
Received: 6 January 2022 Revised: 7 June 2022 Accepted: 20 June 2022

DOI: 10.1002/fld.5128

R E S E A R C H A R T I C L E

Particle-resolved simulations of four-way coupled,
polydispersed, particle-laden flows

Yinuo Yao1,2 Edward Biegert3 Bernhard Vowinckel3,4 Thomas Köllner3,5

Eckart Meiburg3 Sivaramakrishnan Balachandar6 Craig S. Criddle2

Oliver B. Fringer1

1The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University,
Stanford, California, USA
2Codiga Resource Recovery Center at Stanford, Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
3Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
4Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität, Braunschweig, Braunschweig, Germany
5CADFEM GmbH, Munich, Germany
6Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA

Correspondence
Yinuo Yao, The Bob and Norma Street
Environmental Fluid Mechanics
Laboratory, Department of Civil and
Environmental Engineering, Stanford
University, Stanford, CA 94305, USA.
Email: yaoyinuo@stanford.edu

Present address
Yinuo Yao, Department of Energy
Resources Engineering, Stanford
University, Stanford, California, USA

Funding information
California Energy Commission,
Grant/Award Number: EPC-16-017;
National Science Foundation,
Grant/Award Numbers: ACI-1548562,
1028968; Office of Naval Research,
Grant/Award Number: N00014-16-1-2256;
German Research Foundation,
Grant/Award Number: VO2413/2-1

Abstract
We present a collocated-grid framework for direct numerical simulations of
polydisperse particles submerged in a viscous fluid. The fluid-particle forces are
coupled with the immersed boundary method (IBM) while the particle-particle
forces are modeled with a combination of contact and lubrication models,
adapted for collocated grids. Our method is modified from the staggered-grid
IBM of previous authors to a collocated-grid IBM by adapting the fluid and par-
ticle solvers. The method scales well on high-performance parallel computing
platforms. It has been validated against various cases and is able to reproduce
experimental results. Tuning parameters have been thoroughly calibrated to
ensure the accuracy of the method. Finally, we demonstrate the capability of
the method to simulate both monodispersed and bidispersed fluidized beds
and reproduce the power law relationship between the inflow velocity and the
porosity.

K E Y W O R D S
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1 INTRODUCTION

Particle-laden flows are common in both industrial and natural systems. Typical examples of industrial applications in
treating wastewater include sedimentation tanks and fluidized beds and so forth,1-3 while examples of natural systems
include sediment transport in estuaries.4 Understanding the fluid-particle and particle-particle interactions enhances the
design of various industrial systems. For instance, predicting the upflow velocity to achieve the desired porosity is critical
in fluidized-bed applications. Hence, Richardson and Zaki5 proposed a power law relationship to correlate the effect of
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superficial velocity (average inlet velocity) to the porosity of the particle phase by studying the macroscopic properties
and behavior of the systems. However, due to limitations in the experimental data collection technologies, understanding
and quantifying the microscale behavior has been a persistent challenge.6 In recent years, with improvements in both
computational power and numerical methods, particle-resolved simulations (PRS), or the direct numerical simulation
(DNS) of particle-laden flows, has received constant attention and development, owing to its capability of fully resolving
the flow around the particles and not relying on the accuracy of drag models.

Over the past few decades, different PRS methods have been developed. Zhang and Prosperetti7 developed and Willen
and Prosperetti8 employed the PHYSALIS method that assumes flow near spheres to be Stokes flow regardless of the
mean flow Reynolds number. As such, PHYSALIS utilizes the analytical solution for Stokes flow around a sphere to sim-
ulate particle-laden flows. Glowinski et al.9,10 developed a distributed Lagrange multiplier (DLM) method that enforces
rigid body motion of the fluid in a sphere. Ladd11 developed the lattice-Boltzmann method (LBM) in which particles
are represented by lattice nodes. Another family of methods is the immersed boundary method (IBM) first proposed by
Peskin12,13 and then extended to particle-laden flow.14-22 One challenge associated with moving boundaries is the oscil-
lation of the IBM forces due to (1) the spatial discontinuity in pressure, (2) the temporal discontinuity in the Eulerian
velocity at the interface, and (3) mass conservation violation.23 Uhlmann14 introduced the concept of direct forcing and
reduced the oscillation due to the temporal discontinuity by computing the IBM force at Lagrangian markers and inter-
polating between an Eulerian and Lagrangian marker with a regularized Dirac delta function. Kempe and Fröhlich24

reduced the minimum stable particle-fluid density ratio from 1.2 to 0.2. Kempe and Fröhlich24 and Wang et al.18 further
improved the accuracy of the direct forcing IBM by implementing iterative outer forcing loops to enforce a more accurate
no-slip boundary conditions on particle surfaces. Akiki and Balachandar15 extended IBM to non-uniform grids. Recently,
Zhou and Balachandar25 conduct a theoretical analysis on the optimum number of Lagrangian markers need to achieve
most accurate simulations. Yang and Balachandar26 developed a scalable parallel algorithm for IBM with the concept of
double binned ghost particle (DBGP).

For systems with concentrated suspensions, particle-particle interactions are inevitable and collision models are
necessary.14,16,27-29 In the original direct forcing IBM, Uhlmann14 employed the repulsion potential model proposed by
Glowinski et al.9 In this approach, an arbitrary force is added when particles are less than two grid cells apart, a situation
not resolvable by IBM. The main purpose of this approach is to prevent particles from contacting one another. Studies
that employ this model usually have small volume fractions where particle-particle interactions are not significant.30 To
obtain more accurate particle-particle interactions, collision models have been implemented in the form of lubrication and
contact models. Lubrication models account for the forces exerted on particles when they are moving towards and away
each other before and after coming into contact, while the contact model is used when the surfaces of the particles touch.
For normal contact forces, two popular approaches are the hard- and soft-sphere based models. As discussed by Kempe
and Fröhlich,24 the former cannot model simultaneous collisions which can be significant in concentrated suspensions.
In addition, both models usually require the time step size Δt to be small due to a high material stiffness coefficient kn.
To reduce the stiffness, Zaidi et al.31 chooses a value of kn that achieves a balance between accuracy and computational
cost. Kempe and Fröhlich,24 on the other hand, proposed an algorithm to dynamically optimize the stiffness coefficient
kn and damping coefficient dn based on the dry restitution coefficient edry of the material and a calibrated collision time
step Tc. For tangential contact models, Kempe and Fröhlich24 designed a model to exactly enforce the no-slip condition
between particles. As pointed out by Biegert et al.,16 this model does not converge to a steady solution for enduring con-
tact. Instead, Luding32 and Thornton et al.33 proposed and Biegert et al.16 adopted a spring dashpot model that converged
to a steady solution.

Although there have been significant efforts on developing and improving IBM and collision models, the aforemen-
tioned developments are based on the staggered grid formulation. Staggered grids have the advantage of pressure-velocity
coupling and satisfying continuity with machine precision. The collocated grid, on the other hand, has the advantage that
all variables are located at the same location and the finite-volume approach is straightforward to implement, thus simpli-
fying its use in complex geometries.34 Another significant advantage of the IBM method is its flexibility of implementation
in any established Navier–Stokes solver. Lee and Balachandar35,36 adapted the staggered formulation by Uhlmann14 to a
collocated formulation to simulate a single sphere in a shear flow. However, Uhlmann’s method does not account for par-
ticle collisions and errors due to the explicit formulation of immersed boundary forces.24 Various authors have developed
collocated IBMs for complex geometries which do not include the effects of interactions between different geometries.37-40

To date, no comprehensive collocated direct forcing IBM with collision models for polydispersed particles has been pro-
posed. In the present work, we build on work by multiple researchers14,16,27 and propose a simulation framework that
combines the advantages of the collocated direct forcing IBM and the collision models for polydisperse particles, resulting
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in a comparable accuracy with the staggered-grid approach. This work will serve as a building block to couple IBM with
existing collocated-grid Navier–Stokes solvers.

The article is organized as follows. In Section 2.1, we briefly discuss the original direct-forcing IBM on a staggered grid
by Uhlmann.14 In Section 2.2, we present the modifications to the original IBM for a collocated grid. Sections 2.2.1–2.2.4
focus on the Navier–Stokes solver, Sections 2.2.5–2.2.8 adapt the collision models to a collocated grid and Section 2.2.9
and 2.2.10 modify the particle solver for coupling of IBM with the collocated-grid Navier–Stokes solver. In Sections 3.1–3.3,
simulations are presented to (1) validate the accuracy and computational efficiency of the proposed collocated-grid IBM
and (2) determine the tuning parameters that are needed to achieve accurate simulations. In Section 3.5, monodispersed
fluidization simulations are conducted and compared to predictions by existing models.

