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ABSTRACT: While numerous modeling studies have focused on the interaction of ocean surface waves with the atmo-
spheric boundary layer, most employ idealized waves that are either monochromatic or synthetically generated from a
theoretical wave spectrum, and the atmospheric solvers are typically incompressible. To study wind–wave coupling in real-
world scenarios, a model that can simulate both realistic meteorological and wave conditions is necessary. In this paper we
describe the implementation of a moving bottom boundary condition into the Weather Research and Forecasting Model
for large-eddy simulation applications. We first describe the moving bottom boundary conditions within WRF’s pressure-
based vertical coordinate system. We then validate our code with idealized test cases that have analytical solutions, includ-
ing flow over a monochromatic wave with and without viscosity. Finally, we present results from turbulent flows over a
moving monochromatic wave with different wave ages, and demonstrate satisfactory agreement of the wave growth rate
with results from the literature. We also compare atmospheric stress and wind parameters from two physically equivalent
cases. The first specifies a wind moving in the same direction as a propagating wave, while the second involves a stationary
wave with the wind adjusted such that the wind relative to the wave is the same as in the first case. Results indicate that the
velocity and Reynolds stress profiles for the two cases match, further validating the moving bottom implementation.

KEYWORDS: Boundary conditions; Model evaluation/performance; Air-sea interaction

1. Introduction

Ocean surface waves play a key role in the dynamics of the
marine atmospheric boundary layer (ABL), impacting the
winds and scalar concentrations within the ABL by modulat-
ing the momentum exchange and scalar fluxes at the air–sea
interface (D’Asaro and McNeil 2007). Understanding the in-
teraction between ocean surface waves and the ABL has im-
portant ramifications for both fundamental science and
engineering, including parameterization of wave impacts in
weather and climate modeling (Large et al. 1994), marine
weather predictions and offshore wind energy assessment
(Yang et al. 2014a,b; Xiao and Yang 2019).

The effect of waves on the wind field depends on various
wave properties, including wave steepness (characterized by
ka, where k is the wavenumber and a is the wave amplitude),
wave age (defined as c/U0 or c/u*, where c is the phase speed
of the wave, U0 is a characteristic velocity of the wind, and u*
is the friction velocity of the wind) (Sullivan et al. 2000, 2014,
2018b,a), propagation direction (Patton et al. 2019; Husain
et al. 2022a; Cao et al. 2020) and the angle of misalignment
between the wave and the wind (Patton et al. 2019; Husain
et al. 2022b; Deskos et al. 2022). Both observational and nu-
merical studies have demonstrated the dependence of the
mean wind profile, the drag coefficient, and wave growth rate

on waves with different properties (e.g., Plant 1982; Cheung
and Street 1988; Reichl et al. 2014; Buckley and Veron 2016;
Kumar et al. 2022), indicating the importance of wind–wave
interaction on understanding the mechanisms of wave forma-
tion, air–sea exchange of momentum and energy, and param-
eterizing the effect of waves in large-scale models that cannot
resolve the waves explicitly.

Wind–wave interaction has been studied with both one-
and two-way coupled numerical models. In one-way coupling,
the wave field is imposed as a bottom boundary condition af-
fecting the airflow, yet the waves are not influenced by the
wind. Different types of waves have been employed in one-
way coupling studies, including a monochromatic linear sinu-
soidal wave (e.g., Sullivan et al. 2000; Zhang et al. 2019; Cao
and Shen 2021), Stokes waves (e.g., Yang and Shen 2011a;
Druzhinin et al. 2019; Cao et al. 2023), and broadband waves
(e.g., Sullivan et al. 2014, 2018a). In one-way coupling between
broadband waves and airflow, researchers further neglect non-
linear wave–wave interactions and superimpose broadband
linear wave components to accelerate computational speed
(Sullivan et al. 2014, 2018b). Both direct numerical simulation
(DNS) and large-eddy simulation (LES) have been employed
in one-way coupled models, using a curvilinear coordinate that
maps the grid to the shape of the moving waves (e.g., Sullivan
et al. 2000, 2014; Zhang et al. 2019). These studies focus on the
wave-induced effects on the mean wind profile, shear stress,
and turbulence characteristics. In two-way coupled models, the
wind and the wave are coupled dynamically and evolve to-
gether. Existing two-way coupled models use either a curvilin-
ear coordinate (e.g., Yang and Shen 2011a,b; Li and Shen
2022b) or the volume-of-fluid method (e.g., Campbell et al. 2016;
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Cimarelli et al. 2023; Wu and Deike 2021) to resolve the two-
phase flow. The majority of the two-way coupling studies em-
ploy DNS and focus on the small-scale dynamics of nonlinear
wave–wave interaction, turbulence on the waterside, scalar
transfer across the interface or wind–wave generation (Lin
et al. 2008; Liu et al. 2009; Komori et al. 2010; Campbell et al.
2016; Wu and Deike 2021; Li and Shen 2022a,b). Although
two-way coupled models resolve the influence of the wind
on waves, they are computationally expensive and limited to
small-scale dynamics at relatively low Reynolds numbers.
They require complicated boundary conditions on the deform-
able water surface to enforce continuous velocity and stress
profiles, and result in high computational costs (Yang and
Shen 2011b; Campbell et al. 2016). Hao and Shen (2019) built
an LES tool to simulate two-way coupled wind and wave
fields. In their model, waves are simulated with a high-order
spectral (HOS) method developed by Dommermuth and Yue
(1987). This method captures both the evolution of phase-
resolved waves under the influence of the wind and the nonlin-
ear interaction between waves. Hao and Shen (2019) showed
that the nonlinear interactions, rather than the influence of the
wind, play the dominant role in the long-term wave evolution.
The HOS wave solver needs to have a finer grid and smaller
time step than the LES model because nonlinear wave–wave
interaction transfers energy to higher frequencies. This in-
creases the computational cost of the two-way coupled LES–
HOS model, and the grid size mismatch between the LES and
HOS models further complicates the implementation of the
coupling. Moreover, Yang and Shen (2009) compared one-
and two-way coupled DNS simulation results and found negli-
gible differences in airflow vortical structures between the
two. These results suggest that the one-way coupled model
can provide satisfactory fidelity much more efficiently than a
two-way coupled model for the study of wave effects on air-
flow and turbulence.

