparisons with standard experiments, e.g., Cui and
Street,22 and implemented in recent studies.”>® The parallel
code uzszed in the present study was developed by Cui and
Street.

B. Flow configuration

The computational domain is three dimensional with a
square horizontal cross section that extends 0.3X0.3
X 0.8 m? in the Cartesian coordinates x, y, and z respec-
tively [Fig. 1(a)]. The starting buoyant jet is issued down-
ward from the top boundary with a uniform velocity U, into
a homogeneous and stationary ambient fluid through a circu-
lar nozzle with a diameter of D=5 cm. Thus, the computa-
tion domain is equivalent to a size of 6D X 6D X 16D, which
has been verified to be sufficient for the investigation of the
near-field formation process.25 The buoyant jet is heavier
than the ambient and with a relative density difference of
Apy/ py (thus the buoyant action is in the same direction as
the plume injection). The governing equations are discretized
into a stretched mesh, which has denser grids at the center
axis through the nozzle [as shown in Fig. 1(b)].

Before the simulation begins, the fluid in the computa-
tional domain is stagnant with a uniform density p,. The
boundary conditions are depicted in Fig. 1(a). The top
boundary is a free-slip surface permitting no vertical through
flow, while the other boundaries are “no-gradient” outflow
boundaries following the recommendation of Yuan.”® A con-
stant volume flux, determined from the prescribed inflow ve-
locity U, is then imposed at the inlet at =0 to initiate the
simulation.
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To facilitate the analysis, some characteristic parameters
are defined following Fischer et al.,27
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where Q,, M, and B, are initial volume flux, momentum
flux, and kinematic buoyancy flux, respectively, g’ is re-
duced gravity (gApy/py), Apy/ po is the normalized differ-
ence between discharge density and ambient density, /;, and
Lo are the characteristic length scales of momentum and vol-
ume flux, respectively, F; and R, are the jet densimetric
Froude number and Richardson number, respectively, Re is
the jet Reynolds number, and the kinematic viscosity v
=10° m?/s.

C. Vertical distribution of circulation and dynamics
of buoyant jets

In the following two sections, a strategy is developed to
determine the value of the formation number, or the critical
value of formation time above which a trailing stem is main-
tained behind the leading vortex ring. The strategy to deter-
mine the formation number includes three steps: (a) identi-
fying the starting vortex ring, (b) locating the pinch-off if
and when it occurs, and (c) analyzing the circulations of both
the whole computational domain and the vortex ring to quan-
tify the development process.

First, we define a cross-sectional circulation to distin-
guish the vortex ring from the trailing jet-vortex ring system
as follows:

wy(x,2)dx, (10)
HCP

w'(z) =

where HCP represents the half central plane, i.e., either left
central plane (0<x<3D,y=3D), or right central plane
(3D<x<6D,y=3D), and w, represents the vorticity in the y
direction. Figure 2 shows the vorticity field of the vortex ring
formation process coupled with the vertical distribution of "
versus the penetration depth, z, for the case of Re=2500, 7,
=L/D=12, and R;=0.186. The peak of the absolute value of
the cross circulation, |w*|, indicates the position of the center
of the starting vortex ring. Note that |w”| also has a relative
maximum at the edge of the orifice generated by the free-slip
boundary condition. At tUy/D=3 and 5, the head vortex is
well organized, followed by a trailing stem. At tU,/ D=8, the
|o*| curve shows two minima behind the center of the head
vortex, which indicates that another new vortex is forming at
the leading edge of the trailing stem. At tU,/D=9, this
“leading-trailing vortex” gathers toward the central axis and
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FIG. 2. The formation process of vortex ring/trailing jet and the corresponding cross-sectional circulation w*.

is being merged into the head vortex. Meanwhile, a new
leading-trailing vortex is being produced behind. At tUy/D
=10, the absorbed vortices have merged completely with the
head vortex ring. With the added circulation, the head vortex
ring pushes forward and detaches from the trailing stem at
tUy/D=11 to complete the pinch-off process. Here, we con-
sider the time between tU,/D=9 and 10 to be the time of
pinch-off when the circulation of the absorbed vortices is
added into the head vortex ring. After the discharge ceases at
tUy/D=12, the orifice stops providing any additional mo-
mentum, and the trailing stem disintegrates into turbulent
patches of remnant mass.