2 METHODOLOGY

2.1 Original direct-forcing IBM on a staggered grid

The governing equations are formulated as the modified unsteady Navier–Stokes equation for an incompressible fluid.
The IBM force is accounted for with a source term, fIBM, which is added to the Navier–Stokes equation to enforce no-slip
boundary conditions on the particle surfaces. With this forcing, the modified unsteady, Navier–Stokes equation for an
incompressible fluid is given by

𝜕u
𝜕t
+ u ⋅ 𝛁u = −𝛁P + 𝜈f∇2u + fIBM, (1)

subject to continuity,

𝛁 ⋅ u = 0, (2)

where u =
[
u v w

]T is the fluid velocity vector in Cartesian coordinates, P = (Ptot − 𝜌f gz)∕𝜌f is the perturbation pres-
sure (relative to the hydrostatic pressure 𝜌f gz, where g is the gravitational acceleration in the z direction) normalized by
the fluid density 𝜌f , Ptot is the total pressure, 𝜈f is the kinematic viscosity of the fluid and fIBM =

[
fx fy fz

]T is the IBM
force vector. The original direct-forcing IBM method proposed by Uhlmann14 eliminates strong oscillations arising from
direct interpolation of fIBM from the neighboring Eulerian cells.17,41 Uhlmann14 proposed to compute the IBM force at the
center of Lagrangian markers located at Xl which represent a thin shell of thickness h on the particle surface with volume

NlΔVl =
4
3
𝜋

[(dp

2
+ h

2

)3

−
(dp

2
− h

2

)3
]

, (3)

where Nl is the total number of Lagrangian markers, ΔVl ≈ h3 is the approximate volume of each Lagrangian marker, dp
is the particle diameter and h is the Eulerian grid spacing, which is isotropic in the three Cartesian coordinate directions
(x, y, z) such that Δx = Δy = Δz = h. The desired motion of particles at particle surface locations Xl is defined as

ud
p (Xl) = up + 𝝎p ×

(
Xl − xp

)
, (4)

where up and 𝝎p are governed by Newton’s second law governing linear and angular momentum of a spherical particle

mp
dup

dt
= ∮S

𝝉 ⋅ n dS + Vp(𝜌p − 𝜌f )g + Fc,p, (5a)

Ip
d𝝎p

dt
= ∮S

r × (𝝉 ⋅ n) dS + Tc,p, (5b)

where mp = 𝜌pVp is the mass of the particle, 𝜌p and Vp are the particle density and volume, 𝝉 is the hydrodynamic stress
tensor, n is the outward-pointing normal vector on the particle surface S, g = −gez is the gravitational acceleration vector
in the ez direction, Ip is the particle moment of inertia, r is the position vector between the particle center xp and particle
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surface and Fc,p and Tc,p are the forces and torques exerted on the particle due to collisions including lubrication and
contact forces. Substitution of the Navier–Stokes equation (1) (with the full pressure and gravity terms included) into
Equation (5a) and employing Gauss’s theorem, the particle motion equations are given by

mp
dup

dt
= −𝜌f ∫Ωp

fIBM dV + 𝜌f
d
dt ∫Ωp

u dV + Vp
(
𝜌p − 𝜌f

)
g + Fc,p, (6a)

Ip
d𝝎p

dt
= 𝜌f ∫Ωp

r × fIBM dV + 𝜌f
d
dt ∫Γp

r × u dV + Tc,p, (6b)

whereΩp is the particle volume. Following Uhlmann,14 the rate-of-change terms can be simplified by assuming rigid-body
motion such that

d
dt ∫Ωp

u dV = Vp
dup

dt
, (7a)

d
dt ∫Ωp

r × u dV =
Ip

𝜌p

d𝝎p

dt
. (7b)

which gives the governing equations

mp

(
1 −

𝜌f

𝜌p

) dup

dt
= −𝜌f ∫Ωp

fIBM dV + Vp
(
𝜌p − 𝜌f

)
g + Fc,p, (8a)

Ip

(
1 −

𝜌f

𝜌p

) d𝝎p

dt
= 𝜌f ∫Ωp

r × fIBM dV + Tc,p. (8b)

However, this can lead to a singularity when 𝜌p = 𝜌f , a problem that is addressed in Section 2.2.9.
Figure 1 shows an example of the Eulerian grid and the Lagrangian markers representing the particle on both stag-

gered and collocated grids. To interpolate between Eulerian and Lagrangian quantities, the one-dimensional kernel in
the x-direction based on the three-point regularized Dirac delta function 𝛿3p

h is utilized and defined as

𝛿
3p
h,x (x − Xl) =

1
h
𝜙3 (r) , (9)

where 𝜙3 (r) is the one-dimensional, three-point function

𝜙3 (r) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
6

(
5 − 3|r| −

√
−3(1 − |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5,

1
3

(
1 +

√
−3|r|2 + 1

)
, |r| ≤ 0.5,

0, otherwise,

(10)

and r = (x − Xl) ∕h is the normalized distance from the Lagrangian marker.42 In three dimensions, the three-point
regularized Dirac delta function 𝛿3p

h,3D is then given by

𝛿
3p
h,3D (x − Xl) = 𝛿3p

h,x (x − Xl) 𝛿3p
h,y (y − Yl) 𝛿3p

h,z (z − Zl) . (11)

This is used to interpolate quantities from the Eulerian grid onto the Lagrangian marker and vice-versa. In what follows,
𝛿h,3D (without the superscript) implies either the three- or four-point functions which are defined in Equations (10) and
(19) respectively. The choice is clarified in the test case.

In Uhlmann,14 the advection term is integrated in time with the explicit, three-step Runge–Kutta scheme described in
Rai and Moin.43 The viscous term is time integrated with the second-order implicit Crank–Nicolson scheme to eliminate
the associated stability constraints. The fractional step method by Rai and Moin43 is used to couple the velocity and the
pressure terms and enforces continuity. Overall, the fluid-solver with direct-forcing IBM on a uniform staggered grid by
Uhlmann14 is given by the following steps:
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(A) (B)

F I G U R E 1 Variable locations on (A) staggered and (B) collocated grids. Green dashed line represents the particle surface. [Colour
figure can be viewed at wileyonlinelibrary.com]

1. Predictor step without direct forcing

ũ − uk−1

Δt
= 2𝛼k𝜈f∇2uk−1 − 2𝛼k𝛁Pk−1

− 𝛾k(u ⋅ 𝛁u)k−1 − 𝜁k(u ⋅ 𝛁u)k−2
, (12a)

2. Project predicted Eulerian grid velocities onto the Lagrangian marker

Ũ
(

Xl,n
)
=

Ni,Nj,Nk∑

i,j,k
ũ
(

xi,j,k
)
𝛿

3p
h,3D

(
xi,j,k − Xl,n

)
ΔxΔyΔz, (12b)

where 𝛿3p
h,3D is the three-point regularized Dirac-delta function (Equation 9).

3. Determine the Lagrangian marker force to enforce the no-slip condition

F
(

Xl,n
)
=

ud
p
(

Xl,n
)
− Ũ

(
Xl,n

)

2𝛼kΔt
, (12c)

4. Interpolate the Lagrangian marker force back onto the Eulerian grid

fIBM(xi,j,k) =
Np,Nl∑

n,l
F
(

Xl,n
)
𝛿

3p
h,3D

(
xi,j,k − Xl,n

)
ΔVl,n, (12d)

5. Predictor step with direct forcing

u∗ = ũ + Δt
(
2𝛼kfIBM − 𝛼k𝜈f∇2uk−1 + 𝛼k𝜈f∇2u∗

)
, (12e)

http://wileyonlinelibrary.com
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6. Pressure Poisson equation to obtain the pseudopressure 𝜙

∇2
𝜙 = 1

2𝛼kΔt
𝛁 ⋅ u∗, (12f)

7. Corrector step

uk = u∗ − 2𝛼kΔt𝛁𝜙, (12g)

8. Compute the real pressure P from the pseudopressure 𝜙

Pk = Pk−1 + 𝜙 − 𝛼kΔt𝜈f∇2
𝜙. (12h)

In this method, 𝛼k, 𝛾k, and 𝜁k for k = 1, 2, 3 are Runge Kutta coefficients in Rai and Moin.43 To couple the interactions
between fluid and markers, ud

p (Xl) is computed from the discrete equations that govern the linear and angular particle
momentum

uk
p = uk−1

p + 2𝛼kΔt
𝜌p𝜌f

mp
(
𝜌p − 𝜌f

)

[

−
Nl∑

l
F (Xl) ΔVl +

Fc,p

𝜌f

]

+ 2𝛼kΔtg, (13a)

𝝎
k
p = 𝝎k−1

p + 2𝛼kΔt
𝜌p𝜌f

Ip
(
𝜌p − 𝜌f

)

[

−
Nl∑

l

(
Xl − xk−1

p
)
× F (Xl) ΔVl + Tc,p

]

, (13b)

xk
p = xk−1

p + 𝛼kΔt
(

uk
p + uk−1

p
)
, (13c)

ud
p (Xl) = uk

p + 𝝎k
p ×

(
Xl − xk

p
)
. (13d)

In what follows, Equations (12a)–(12h) are referred to as the original fluid solver and Equations (13a)–(13d) are referred
to as the original particle solver. Thorough validations with both two- and three-dimensional14,44,45 cases have been con-
ducted to demonstrate that the original direct-forcing IBM is second-order accurate in both time and space to simulate
particle-flow interactions.

2.2 Finite-volume, IBM on a collocated grid

2.2.1 Collocated fluid solver: Pressure-momentum coupling on a collocated grid

Instead of a finite-difference Navier–Stokes solver on a staggered grid, Equation (1) is discretized on a collocated grid
using the finite-volume approach. The main disadvantage of collocated grids is the lack of coupling between momentum
and pressure when solving the pressure Poisson equation as defined in Equation (12f). A collocated grid results in wider
stencils to compute the Laplacian term ∇2

𝜙 leading to decoupling between velocity and pressure and only an approxi-
mately divergence-free flow.34,46 This decoupling results in a “checkerboard” pressure field and grid-scale oscillations in
the velocity field.46,47

A common method to eliminate the checkerboarding is to use a staggered formulation of the pressure Poisson equation
by interpolating quantities from cell centers to faces.34,46 Here, we adopt the method of Zang et al.34 in using interpolated
face values of the velocity field uf to solve the pressure Poisson equation and then correcting uf and u separately with the
following steps:

1. Interpolate center to face values

u∗f =  (u∗) , (14a)

2. Pressure Poisson equation to obtain the pseudopressure

∇2
𝜙 = 1

2𝛼kΔt
𝛁 ⋅ u∗f , (14b)
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3. Corrector step for the cell-centered velocity

uk = u∗ − 2𝛼kΔt𝛁𝜙, (14c)

4. Corrector step for the face-centered velocity

uk
f = u∗f − 2𝛼kΔt (𝛁𝜙)f . (14d)

In step 1,  (⋅) is an interpolation scheme used to obtain uf from u. To ensure overall second-order accuracy, the
interpolation scheme used in our modified method is a second-order accurate linear interpolation.

2.2.2 Collocated fluid solver: Outer forcing

In the original direct-forcing IBM, no-slip boundary conditions are approximate and incur an error of 𝜖 = |ud
p (Xl) −

Ũ (Xl) | due to the explicit formulation of fIBM in calculating the predictor velocity field u∗.24 Following Kempe and
Fröhlich,24 the difference between the explicit and implicit fIBM is defined as

ΔfIBM = −Δt
[
𝛼k𝜈f∇2 (u ⋅ 𝛁u + fIBM

)
+ 2𝛼2

k𝜈
2
f ∇

2 (∇2uk)
]
. (15)

Equation (15) implies first-order error with respect to the time-step sizeΔt. Therefore, sufficiently small Δt is required to
achieve satisfactory results which leads to an increase in computational cost. To remove the limitation of Δt imposed by
this error, outer forcing loops proposed by various researchers24,48 are implemented with nf steps as follows:

for m = 1,nf

1. Project Eulerian grid velocities onto the Lagrangian marker

Um−1 (Xl,n
)
=

Ni,Nj,Nk∑

i,j,k
um−1 (xi,j,k

)
𝛿h,3D

(
xi,j,k − Xl,n

)
h3
, (16a)

2. Determine the Lagrangian marker force to enforce the no-slip condition

Fm−1 (Xl,n
)
=

Ud (Xl,n
)
−Um−1

l,n

2𝛼kΔt
, (16b)

3. Interpolate Lagrangian marker force onto the Eulerian grid

fm−1
IBM (xi,j,k) =

Np,Nl∑

n,l
Fm−1

l,n 𝛿h,3D
(

xi,j,k − Xl,n
)
ΔVl,n, (16c)

4. Update Eulerian velocity with the computed force

um = um−1 + 2𝛼kΔtfm−1
, (16d)

um−1 = um
, (16e)

end

In principle, Equation (16d) must be solved implicitly with the viscous term which would require a matrix inver-
sion. However, since the Runge–Kutta time step is relatively small, an explicit update is a valid approximation. Although
this method alleviates the time-step constraint, the number of outer forcing loops nf is a tuning parameter. Kempe and
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Fröhlich24 reported that large nf will eventually eliminate the error, although nf = 3 represents a good tradeoff between
computational cost and accuracy. However, Biegert49 stated that results can be oscillatory and negatively impact the col-
lision accuracy. Biegert et al.16 reported nf = 1 is sufficient to obtain accurate results for a single sphere settling in an
approximately unbounded (periodic) domain. In Section 3.3, we show that nf has a strong effect on collision model accu-
racy and hence must be calibrated based on both the fluid-particle interaction and collision models in our collocated
method.

2.2.3 Collocated fluid solver: Three- and four-point Dirac delta function

In the original direct forcing IBM on a staggered grid, the three-point regularized Dirac delta function (Equation 9) is used.
However, on a collocated grid, a four-point function that ensures both odd and even grid cells receive the same forcing
may be needed to reduce oscillations that occur with the three-point function. To enforce this constraint, the four-point
function must satisfy

∑

i even
𝜙4 (ri) =

∑

i odd
𝜙4 (ri) =

1
2
, (17)

while the three-point function (Equation 10) only enforces
∑

i
𝜙3 (ri) = 1, (18)

where i is an integer indicating one of the cells on the Eulerian grid. Uhlmann45 suggests that a collocated formulation
should use the four-point function proposed by Peskin13 to reduce oscillations that occur with the three-point function.
In the four-point function,

𝜙4 (r) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1
8

(
5 + 2r −

√
−7 − 12r − 4r2

)
, −2 ≤ r ≤ 1

1
8

(
3 + 2r +

√
1 − 4r − 4r2

)
, −1 ≤ r ≤ 0

1
8

(
3 − 2r +

√
1 + 4r − 4r2

)
, 0 ≤ r ≤ 1

1
8

(
5 − 2r −

√
−7 + 12r − 4r2

)
, 1 ≤ r ≤ 2

0, otherwise.

(19)

The three-dimensional, four-point regularized Dirac-delta function is then given by

𝛿
4p
h,3D (x − Xl) = 𝛿4p

h,x (x − Xl) 𝛿4p
h,y (y − Yl) 𝛿4p

h,z (z − Zl) , (20)

where

𝛿
4p
h,x (x − Xl) =

1
h
𝜙4 (r) . (21)

In Section 3.2, we compare the effects of the three- and four-point regularized Dirac delta functions on the accuracy of
direct-forcing IBM in our collocated grid approach.

2.2.4 Collocated fluid solver: Triply-periodic boundary conditions

To simulate particle suspensions in a triply periodic domain, the compatibility condition (∫Ω 𝛁P dΩ = 0) must be satis-
fied.14 As demonstrated by Höfler and Schwarzer,50 by assuming periodicity and zero net acceleration and decomposing
the pressure gradient with

𝛁P = 𝛁Paperiodic + 𝛁Pperiodic, (22)
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where 𝛁Paperiodic and 𝛁Pperiodic are the aperiodic and periodic components of the pressure gradient, integrating the
Navier–Stokes equation (1) over the computational domain volume Ω gives

𝛁Paperiodic =
1

Vd ∫Ω fIBM dV = fIBM, (23)

where fIBM is the volume-averaged direct-forcing vector and Ω is the computational domain with volume Vd. To ensure
compatibility, fIBM must be subtracted from Equation (1) for triply-periodic cases. Since the aperiodic pressure gradient
arises from the buoyancy force due to the particles, the force can be computed as the submerged weight of the Np particles
in the system with

fe,sw = −
Np∑

n

𝜋

6
d3

p,n

(
𝜌p,n

𝜌f
− 1

)
g, (24a)

where dp,n and 𝜌p,n are, respectively, the diameter and density of particle n. Alternatively, it can be directly computed
discretely as the average direct IBM force over the Eulerian grid cells in the domain with

fIBM = − 1
NiNjNk

Ni,Nj,Nk∑

i,j,k
fIBM,ijk, (24b)

which is the average discrete IBM force added to the system due to the presence of particles. Both equations yield the same
result but Equation (24b) incurs slightly more computational cost than Equation (24a) since Equation (24a) is computed
only once. Equation (24b) is adopted for our proposed method so as to not restrict to spherical particles for possible future
extension.

Including the modifications in this section, the modified finite-volume fluid solver for direct-forcing IBM on a
collocated grid is given by

1. Predictor step without direct forcing

ũ − uk−1

Δt
= 2𝛼k𝜈f∇2uk−1 − 2𝛼k𝛁Pk−1

− 𝛾k(u ⋅ 𝛁u)k−1 − 𝜁k(u ⋅ 𝛁u)k−2
, (25a)

where u ⋅ 𝛁u and ∇2u are evaluated with second-order accurate finite differences on the collocated grid.
2. Project the predicted Eulerian grid velocities onto the Lagrangian marker

Ũ
(

Xl,n
)
=

Ni,Nj,Nk∑

i,j,k
ũ
(

xi,j,k
)
𝛿h,3D

(
xi,j,k − Xl,n

)
h3
, (25b)

3. Determine the Lagrangian marker force to enforce the no-slip condition

F
(

Xl,n
)
=

ud
p
(

Xl,n
)
− Ũ

(
Xl,n

)

2𝛼kΔt
, (25c)

4. Interpolate Lagrangian marker force back onto the Eulerian grid

fIBM
(

xi,j,k
)
=

Np,Nl∑

n,l
F
(

Xl,n
)
𝛿h,3D

(
xi,j,k − Xl,n

)
ΔVl,n. (25d)

The three- and four-point delta functions are compared in Section 3.2.
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5. Predictor step with direct forcing

u∗ − ũ
Δt

= 2𝛼k

(
fIBM − fIBM

)
− 𝛼k𝜈f∇2uk−1

+ 𝛼k𝜈f∇2u∗ + 2𝛼k𝜃𝛁Pk−1
, (25e)

where fIBM is the submerged weight of the particles from Equation (24b) and only non-zero for triply-periodic cases.
6. Interpolate the cell-centered velocities onto the faces

u∗f =  (u∗) , (25f)