From Fig. 2, a minimum of |w*| can be found between
the starting vortex and the trailing stem throughout the de-
velopment process until the full turbulent flow is established.
Specifically, this minimum always closely follows the center
peak of the vortex ring. This minimum is used as the crite-
rion to divide the flow field into: (1) the starting vortex re-
gion (below) and (2) the trailing stem region (above). Here-
after, the term “head vortex” refers to the starting vortex ring
in order to differentiate it from “leading vortex,” which is the

regenerated vortex ring formed after the pinch-off (see Ref.
28). Note that a similar criterion has been used in Ref. 5 to
show the onset of the jet instability and a radial vorticity
distribution of the head vortex ring has been used in Ref. 6 to
analyze the pinch-off dynamics.

D. Determination of buoyant formation nhumber

Figure 3 shows the total and starting vortex circulations
for the above case of Re=2500, Ry=0.186, and tf:12, as a
function of nondimensional time tUy/D. [Note that because
U, and D have the same magnitude (5 cm/s and 5 cm, re-
spectively), tU,/D and t are numerically equal.] Basically,
the circulation progress can be categorized into two seg-
ments. When 0 <tU,/D < ts, the total circulation in the com-
putation domain continuously increases due to the jet dis-
charge; when tUy/D>1;, the addition by the discharge
ceases, but the circulation in the domain continues to in-
crease (though at a different rate) due to the buoyancy of the
plume fluid already introduced. Therefore, the slope of the
total circulation changes at r=¢,. The lower circulation curve
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FIG. 3. The total and starting vortex circulation.

in Fig. 3 illustrates the entire development of the starting
head vortex ring. The circulation of the starting vortex keeps
increasing during the formation process fed by the trailing
leading vortices. As discussed previously, the circulation of
the starting vortex then experiences a step jump when the
pinch-off occurs. After pinch-off, the vortex ring is separated
from the trailing stem. Subsequently, it would lose the supply
from the trailing stem and thus the circulation increase would
slow to a magnitude corresponding to the buoyant action of
the vortex itself.

Gharib et al.? proposed a method to determine the for-
mation number of a starting jet by defining it based on the
circulation of the starting vortex attaining a maximum. This
method has been used by many subsequent studies (e.g.,
Refs. 4 and 5). For buoyant jets, however, this method can-
not be used directly since the total circulation, as well as the
circulation of the head vortex ring, continues to increase after
pinch off due to the buoyancy of the plume fluids. Thus, we
seek an alternative approach through the identification of the
step jump in circulation that enables the head vortex to pinch
off from the trailing stem.

The present strategy to determine the formation number
is illustrated by the two arrows in Fig. 3. First, the circulation
value after the step jump in circulation is distinguished. The
intersection point on the total circulation line which has the
same value is then noted. The corresponding time, indicated
by the vertical downward arrow, is finally obtained as the
formation number.

lll. FORMATION NUMBER FOR STARTING PURE
JETS

We perform numerical simulations with the configura-
tion of a piston-driven pure jet for verification purposes. The
evolution of the total and starting vortex circulations with
different formation times is presented in Fig. 4. In the begin-
ning, both the total and head vortex circulations increase
linearly with time. Then, the total circulation becomes a con-
stant after the discharge ceases at tUy/D=t; and decreases
gradually due to viscous dissipation (which is different from
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FIG. 4. The total and starting vortex circulation for pure jets with different
formation times.