7. Solve the pressure Poisson equation to obtain the pseudopressure 𝜙

∇2
𝜙 = 1

2𝛼kΔt
𝛁 ⋅ u∗f , (25g)

8. Corrector step to obtain the cell- and face-centered quantities

uk = u∗ − 2𝛼kΔt𝛁𝜙, (25h)

uk
f = u∗f − 2𝛼kΔt𝛁𝜙f , (25i)

9. Compute the full pressure P using the pseudopressure 𝜙

Pk = (1 − 𝜃)Pk−1 + 𝜃
(
𝜙 − 𝛼kΔt𝜈f∇2

𝜙
)
. (25j)

Here, 𝜃 = 0 for pressure projection and 𝜃 = 1 for pressure correction. Compared to the staggered formulation,
Equations (25a)–(25d) are formulated on a collocated grid. Pressure and momentum have been coupled through
Equations (25e)–(25j). The original direct-forcing IBM14 was thoroughly validated with test cases involving fluid-particle
interactions. However, in particle suspensions, particle-particle and particle-wall collisions are inevitable. When particles
come into contact with one another or a wall, two problems arise. First, the Lagrangian marker cells overlap, render-
ing the Dirac delta function invalid. Second, the direct-forcing IBM cannot resolve the flow in the small gaps between
the particles or particle and wall. To resolve these issues, we adapt the collision models proposed by Biegert et al.16 for a
collocated grid. In this approach, the collision force Fc,p and torque Tc,p imposed on particle p are given by

Fc,p =
Np∑

p,q≠p

(
Fn,pq + Ft,pq

)
+ Fn,pw + Ft,pw, (26a)

Tc,p =
Np∑

p,q≠p
Rpq,cpnpq × Ft,pq + Rpw,cpnpw × Ft,pw, (26b)

where Fn,pq and Ft,pq are the normal and tangential collision forces between particle p and q, Fn,pw and Ft,pw are the
normal and tangential collision forces between particle p and a wall, npq is the vector normal to the plane of con-
tact between particles p and q, npw is the vector normal to the wall at the point of contact with particle q, Rpq,cp =
0.5||

(
||xq − xp|| + Rp − Rq

)
npq|| is the effective radius between particle p and q and Rpw,cp = ||xw − xp|| is the effective

radius between particle p and wall w. The normal and tangential collisional forces on particle p are defined as

Fn =
⎧
⎪
⎨
⎪
⎩

0, 𝜁n ≥ 𝜖sep

Fn,lub, 0 ≤ 𝜁n ≤ 𝜖sep,

Fn,con, 𝜁n ≤ 0,

(27a)

Ft =

{
0, 𝜁n ≥ 𝜖sep

Ft,con, 𝜁n ≤ 0,
(27b)
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where Fn,lub is the lubrication force, Fn,con is the normal contact force, 𝜁n is the separation distance between the surfaces
and 𝜖sep = 1.5h for the three-point Dirac-delta function and 𝜖sep = 2h for the four-point Dirac-delta function.

2.2.5 Collision models: Disabling the Lagrangian markers

To resolve issues associated with overlapping Eulerian grid points, we adopt an approach similar to Kempe and Fröh-
lich24 and Biegert et al.16 by excluding Lagrangian markers in calculating fIBM when the distance between a particle and
wall satisfies 𝜁n,pw < 𝜖sep or the distance between particles p and q satisfies 𝜁n,pq < 2𝜖sep. In addition, for particle-particle
collisions, instead of excluding Lagrangian markers for both particles as in Kempe and Fröhlich24 and Biegert et al.,16 we
exclude the Lagrangian markers from just one particle, chosen at random. This avoids the scenario where the particle
that is surrounded by many neighbors has none of its Lagrangian markers included in the calculation and better enforces
no-slip condition on the particle surfaces.

2.2.6 Collision models: Lubrication model

When the separation distance 𝜁n between particles is smaller than the threshold separation distance 𝜖sep, direct-forcing
IBM can no longer resolve the flow. Therefore, a lubrication model is used to model the force exerted by the fluid on the
particles. We adopt the analytical lubrication model by Cox and Brenner51 and modified by Biegert et al.,16 in which the
lubrication force is given by

Fn,lub = −
6𝜋𝜌f 𝜈f R2

eff𝜓 (𝜁n)
max (𝜁min, 𝜁n)

gn,cp, (28)

where Reff = RpRq∕(Rp + Rq) is the effective radius that is defined based on the particles p and q, gn,cp is the normal
component of the relative velocity of the particle surface at the contact point and 𝜁min is the minimum separation dis-
tance to prevent a singularity as 𝜁n → 0.16 In Biegert et al.,16

𝜓 (𝜁n) = 𝜁n was used. However, this formulation results in
a discontinuity at the interface where Fn,lub ≠ 0 (Figure 2). To avoid the discontinuity, we introduce a function 𝜓 (𝜁n) =
0.5erf (6 − C max (𝜁min, 𝜁n) ∕h) + 0.5 to enforce a continuous force when particles come close to one another where C = 5.5
or 4 for three and four-point function respectively.

2.2.7 Collision models: Normal contact model

To account for the normal contact force during collisions, we implemented the approach by Biegert et al.16 who employ
the adaptive collision time model (ACTM) proposed by Kempe and Fröhlich.27 The idea behind ACTM is to derive an
optimized stiffness coefficient kn and damping coefficient dn to achieve the desired dry restitution coefficient edry over a
collision time Tc, as discussed below. The normal contact force Fn,con is defined as

Fn,con = −kn|𝜁n|3∕2n − dngn,cp, (29)

where kn and dn are the optimized stiffness and damping coefficients. Equation (29) describes the collision model based
on the contact theory of Hertz.27 In the past, kn and dn were typically chosen based on material properties. However, the
chosen kn is usually large, making the equations very stiff. Therefore, the time step sizeΔt must be based on the collision
model in which the collision time Tc is much smaller thanΔt for the flow calculation. To overcome this problem, instead of
fixing kn and dn, Kempe and Fröhlich27 proposed to fix edry and Tc by dynamically optimizing kn and dn. edry is a parameter
based on the material property of the particle and Tc is a tuning parameter. Large Tc will lead to extensive overlap between
colliding particles, making collisions unrealistic, while small Tc will increase the stiffness of the equation. Based on the
studies conducted by Kempe and Fröhlich,27 Tc = 10Δt represents a good balance between accuracy and computational
cost. To obtain kn and dn, the nonlinear ordinary differential equations representing the interparticle spacing are solved,
such that
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(A) (B)

F I G U R E 2 Lubrication force as a function of separation distance between particle p and q for (A) three- and (B) four-point function
[Colour figure can be viewed at wileyonlinelibrary.com]

meff
d2
𝜁n

dt2 + dn
d𝜁n

dt
+ kn𝜁

3∕2
n = 0, (30a)

d𝜁n

dt
= −gn,cp ⋅ n, (30b)

where meff = mpmq∕(mp +mq) is the effective mass accounting for polydisperse particles, and the equations are subject
to two conditions at t = Tc, 𝜁n (Tc) = 0 and gn,cp (Tc) = edrygn,cp ⋅ n. Kempe and Fröhlich27 used the Newton–Ralphson
method to obtain a solution to Equation (30a) while Ray et al.52 developed an analytical approach. The method of Ray
et al.52 incurs less than 1.3% error in the rebound velocity when edry > 0.7. In our simulations, since edry > 0.9 is typically
used, we adopt their approach due to its low computational cost and ease of implementation.

A potential issue with ACTM as pointed out by Biegert et al.16 is large kn for weak collisions. As the impact velocity
between collisions uin → 0, the Stokes number defined as

St =
uin𝜌pdp

9𝜌f 𝜈f
, (31)

also approaches 0, making kn → ∞. Both Kempe and Fröhlich27 and Biegert et al.16 introduce a critical Stcrit where uin
is based on a prescribed Stcrit. In our approach, we set Stcrit = 5 following Biegert et al.16 In addition, Biegert et al.16 also
introduces a threshold kn,grav to prevent extensive overlap when uin,crit is large relative to the particle size and relevant
time scales for a low Reynolds number flow. Therefore, kn is defined as

kn =

{
kn,ACTM , uin > uin,crit,

max
(

kn,crit, kn,grav
)
, uin ≤ uin,crit,

(32)

where

kn,crit =
meff√

uin,critt5
∗

, (33)

http://wileyonlinelibrary.com
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and

kn,grav = max
(

mpg
(
𝜖dp∕2

)−3∕2
,mqg

(
𝜖dq∕2

)−3∕2
)
, (34)

where 𝜖 = 10−3.

2.2.8 Collision models: Tangential contact model

To account for the tangential contact force during collisions, we follow the approach by Biegert et al.16 who employ
the model in a review paper by Thornton et al.53 This model uses a spring-dashpot model in which Ft,con is
defined as

Ft,con = min
(‖‖Ft,dp‖‖ , ‖‖𝜇friFn‖‖

)
t, (35)

where 𝜇fri is the coefficient of friction between two surfaces and t = Ft,dp∕ ‖‖Ft,dp‖‖ is the direction vector of the tangential
force. Ft,dp is defined as

Ft,dp = −kt𝜻 t − dtgt,cp, (36)

where kt and dt are the stiffness and damping coefficients, gt,cp is the tangential velocity relative to the surface of contact
and 𝜻 t is the time-cumulative tangential spring displacement defined as

𝜻 t = ∫
t

t0

gt,cp (𝜏) d𝜏, (37)

where t0 is the impact time. An approach similar to ACTM is adopted for kt and dt which are calculated dynamically at
each time step. The tangential stiffness coefficient is defined as

kt =
2
(
1 − 𝜈poi

)

2 − 𝜈poi
, (38)

and the tangential damping coefficient is defined as

dt = 2
√

meffkt
−lnedry

√
𝜋2 +

(
ln e2

dry

) , (39)

where 𝜈poi is Poisson’s ratio of the particle material. When compared to the model proposed by Kempe and Fröhlich24

that enforces slip conditions, this model allows the particles to interact smoothly and stably. To differentiate between
rolling/sticking and sliding motions, we adopted the methods by Biegert et al.16 who employed the formulation of Lud-
ing32 in which 𝜇fri = 𝜇s when particles are sticking (‖‖Ft,dp‖‖ < ‖‖𝜇friFn‖‖) and 𝜇fri = 𝜇k when slipping occurs (‖‖Ft,dp‖‖ >
‖‖𝜇friFn‖‖).

2.2.9 Collocated particle solver: Direct computation of fluid inertia within the particle

In the original direct-forcing IBM, Uhlmann14 used a rigid body approximation to calculate the rate-of-change term
that describes the effect of fluid inertia within the particle. As a result, Equation (13a) has a singularity at 𝜌p∕𝜌f = 1
when 𝜌p − 𝜌f = 0, and the method becomes unstable when 𝜌p∕𝜌f < 1.2. To resolve this issue, Kempe and Fröhlich24

adopted a level-set approximation to compute the rate-of-change term directly which eliminates both the singularity and
improves the stability related to fluid-particle coupling when 𝜌p∕𝜌f > 0.2. Using second-order midpoint quadrature rules,
the integrals in the rate-of-change terms are approximated with
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∫Ωp

u dV ≈
Ni,Nj,Nk∑

i,j,k
𝛼i,j,kΔΩi,j,kui,j,k, (40a)

∫Ωp

r × u dV ≈
Ni,Nj,Nk∑

i,j,k
𝛼i,j,kΔΩi,j,k (r × u) , (40b)

where ΔΩ is the volume of a grid cell and 𝛼i,j,k is the volume fraction of the cell with indices i, j, k and is defined as

𝛼i,j,k =
ΔΩp

i,j,k

ΔΩi,j,k
, (41)

where ΔΩp
i,j,k is the volume of the cell occupied by particle p. 𝛼i,j,k can be calculated with the level-set approximation

𝛼i,j,k =
∑8

m − 𝜙mH (−𝜙m)
∑8

m|𝜙m|
, (42)

where H (⋅) is the Heaviside function

H (−𝜙) =

{
1, 𝜙 ≤ 0,
0, 𝜙 > 0,

(43)

and 𝜙 is the distance from the corner of each grid cell to the center of the particle and m = 1, 2, … , 8 is the index of the
eight corners of a Cartesian grid cell.

2.2.10 Collocated particle solver: High-order time integration scheme and sub-stepping

In the original direct-forcing IBM, the linear and angular momentum equations for the particle motion are integrated
in time with the first-order forward Euler scheme or the second-order Crank–Nicolson scheme. Various researchers14,24

have shown that these discretizations can produce accurate results of fluid-particle interactions. However, Biegert et al.16

demonstrated that lower-order schemes do not produce accurate particle rebound velocities. As a result, a collision time
of Tc = 1000Δt is required to reduce the error in the rebound velocity to 0.1%. Therefore, we followed the approach by
Biegert et al.16 by adopting a higher-order time-stepping scheme with predictor-corrector steps.

Another issue identified by many researchers16,30,54 is that a time-step size that accurately resolves fluid-particle inter-
actions may fail to resolve the lubrication force. To overcome this issue, Costa et al.54 and Biegert et al.16 proposed
sub-iterations for the particle motion solver. Costa et al.54 conducted a total of 50 sub-iteration by using Δtsub = Δt∕50
while Biegert et al.16 conducted a total of 15 sub-iterations withΔtsub = Δt∕15. With the approach by Biegert et al.,16 each
sub-step employs a three-step Runge–Kutta scheme, resulting in a total of 45 iterations. The Runge–Kutta sub-step k of
the improved form of the original update given in Equations (13a)–(13d) is given by

ũp − uk−1
p

Δt
= 1

mp

(
2𝛼kFk

h,p + 𝛾kFc,p
(

xk−1
p ,uk−1

p
)
+ 𝜁kFc,p

(
xk−2

p ,uk−2
p

))
+ 2𝛼kg′, (44a)

𝝎̃p − 𝝎k−1
p

Δt
= 1

Ip

(
2𝛼kTk

h,p + 𝛾kTc,p
(

xk−1
p ,uk−1

p
)
+ 𝜁kTc,p

(
xk−2

p ,uk−2
p

))
, (44b)

x̃p − xk−1
p

Δt
= 𝛼k

(
ũp + uk−1

p
)
, (44c)

uk
p − uk−1

p

Δt
= 1

mp

(
2𝛼kFk

h,p + 𝛾kFc,p
(

x̃p, ũp
)
+ 𝜁kFc,p

(
xk−1

p ,uk−1
p

))
+ 2𝛼kg′, (44d)
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𝝎
k
p − 𝝎k−1

p

Δt
= 1

Ip

(
2𝛼kTk

h,p + 𝛾kTc,p
(

x̃p, ũp
)
+ 𝜁kTc,p

(
xk−1

p ,uk−1
p

))
, (44e)

xk
p − xk−1

p

Δt
= 𝛼k

(
uk

p + uk−1
p

)
, (44f)

where

Fk
h,p =

⎧
⎪
⎨
⎪
⎩

−𝜌f
∑Nl

l Fl (Xl) ΔVl + 𝜌f

[
dt

d ∫ Γp

u dx
]k

, max (St) > Stcrit

0, max (St) ≤ Stcrit

(45)

g′ =
(
1 − 𝜌f∕𝜌g

)
g, (46)

Tk
h,p =

⎧
⎪
⎨
⎪
⎩

−𝜌f
∑Nl

l

(
Xl − xk−1

p
)
× F (Xl) ΔVl + 𝜌f

[
dt

d ∫ Γp

r × u dx
]k

, max (St) > Stcrit

0. max (St) ≤ Stcrit

(47)

3 RESULTS AND DISCUSSIONS

3.1 Verification with analytical Taylor Green vortices

Following Uhlmann,14 to verify the accuracy of the fluid solver of the finite-volume-based IBM on a collocated grid, we
computed the errors associated with computing the flow around a particle located in a flow field given by Taylor Green
decaying vortices, for which the analytical solution is given by

u (x, y, t) = sin (kxx) cos
(

kyy
)

exp
(
−
(

k2
x + k2

y
)
𝜈f t

)
, (48a)

v (x, y, t) = −kx

ky
cos (kxx) sin

(
kyy

)
exp

(
−
(

k2
x + k2

y
)
𝜈f t

)
, (48b)

P (x, y, t) = 1
2

(

−sin2 (kxx) +
k2

x

k2
y

cos2 (kyy
)
)

exp
(
−2

(
k2

x + k2
y
)
𝜈f t

)
, (48c)

where kx = ky = 𝜋 m−1 is assumed. The flow is initialized at time t = 0 with Equation (48) and a two-dimensional circular
disk with a diameter dp = 2 m and particle-fluid density ratio s = 𝜌p∕𝜌f = 1 is located at the center of the computational
domain of size 1.5dp × 1.5dp. The kinematic viscosity 𝜈f = 0.2 m2 s−1 is used. The simulation time is 0.5 s with a time step
sizeΔt = 0.001 s. The desired velocity at the disk surface ud

p is computed with Equation (48), and hence the desired velocity
at the Lagrangian markers is the same as the exact Eulerian velocity at those points. Therefore, the particle should not
translate or rotate because there is no viscous stress on the particle surface. An accurate IBM method therefore should give
the velocity and pressure fields given by Equation (48) since these represent the fluid motion in the absence of a particle.