Fig. 3 in which buoyancy is present), while the head vortex
circulation reaches another constant value earlier before a
step jump occurs. The formation number can be identified to
be 3.9 using the strategy discussed previously, which is con-
sistent with the range of 3.6—4.5 found by Gharib et al.* The
value is also close to the previous numerical predictions of
3.3 in Ref. 4 and 3.8 in Ref. 5, although their studies were
restricted to the laminar range with symmetric vortex rings
which differ significantly from the present simulations.

Two different vortex-stem systems with #,=L/D=3 and
5 are shown in Fig. 5 to illustrate the absence and presence
of the trailing stem, respectively. At tUy/ D=3, the vorticity
fields of both cases have the same pattern in which the head
vortex leads the stem at the same speed. At tU,/D=35, the
trailing stem with #,=3 huddles together to form a leading-
trailing vortex, which is subsequently absorbed into the start-
ing vortex. In comparison, the starting vortex of #,=5 is still
supported by the trailing stem and keeps developing at
tUy/D=5. At tUy/ D=8, the vortex ring of #,=3 has finished
engulfing the trailing vortex and begun to decelerate due to
viscous dissipation, while the starting vortex of ;=5 has
initiated the pinch-off process. At last, all the circulation is
contained in the head vortex for tf=3, whereas an obvious
remnant is left for 7,=35. To show the quantitative differences,
the cross-sectional circulations of the stem region between
these two formation time cases are compared in Fig. 6. The
circulation of #,=5 is clearly higher than that of #,=3 around
z=3D in the remnant region. This again indicates that a sig-
nificant circulation is left in the remnant mass of the former,
and reinforces the conclusion that the formation number falls
between 3 and 5, which is consistent with the result of 3.9
obtained above.

IV. BUOYANT FORMATION NUMBER
FOR BUOYANT JETS

The main objective of the current study is to investigate
the effect of buoyancy on the formation process of starting
buoyant jets. In the following, the LES simulation results of
starting buoyant jets are presented. To begin, we shall first
define the categories of buoyant jets based on the initial con-
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FIG. 5. Comparison of the vorticity fields for different formation times at
the center plane.

ditions of the momentum and buoyancy fluxes at their
source. Then, an example of the development of the buoyant
jet is described to demonstrate the simulation results and the
differences introduced by the buoyancy. Using the strategy
detailed in Secs. II C and II D, the buoyant formation num-
ber, i.e., formation number incorporating the buoyancy ef-
fect, is determined covering the entire range of Richardson
number from pure jet to lazy plume. Finally, a model is de-
veloped based on the slug model to predict the buoyancy
influence on the formation process.

x 10

' ‘ ' — D=3
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FIG. 6. Comparison of the cross-sectional circulations of starting pure jets at
t=15 s.
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A. Richardson number and buoyant jets

Morton” suggested the following dimensionless source
parameter to classify buoyant jets:

50380 §'D R
4aMy? Uy (m/4)"

where a(=0.09) represents the entrainment coefficient. Using
this source parameter, a pure jet (no buoyancy) can be de-
fined with A=0, a buoyant jet for 0<<A <1, a pure plume
for A=1, and a lazy plume for A>1. Since this parameter
relates directly to the Richardson number, R, the definitions
can be represented alternatively as Ry=0 for pure jets, 0
<R;<<0.27 for buoyant jets, Ry=0.27 for pure plumes, and
Ry>0.27 for lazy plumes.

B. Numerical results

In the numerical simulations, the buoyancy flux is added
into the discharge in an incremental manner. The total and
head vortex ring circulations are shown in Fig. 7 based on
the numerical simulations. According to this figure, the cir-
culation is generally increased by the buoyancy flux, which
is reflected in the steeper slope of the circulation lines. Con-
sequently, the curves with the buoyancy flux deviate from the
linear relationship of the pure jet in Fig. 7. The pinch-off
times are shown to be the same in this figure. This implies
that the effects of buoyancy and momentum fluxes are un-
coupled, which has been observed in the analysis of the
buoyant jet penetration rate.”