Figure 3 shows the computed errors in the velocity and pressure fields as a function of the grid resolution. The error
is given by the L∞ norm as

error∞ = ||𝛼 − 𝛼true||∞, (49)

where 𝛼 and 𝛼true are the quantities of interest from simulations and Equation (48), respectively. In this verification analy-
sis, the pressure projection method (𝜃 = 0 in Equation (25)) and three-point Dirac delta function are used. Similar trends
were observed with other combinations (i.e., pressure projection with four-point Dirac delta function). By comparing to
the reference line (dashed-line), second-order convergence in both velocity and pressure fields was observed. For cases
with and without the particle, second-order convergence was also observed (Figure 3B vs. Figure 3A), showing that the
inclusion of interpolation using the discrete delta function does not have an impact on the overall accuracy of the fluid
solver.
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(A) (B)

F I G U R E 3 Error of velocity and pressure field for simulating two-dimensional decaying vortices. The error is shown as a function of
mesh resolution h (A) without and (B) with a particle [Colour figure can be viewed at wileyonlinelibrary.com]

To further verify the accuracy of the discrete delta function, we used the same configuration, except that we enforced
a no-slip boundary condition on the particle surface such that ud

p = 0. Since exact solutions are not available due to the
presence of the particle, we use the simulation with the highest resolution (dp∕h = 683) as a reference solution, where
the highest resolution used is much finer than the typical resolution used for IBM methods (∼ dp∕h = 20). Both L2 and
L∞ norms were computed with

error2 = ||𝛼 − 𝛼dp∕h=683||2, (50a)

error∞ = ||𝛼 − 𝛼dp∕h=683||∞. (50b)

By comparing to the reference lines (dashed-line for (h2) and dashed-dotted-line for (h)), approximately first-order
convergence in both velocity and pressure fields was observed. Overall, the finite-volume-based IBM on a collocated grid
is approximately first-order accurate (Figure 4). This is consistent with other similar approaches.19

3.2 Fluid-particle interactions

We simulated the settling of a single particle to validate the accuracy of the fluid-particle interactions using our collocated
direct-forcing IBM approach. The primary parameter of interest is the terminal Reynolds number

Ret,∞ =
wt,∞dp

𝜈f
, (51)

where wt,∞ is the terminal velocity of a single particle in an approximately unbounded (periodic) domain. In the results,
the settling velocity and time are normalized by wref =

√
gdp and tref =

√
dp∕g, respectively, where g = 9.81 m s−2. For all

simulations in this section, the time step is determined based on a maximum Courant number Cmax = umaxΔt∕h = 0.4,
where umax is the maximum magnitude of the fluid velocity vector over the course of the simulation. We also assume
nf = 2 outer forcing loops (Section 2.2.2), the three-point Dirac delta function (Equation 10), and the pressure projection
scheme (𝜃 = 0 in Equation (25)). Results of a particle settling onto a bottom wall are compared to the experiments of

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 4 Error of velocity and pressure when simulating two-dimensional decaying vortices with a no-slip condition on a particle.
Errors are shown as functions of mesh resolution h for (A) L2 and (B) L∞ norms [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Simulation parameters and setup for test cases to validate against experiments results by Ten Cate et al.55 and Mordant and
Pinton.56

Ret,∞ 12 32 41 360

Particle diameter dp (m) 0.015 0.015 1/6 1/6

Density ratio 𝜌p∕𝜌f 1.16 1.16 2.56 2.56

Fluid kinematic viscosity 𝜈f (10−4 m2/s) 1.17 6.04 54.2 10.4

Domain size (m) 0.1 × 0.1 × 0.2 0.1 × 0.1 × 0.2 1.25 × 1.25 × 10 1.25 × 1.25 × 10

Grid resolution dp∕h 14, 19, 29 14, 19, 29 10, 20, 30, 43 10, 20, 30, 43

Particle initial vertical position z0 (m) 0.13 0.13 9.5 9.5

Boundary conditions p × p × ns p × p × ns p × p × p p × p × p

Outer forcing loops nf 2 2 2 2

Delta function Three-point Three-point Three-point Three-point

Pressure scheme (𝜃) Correction Correction Correction Correction

Reference Ten Cate et al.55 Ten Cate et al.55 Mordant et al.56 Mordant et al.56

Note: Boundary conditions are periodic (p) or no-slip (ns).

Ten Cate et al.,55 while results of a particle settling in an approximately unbounded (periodic) domain are compared to
experiments of Mordant and Pinton.56 Simulation parameters and setup are summarized in Table 1.

Figures 5 and 6 show the settling velocity, wt, of a single particle settling against a wall and in an approximately
unbounded (periodic) domain, respectively, demonstrating the effect of grid resolution dp∕h. As the grid is refined and
dp∕h increases, the settling velocity wt converges monotonically to the experimental values. In Figure 6B, the simulated
settling velocity appears to exceed the experimental values, particularly for the higher Ret,∞ case. The experimental results
by Mordant and Pinton56 are ensemble averages of many different instances to average out small discrepancies in particle
sizes and unsteadiness in the particle motion, which leads to a small discrepancy between experimental and simulation
results and parameters. Similar discrepancies were also found by various authors.14,19,49 Overall, based on these results,

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 5 Time series of the simulated settling velocity wt of a single particle settling and coming to rest on a bottom wall with
Ret,∞ = 12 (A) and 32 (B) and different grid resolutions h used to resolve the particle diameter dp, compared to published results. [Colour
figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 6 Time series of the simulated settling velocity wt of a single particle in an approximately unbounded (periodic) domain with
Ret,∞ = 41 (A) and 360 (B) and different grid resolutions h used to resolve the particle diameter dp, compared to published results. [Colour
figure can be viewed at wileyonlinelibrary.com]
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T A B L E 2 Simulation setup to study the effect of the number of outer forcing loops nf , pressure scheme, and Dirac delta function on
simulations of particle settling.

Ret,∞ 41 360

Particle diameter dp (m) 1/6 1/6

Density ratio 𝜌p∕𝜌f 2.56 2.56

Fluid kinematic viscosity 𝜈f (10−4 m2/s) 54.2 10.4

Domain size (m × m × m) 1.25 × 1.25 × 10 1.25 × 1.25 × 10

Grid resolution dp∕h 20 20

Particle initial vertical position z0 (m) 9.5 9.5

Outer forcing loops nf 0,1,2,3 0,1,2,3

Delta function Three- or four-point Three- or four-point

Pressure scheme (𝜃) Correction, projection Correction, projection

Note: Boundary conditions are periodic in all directions.

(A) (B)

F I G U R E 7 Time series of the simulated settling velocity wt of a single particle with Ret,∞ = 41 (A) and 360 (B) and different outer
forcing loops nf to enforce the no-slip condition on the particle surface, compared to published results. [Colour figure can be viewed at
wileyonlinelibrary.com]

a grid resolution of dp∕h = 20 achieves a good balance between computational cost and accuracy. Therefore, in what
follows, we will use dp∕h = 20 as the default resolution.

In Section 2.2.2, the number of outer forcing loops nf was introduced as a tuning parameter. To understand the effect
of nf on the accuracy of fluid-particle interactions, simulations with different nf are conducted. Table 2 summarizes the
simulation parameters and Figure 7 shows the effects of nf on the settling velocity wt in an approximately unbounded
(periodic) domain. For the low Reynolds number case, wt converges towards the experimental results as nf increases
(Figure 7A). Similar trends have been also observed by Kempe and Fröhlich24 and Biegert.49 When Ret,∞ = 360, the
improvement from nf = 0 to nf = 1 is significant although further increasing nf does not demonstrate significant improve-
ment (Figure 7B). The agreement between n = 0 and experimental results in Figure 7B is likely to be coincidence since
unsteadiness is introduced for higher Reynolds number. The experimental result for Ret,∞ = 360 is obtained by averaging
numerous repetitions. Based on these simulations, nf = 1 is sufficient to accurately simulate fluid-particle interactions.
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(A) (B)

F I G U R E 8 Time series of the simulated settling velocity wt of a single particle with Ret,∞ = 41 (A) and 360 (B) and different pressure
schemes and delta functions, compared to published results. [Colour figure can be viewed at wileyonlinelibrary.com]

However, the number of outer forcing loops will also affect the accuracy of the collision models. Combined with stud-
ies conducted in Section 3.3, nf = 2 is required for accurate collision models while nf ≥ 1 is needed to obtain accurate
fluid-particle interactions. Therefore, nf = 2 is appropriate to accurately simulate both fluid-particle and particle-particle
interactions.

In addition to the grid resolution and nf , choosing an appropriate interpolation kernel and pressure scheme has been
shown to be critical, as discussed in Section 2.2. Figure 8 demonstrates the effects of (1) the pressure correction versus
projection scheme (Equation 25k) and (2) the three- versus four-point regularized Dirac delta functions (Equation 10
vs. 19). Although these parameters have been shown to have important effects by past authors (i.e., Armfield and
Street57 compared pressure correction and projection in staggered formulation of fractional step method without IBM
and Uhlmann44 tested three- and four-point Dirac delta functions in a staggered grid without collisions), thorough stud-
ies with the collocated IBM method have not been conducted. Our results show that a combination of the three-point
delta function and pressure projection scheme produces results that most closely match the experiments for both low
and high Reynolds numbers. In what follows, the three-point Dirac delta function and pressure projection scheme will
be used.

3.3 Particle-particle interactions

To validate and calibrate the normal collision model, simulation results are compared to the experiments of Gondret
et al.,58 in which a particle bounces off the wall of a tank. The experiments focus on the effect of the Stokes number on
the maximum height of the particle after bouncing. The Stokes number is defined in Equation (31). Table 3 summarizes
parameters and setup used in the simulations which were identical to Biegert et al.,16 and we simulate cases with St = 27
and St = 152. Two tuning parameters to be calibrated are the number of outer forcing loops nf and minimum separation
distance for the lubrication model 𝜁min. The former governs the accuracy of the no-slip condition enforced on the particle
surface while the latter determines the extent of deceleration due to lubrication forces. In the staggered direct forcing
IBM,16 nf = 1 and 𝜁min = 3.0 × 10−3rp were chosen to reproduce experimental results by Gondret et al.58 (rp = dp∕2 is the
particle radius).

To calibrate nf and 𝜁min for the collocated IBM in this article, the particle is initially placed at a height 2 dp below the
top wall and its velocity in the z-direction is prescribed according to Biegert et al.16 as
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T A B L E 3 Simulation parameters and setup to validate the collision models against the wall bounce experiments by Gondret et al.58

Stokes number St 27 152

Particle diameter dp(m) 0.006 0.003

Density ratio 𝜌p∕𝜌f 8.083 8.342

Kinematic viscosity 𝜈f (10−4 m2/s) 1.036 0.107

Restitution coefficient edry 0.97 0.97

Impact velocity uimp(m/s) 0.518 0.585

Domain size (m × m × m) 0.08 × 0.08 × 0.16 0.02 × 0.02 × 0.2

Grid resolution dp∕h 19.2 19.2

Particle initial vertical position z0 (m) 0.075 0.197

Boundary conditions p × p × ns p × p × ns

Outer forcing loops nf 0,1,2,3,5,10,20 0,1,2,3,5,10

Dirac delta function Three-point Three-point

Pressure scheme (𝜃) Projection Projection

Time step Δt (s) 2.5 × 10−4 8.9 × 10−5

Note: Boundary conditions are periodic (p) or no-slip (ns).

u (t) = −uimp
(
1 − e−40t)

. (52)

This ensures a smooth acceleration to the desired impact velocity uimp. The particle is then allowed to move freely once
the distance to the bottom wall satisfies 𝜁n < dp∕2, whereupon the particle is subject to interaction with the fluid and wall.

To understand the effect of the number of outer forcing loops nf on the collision model, we conducted simulations with
fixed 𝜁min and varied nf to reproduce the particle rebound height. Figure 9 shows the effect of nf on the rebound height
with 𝜁min = 2.5 × 10−3rp. As shown in Figure 10, the maximum rebound height initially increases and then decreases with
further increases in nf , demonstrating the existence of a value of nf that achieves a maximum rebound height for a given
𝜁min.

Although there is a value of nf that maximizes the rebound height, the maximum value may not be the value that most
closely matches the experiments because the value of 𝜁min is also important. To assess the effects of 𝜁min, we simulated
cases with varying 𝜁min and fixing nf = 1 to study its effects on particle-particle interactions (the parameters are the same
as those for case St = 27 in Table 3). As shown in Figure 11, 𝜁min has a significant effect on the rebound height because it
dictates the lubrication force exerted on the particle. The smaller 𝜁min, the greater the lubrication force experienced by the
particle, hence the lower the particle rebound height. Unlike the effect of nf , the rebound height decreases monotonically
with decreasing 𝜁min. The best values of nf and 𝜁min are obtained by conducting simulations with different 𝜁min for nf = 1, 2
and 3 and choosing values that best match the experiments for both St = 27 and St = 152. The computed errors for all
cases simulated are summarized in Table 4. For nf = 2 and nf = 3 as shown in Figure 12, the values of 𝜁min to obtain
the most accurate rebound heights are 3.0 × 10−3rp and 3.5 × 10−3rp, respectively. Since nf = 2 is already satisfactory for
fluid-particle interaction, nf = 2 and 𝜁min = 3.0 × 10−3rp are chosen for both computational cost and accuracy.

3.4 Strong and weak computational scaling

The code is parallelized with MPI (openmpi-4.0) and we used the Hypre libraries developed by Lawrence Livermore
National Laboratories59 to invert the large linear systems associated with the fluid pressure and viscous terms. Lagrangian
particle information is transferred between processors using an MPI struct. We used Stampede2 KNL (TACC at University
of Texas, Austin) with Intel Xeon Phi 7250 processors (1.4 GHz) from XSEDE60 to obtain the scaling results outlined below.

The scaling test cases were conducted with a fluidized-bed reactor that is periodic in the x- and y-directions with
inflow and outflow conditions at the top and bottom boundaries (in the z-direction; see Section 3.5 for details). In all
simulations, the particle diameter is dp =2 mm, the upward flow velocity is 0.05 m s−1 and the domain size in the x, y, and
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(A) (B)

F I G U R E 9 Simulated height of the particle surface (𝜁n) bouncing off of a wall with St = 27 (A) and 152 (B) with different number of
outer forcing loops nf compared to published values. The minimum distance from the wall is 𝜁min = 2.5 × 10−3rp. [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 10 Maximum rebounding height of the center of a particle (𝜁n,max) with St = 27 (A) and 152 (B) as a function of number of
outer forcing loops nf . The black line represents the maximum rebounding height from experiments by Gondret et al.58 [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 11 Simulated height of the particle surface (𝜁n) bouncing off of a wall with St = 27 with different 𝜁min and nf = 1. [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 4 Summary of error |𝜁n,max,sim − 𝜁n,max,exp| between simulations and experiments by Gondret et al.58 as a function of 𝜁min and nf .

nf = 1 nf = 2 nf = 3

𝜻min St = 27 St = 27 St = 152 St = 27 St = 152

2.5 × 10−3rp 0.008 0.012 0.005 0.029 0.015

3.0 × 10−3rp 0.007 0.002 0.007 - -

3.5 × 10−3rp - 0.014 0.016 0.003 0.036

4.0 × 10−3rp 0.036 0.025 0.025 0.008 0.045

5.0 × 10−3rp - - - 0.033 0.059

z directions is 15dp × 15dp × 45dp. Ten time steps were computed with a time-step size of 10−4 s, and results are reported
as the average wall-clock time per time step.

Strong scaling of the code is assessed by fixing the number of particles and number of grid points, and varying the total
number of MPI tasks. To demonstrate strong scaling behavior of our code, we conducted three-dimensional simulations
with 2000 spherical particles. The particles were uniformly distributed in the domain or closely packed near the bed to
provide worst- and best-case scaling scenarios. The total problem size was either 256 × 256 × 768 or 512 × 512 × 1536
Eulerian grid points.

In order to compare the parallel performance of the components of the code related to the flow and particle solvers, we
define the total wallclock time with n MPI tasks as the sum of the time needed for the flow and particle calculations as tn =
tflow,n + tparticles,n. The speedup related to calculation of the flow+particles is then given by Sflow+particles,n = t24∕tn, while
the speedup related to the flow solver only is Sflow,n = tflow,24∕tflow,n, where n ≥ 24 is chosen due to memory limitation. As
shown in Figure 13, since there are substantially fewer particles than flow grid cells, the parallel efficiency of the particle
solver is smaller owing to the relatively fine-grained parallelism for the particle calculations. This effect is pronounced
when the simulations are initialized with a closely packed bed, in which case load balancing is less efficient because the
particle workload is disproportionately assigned to processors containing the closely packed particles.

In weak scaling, the typical approach is to keep the number of grid points on each processor constant. This is achieved
by varying the number of processors and total number of grid points simultaneously. In our method, weak scaling is
demonstrated by keeping both the number of particles and grid points on each subdomain constant. However, a challenge
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(A) (B)

(C) (D)

F I G U R E 12 Simulated height of the particle surface (𝜁n) bouncing off of a wall with (A) nf = 2 and St = 27, (B) nf = 2 and St = 152,
(C) nf = 3 and St = 27 and (D) nf = 3 and St = 152 with different 𝜁min. [Colour figure can be viewed at wileyonlinelibrary.com]

with the weak scaling is that the computational cost of the particle solver increases with grid refinement related to the
flow solver because the particle surfaces are resolved with more Lagrangian markers that must be coincident with the
Eulerian grid cells. Therefore, weak scaling disproportionally adds more work to the particle solver when refining the
Eulerian grid. To ensure that the workload for each processor related to the particle solver is fair, we reduce the particle
diameter in proportion to the grid spacing when refining the grid. For example, refining the grid from 64 × 64 × 192 to
128 × 128 × 384 would reduce the particle diameter dp from 2 to 1 mm. This ensures that the number of Lagrangian
markers needed to simulate the fluid-particle interactions remains constant on each processor.

Weak scaling is demonstrated for different grid sizes on each processor and with two different initial locations of
the 125 particles per processor: (a) all particles are clustered in the center of each subdomain so that no information
is exchanged, and (b) most particles are distributed along the boundaries of the processor so that particle information
on the boundaries must be exchanged. As shown in Figure 14, scaling is best when using 643 grid points per MPI task,
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F I G U R E 13 Strong scaling with 2000 particles in a doubly-periodic cubic domain, showing how the particle solver is not as efficient as
the flow solver, and the efficiency is better for the uniform distribution of particles owing to improved load balancing. [Colour figure can be
viewed at wileyonlinelibrary.com]

although the performance is not as good for case (b). However, typical cases are expected to have scaling behavior that is
somewhere between cases (a) and (b).

Overall, the weak scaling results indicate that a simulation with 400 million grid cells is expected to take roughly
7 s per time step using 1500 MPI tasks (assuming behavior that is half-way between cases (a) and (b)). Extrapolation
indicates that a simulation with 1 billion grid cells should take 9 s per time step with 3000 MPI tasks, and a simulation
with 5 billion grid cells should take roughly 20 s per time step.