The effect of buoyancy on the formation number is
shown in Fig. 8, where it can be observed that the formation
number generally increases with the Richardson number.
Note that the Richardson number in the present simulations
covers a wide range from pure jet (Ry=0) to lazy plume
(Ry>0.27). When R, reaches a large number of more than
1.0, the formation number cannot be clearly determined be-
cause irregular fluctuations are present in the circulation
curves, flooding the step jump and destroying the character-
istic of a constant maximum.
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Based on the numerical results with the two source con-
ditions of Re=2000 and 2500, the following best fit curve
relating the formation number to the Richardson number can
be obtained:

R, —
Nf:m[1+erf( 0/— M):|+Nf0, (12)
\!’20‘

where the amplitude m=1.3, the standard deviation o=0.1,
the median ©=0.3, and the formation number of the pure jet
Ny =4.

Drawing on the similarity between pure jets and ther-
mals, Shusser and Gharib'® argued that a characteristic time
scale, T\, should be the time required for the jet or thermal to
penetrate a distance of one nozzle diameter based on the
velocity acquired at the instant when the jet or thermal has
traveled one diameter (i.e., T%'=D/U, for a pure jet and
7*0*‘“: \VD/2g' for a thermal, the latter calculated by assum-
ing that the flow has acquired a kinetic energy per unit mass
of g'D at a vertical displacement D). Analyzing the experi-
mental data of Lundgren et al.* for a laminar plume without
initial momentum, they obtained the formation number as
4.73, somewhat larger than the traditional number of about 4.
They attributed the larger value to the combined action of
buoyancy inducement and momentum acceleration. Follow-
ing the reasoning of Shusser and Gharib,'® the time scale for
a thermal can be established as Ty=D/\Uy+2g'D. This is
the time characteristic time required for the buoyant jet to
penetrate one diameter and is obtained by equating the ki-
netic energy of the flow at a distance D to the sum of the
kinetic energies associated with the pure jet and the thermal.
Consequently, a buoyant formation time can be defined as
follows:

t tU,
T= = 2, (13a)
Jel Tloel D
—
t 2g'
T er: = ’ 13b
th Tgler \J/l_) ( )
t U§+2g'D
r=—=— 82 (13c)

The results for Re=2500 are transformed to the format of the
buoyant formation number and shown in Fig. 9. It can be
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FIG. 9. The formation number as a function of the Richardson number.

observed that the buoyant formation number is not a constant
after the scaling of Eq. (13) and generally increases with
larger buoyancy. Note that the present condition pertains to
turbulent discharge at the source, which is contrary to ther-
mals which are generally laminar near the origin; the differ-
ence between the present study and that of Shusser and
Gharib'® can thus be attributed in part to the distinctly dif-
ferent source conditions.

C. Analytical model

As an analytical tool, the slug model proposed by Gharib
et al.* and Mohseni and Gharib® for pure jets can be further
developed for buoyant jets. The kinetic energy, circulation,
and impulse of a pure jet can be approximated by the slug
model as

E, = smpD’LU}, (14)
Iy =3UL, (15)
Iy = +mpD*U,L, (16)

where E| is the kinetic energy, I'; is the circulation, /; is the
impulse, and L=Uyl; is the equivalent stroke of the piston.
The addition of buoyancy flux changes the flow behavior in
three aspects: (1) an excess kinetic energy of the buoyant jet
can be generated from the transformation of the potential
energy; (2) an excess circulation can be induced by the dif-
ference between the additional velocity due to buoyancy and
the ambient fluid; and (3) the excess impulse is increased by
the gravity force. We assume that the discharge fluid rolls up
to form a vortex ring and half of its surface, %WDL, is ex-
posed to the ambient quiescent fluid, where the circulation
inducement occurs. The expression for kinetic energy, circu-
lation, and impulse can thus be changed into

E=E, +E,=t7pD’LU% + +mpD’Lg’' (Ut + 1¢'1%),
(17)
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FIG. 10. Dimensionless energy for different buoyancy fluxes versus the
formation time L/D.