3.5 Monodispersed and bidispersed particle fluidization

To demonstrate the capability of the method to simulate fluidized bed reactors, we conducted simulations showing that
we can match the porosity (1 − 𝜙where𝜙 is the volume fraction) predicted by experiments. In a fluidized bed, the porosity
can be predicted with the power law relationship

u∗ = u0

wt,ref
= k(1 − 𝜙)n, (53)

where u∗ is the normalized velocity, u0 is the superficial or upflow velocity, wt,ref is settling velocity of a single particle in
the domain of interest, k = 0.7 − 0.9 is a constant prefactor2,6,8,61 and n is the power law exponent. The general consensus
in the literature is that Equation (53) can predict the hindered settling velocity for a particle suspension or the porosity for
fluidization. Researchers have established various relationships to relate n to the terminal Reynolds number of a single
particle given by Equation (51).5,62 Richardson and Zaki5 employ the stepwise function

n =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

4.65, Ret,∞ < 0.2,
4.35Re−0.03

t,∞ , 0.2 ≤ Ret,∞ < 1,
4.45Re−0.1

t,∞ , 1 ≤ Ret,∞ < 500,
2.39, Ret,∞ ≥ 500.

(54)

Garside and Al-Dibouni62 improved the relationship with a continuous sigmoid function proposed to relate n and the
terminal Reynolds number of a single particle in the domain of interest, Ret,ref = wt,ref dp∕𝜈f where wt,ref is the terminal
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(A) (B)

F I G U R E 14 Weak scaling for the flow solver and for the flow+particle solver with different grid sizes on each processor for a
doubly-periodic cubic domain. The scaling for actual simulations is expected to be somewhere between the best-case (A) and worst-case (B)
particle scenarios. [Colour figure can be viewed at wileyonlinelibrary.com]

velocity of a single particle in the domain of interest, as

5.1 − n
n − 2.7

= 0.1Re0.9
t,ref , (55)

which is 20% more accurate than Equation (54).6
To verify that our method can reproduce the power law 53, three-dimensional simulations are conducted with

Np = 2000 particles in the reactor channel shown in Figure 15. The particles have a uniform diameter dp = 0.002 m and
density 𝜌p = 1300 kg m−3, and the fluid has a kinematic viscosity 𝜈f = 1.0037 × 10−6 m2 s−1 and density 𝜌f = 998.21 kg m−3

(𝜌p∕𝜌f = 1.3). The grid spacing is uniform in the x, y, and z directions and given by Δx = Δy = Δz = h = dp∕25.6, which
is sufficient to resolve the flow-particle interactions as demonstrated in Section 3.1. The square channel dimensions are
given by Lx = Ly = 10dp and its length is Lz = 60dp, giving a three-dimensional grid with 256×256×1536 grid points. The
time-step size is Δt = 1.5 × 10−4 s, resulting in a maximum Courant number of 0.4 for the cases with the highest upflow
velocities. In all simulations, 384 processors were used ensuring a 643 computational domain for each processor. Each
time step requires 10 s wall clock which is consistent with the scaling results presented in Section 3.4.

Simulations are initialized with a uniform distribution of close-packed particles with a spacing of 1dp at the bottom of
the domain and the flow is impulsively started from rest. The upflow velocity leads to expansion of the bed and random
motion of the particles until statistical equilibrium is reached, at which time the dynamics are independent of the initial
particle distribution. Simulations are run for a total of 100 𝜏T , where 𝜏T = dp∕u0 is the particle turnover time. As it takes
roughly 30 𝜏T to reach statistical equilibrium, results are time averaged over the last 70 𝜏T .

The average upflow velocity at the inlet, u0, is varied to investigate Reynolds number effects. A total of six simulations
were conducted with 0.01 ≤ u0 ≤ 0.35 m s−1, giving 20 ≤ Rep ≤ 70 where Rep = u0dp∕𝜈f . For all cases, the pressure is spec-
ified at the top boundary as p = 0, while at the bottom boundary the inflow velocity is specified and all side wall boundary
conditions are periodic. Due to the absence of walls which would produce a Poiseuille velocity profile at the inlet, the
inflow velocity is uniform and given by u0. For collision models, the minimum separation distance in the lubrication
model is set to 𝜁min = 3.0 × 10−3rp and the dry restitution coefficient edry = 0.97. The parameters dictating rolling/sticking
𝜇s = 0.11 and sliding 𝜇k = 0.8 are used.

Figure 16 demonstrates the relationship between the normalized velocity u∗ and the time-averaged porosity 1 − 𝜙.
A straight line on a log-log scale indicates the results follow a power law relationship. To assess the accuracy of the
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F I G U R E 15 Schematic of the three-dimensional computational domain, showing the initial particle locations making up the fluidized
bed.

F I G U R E 16 Time-averaged porosity 1 − 𝜙 as a function of superficial velocity u0 normalized by the settling velocity of a single particle
in the domain of interest wt,ref for the simulated cases. The lines were constructed based on fitting to the power law Equation (53). [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 17 Time-averaged porosity 1 − 𝜙 as a function of vertical position z for an upflow velocity of 0.35 m s−1 in a bidispersed
fluidized bed. [Colour figure can be viewed at wileyonlinelibrary.com]

simulations, we regressed the power law (Equation 53) which gives k = 0.72 and n = 2.82. This is in close agreement with
the values of n = 2.62 (Equation 54) and n = 2.88 (Equation 55) and trends reported by other low-porosity PRS.6,8

To demonstrate the capability to simulate polydispersed particles, we increased the simulation complexity from
monodispersed to bidispersed fluidization. Here, we performed a three-dimensional simulation with Np,total = 3376 par-
ticles in the reactor. The particles have two uniform diameters dp,1 = 0.002 m and dp,2 = dp,1∕1.4 and density 𝜌p =
1300 kg m−3. The number of particles for dp,1 and dp,2 are 1000 and 2376, respectively. The fluid properties are identical to
the monodispersed fluidization simulations. A uniform grid spacing with h∕dp,1 = 25.6 was used to ensure accuracy. The
square channel dimensions were identical, giving a grid with 256×256×1536 points. The inflow velocity was 0.35 m s−1,
giving Rep calculated based on dp,1 as 70. The time-step size Δt is calculated with both advection and diffusion Courant
numbers that are defined as Cadv = u0Δt∕h and Cdiff = 𝜈fΔt∕h2, respectively. We ensure that the maximum Courant num-
ber Cmax = max(Cadv,Cdiff) = 0.25. Figure 17 shows the time-averaged porosity 1 − 𝜙 as a function of z. The segregated
bidispersed fluidized bed consists of three regions with the following properties, in order from the bottom to the top of the
reactor: (1) monodispersed fluidization with particles of size dp,1, (2) bidispersed fluidization consisting of both particle
sizes, and (3) monodispersed fluidization with particles of size dp,2. We computed the spatially-averaged porosity for the
lower and upper regions as 1 − 𝜙 = 0.771 and 0.868, respectively which are approximately equivalent to the time-averaged
porosity obtained for the equivalent monodispersed fluidization simulations (1 − 𝜙 = 0.773 and 0.869). These results indi-
cate that bidispersed fluidized beds essentially segregate into layers that behave like their monodispersed equivalents, as
discussed extensively in a article using the present method by Yao et al.3

4 CONCLUSION

We develop a modified particle-resolved simulation framework that combines the collocated-grid IBM and collision mod-
els for polydisperse particles. An improved IBM24 is coupled with the fractional step method34 to solve the Navier Stokes
equations. The method is shown to be slightly higher than first-order accurate in space and scales well on hundreds of
processors on high-performance parallel computing platforms. To enforce no-slip boundary conditions on particle sur-
faces, a tuning parameter, the number of outer forcing loops nf , was introduced and calibrated based on experiments. The
accuracy of fluid-particle interactions was validated against various test cases corresponding to a single particle settling
in a periodic domain with different terminal settling velocities. These cases showed that the tuning parameter nf ≥ 1.
Since the IBM does not resolve the fluid-particle interactions when particles are very close to or in contact with one
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another, collision models are implemented to simulate the interactions between particles and flow. The normal contact
model we implement is based on the adaptive collision time step model proposed by Kempe and Fröhlich27 to remove
the constraint resulting from the collision time-step size which is typically much smaller than the fluid time-step size.
The tangential contact model utilizes a spring-dash-pot model16 while the lubrication model is modified based on an
algebraic relationship. To ensure accurate collisions between particles, specification of the minimum separation distance
between particles, 𝜁min, is needed. Since nf affects both fluid-particle and particle-particle interactions, nf and 𝜁min must
be calibrated to reproduce experimental results of particle-wall interactions. The collision models are calibrated with
experimental results of a single particle colliding with a wall, in which the rebound height of the particle matches the
experimental rebound trajectories with tuning parameters nf = 2 and 𝜁min = 3.0 × 10−3rp. Our results also show that a
grid resolution of dp∕h = 20 can produce results that closely match the experiments. These parameters represent a good
balance between computational cost and accuracy. Finally, our collocated-grid simulation framework for polydispersed
particles was used to simulate both monodispersed and bidispersed fluidized-bed expansion, demonstrating its capability
in reproducing the power law relationship between superficial velocity and porosity.
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