F=F1+F2=%UOL+}_‘Lg,t, (18)

I=1,+1,= ;mpD*UyL + tmpDLg't, (19)

where the subscript “2” refers to the gravitational effects.
Likewise, the dimensionless energy can be expressed as

E D
= _ .= 32
En= 23212 = \/;L(l +0)°7, (20)
where
"t
S AR TTR (21)
8 t+2U0

The coefficient & is a function of time, which indicates that
the buoyancy effect continuously increases the nondimen-
sional energy E,4. If we replace ¢ by L/ U,,

o= ,g—Lz (22)

g'L+2U;
and E, 4 becomes the nondimensional energy at the end of a
discharge. In this manner, £,y would give the limiting value
when L/D equals the formation number.

Based on the Kelvin—Benjamin variational principle,
Gharib ef al.” first proposed that the formation number for
pure jets corresponds to E,4=0.33. This is confirmed by both
numerical simulations and theoretical analysis.4’5’8 Incorpo-
rating the buoyancy effect, we find that this limiting value is
also applicable to the formation processes of buoyant jets.
The dimensionless energy with different buoyancy and mo-
mentum fluxes is plotted against the formation time, L/D, in
Fig. 10. The formation numbers determined by the numerical
simulations are marked with solid squares in the same figure,
which fall in a narrow region between E_ 4=0.31 and 0.35,
with a median of 0.33. The results imply that the formation
number can be predicted by the intercepts of E 4=0.33 and
the curves for different buoyancy fluxes. In other words,
E 4=0.33 is still valid for starting buoyant jets.

In the asymptotic case of a pure jet with g’=0 and &
=0, E,q is consistent with the model used previously in the
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literature for pure jets, which corresponds to L/D=4 as ex-
pected. With g’ =, however, =1, and the formation num-
ber has an upper limit of L/D=10.7. This implies the inter-
esting result that the ability of buoyancy to enhance
circulation and delay pinch-off is restricted by a maximum
stroke length of 10.7D.

V. SUMMARY AND CONCLUSIONS

The present study examines the formation process of the
buoyant jet over a wide range from a pure jet to a thermal. To
determine the formation number, a method to differentiate
the head vortex ring and the trailing stem is derived based on
the evolution of the cross-sectional circulation. Because the
buoyancy flux continuously induces the circulation, a new
strategy is proposed to identify the formation number using
the observed step jump in the vortex ring circulation. The
strategy is validated by the results that it is able to reproduce
the formation number of a pure jet. In addition, the relation-
ship between the presence of the trailing stem and the for-
mation number is also reconfirmed.

Numerical simulations are performed by adding buoy-
ancy flux incrementally to simulations with two turbulent
source conditions of Re=2000 and 2500. Results show that
the buoyant formation number increases with the Richardson
number following an error function relationship [Eq. (12)].
In addition, since the momentum and buoyancy effects are
uncoupled at the initial development of the buoyant jet, the
time for the step jump occurrence is found to be invariant
through the range of added buoyancy flux. To bridge the gap
between the time scaling of pure jets and plumes, a buoyant
time scale is formulated. Finally, with a slug model that in-
corporates the buoyancy effect as well as the Kelvin—
Benjamin variational principle, the buoyant formation num-
ber is shown to follow the nondimensional energy of 0.33,
which is consistent with the value for pure jets that was
reported in the literature.

While this paper was in press, Marugdn-Cruz et al.”
reported that for negatively buoyant starting jets, the forma-
tion number decreases with increasing negative buoyancy.
This conclusion is consistent and mirrors our findings here
that the formation number increases with increasing positive
buoyancy. It also implies a potential extension of our analy-
sis, which we are pursuing, to encompass the entire range of
density deficit of the injection fluid from positive to negative.
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