Studies using either one- or two-way coupled models have
revealed important wave-induced effects on the ABL. Sullivan
et al. (2000) showed that monochromatic waves can increase
the turbulent momentum flux near the wave surface by as
much as 40% compared to a flat surface. Using the LES–HOS
model initialized with a wave field generated by an empirical
ocean spectrum, Hao and Shen (2019) found that the stream-
wise velocity spectrum of the wind displays a clear wave signa-
ture that follows the dispersion relation for deep water waves,
but this signature is restricted to a height dictated by the peak
wavelength. The one-way coupled model has been used to
show that ocean swells can increase the overall wind power ex-
traction in offshore wind farms by as much as 18% in low wind
speed conditions when the waves act to increase the wind
speed (Yang et al. 2014a,b). Hao et al. (2018) utilized the same
coupled model to explore the interactions between airflow and
wave groups and found that the presence of long waves can re-
duce the form drag of short waves. This model has also been
applied for simulating wind over fast-propagating monochro-
matic waves, revealing that the vertical component of the
wave orbital velocity dominates the wave-induced airflow per-
turbation (Cao and Shen 2021). More recently, several one-
way coupled numerical studies have focused on wind-opposing

wave or misaligned wind and waves. Cao et al. (2023) used
LES with prescribed Stokes waves and theoretical analysis to
show that for fast opposing waves, wave-induced airflow per-
turbation is dominated by the linear response of the wind to
the wave. Deskos et al. (2022) used DNS with linear, mono-
chromatic sine waves of different phase speeds and directions
relative to the wind. They reported a large deviation in the
mean velocity vector relative to the applied pressure gradient
when fast-moving waves were aligned at an angle of 1358 rela-
tive to the applied pressure gradient vector. However, this
DNS study is limited to a very low Reynolds number, similar
to other two-way coupled DNS studies focusing on small-scale
features such as the wave-induced Stokes sublayer (Cimarelli
et al. 2023) and wind–wave growth mechanisms (Li and Shen
2022a,b; Wu et al. 2022).

The studies mentioned above have explored many aspects
of wind–wave interaction. However, the simulations are lim-
ited to idealized or synthetic atmospheric conditions lacking
important meteorological factors such as temperature stratifi-
cation, humidity, and radiation. To develop a comprehensive
understanding of the interaction between ocean surface waves
and the ABL, a coupled wind–wave model that can simulate
realistic meteorological and wave conditions is needed. A
good candidate for realistic wind simulations is the Weather
Research and Forecasting (WRF) Model. WRF is a widely
used mesoscale numerical weather prediction model for both
atmospheric research and operational applications (Skamarock
et al. 2008). WRF solves the compressible Navier–Stokes equa-
tions with Coriolis terms and includes transport equations for
temperature, moisture, and tracers. Using a pressure-based
curvilinear coordinate, WRF can simulate flow over complex
terrain with moderate slopes and over multiple scales from
turbulence-resolving to synoptic. At large scales, WRF can
be forced by numerous meteorological datasets and provides
multiple numerical solution options as well as physics parameter-
izations for land surface, planetary boundary layer, atmospheric
and surface radiation, microphysics, and cumulus convection. At
small scales, an LES capability is also available with different
subgrid-scale turbulence options. WRF also provides a grid-nest-
ing mesh refinement option that enables LES domains to be
placed within mesoscale bounding-domain simulations, permit-
ting small-scale process studies to be conducted within realistic
mesoscale flows forced by real data. Moreover, WRF’s two-way
nesting capability provides a tool to fully couple different scales
with both up-sale and down-scale information exchange at nested
domain boundaries.

Given these capabilities, coupling WRF–LES with phase-
resolved moving surface waves can enable comprehensive nu-
merical studies of the influence of surface waves on the ABL
in both idealized and realistic meteorological and oceano-
graphic settings. These studies will benefit larger-scale atmo-
sphere-wave modeling by aiding the improvement of drag
parameterization for wind over surface water waves. In fact,
Yang et al. (2013) developed a dynamic model of sea surface
roughness using a two-way coupled LES–HOS model. A re-
cent study proposed a less computationally expensive sea sur-
face based drag model for LES of wind over waves, which is
only applicable to monochromatic sinusoidal waves with a
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known phase speed and wave steepness (Aiyer et al. 2023).
The coupled wave and WRF–LES model can be used to study
drag parameterization under more realistic scenarios and
extend the functionality of existing drag parameterization.
Another potential application of the coupled wave and WRF–
LES model is to improve offshore wind energy prediction.
Castorrini et al. (2023) recently coupled a mesoscale numerical
weather prediction model with a local-scale Reynolds-averaged
Navier–Stokes (RANS) model to investigate offshore wind
turbine inflow. Since wave effects are parameterized in their
model, a coupled wave and WRF–LES model could improve
the effect of the waves on the wind. In this manner, a coupled
wave and WRF–LES model will be able to provide more accu-
rate multi-fidelity simulation results for offshore wind energy
applications.

As the current WRF model’s surface elevation boundary
condition does not permit time-variability, this paper presents
an implementation of a moving bottom to represent propagat-
ing water waves. The method is validated with test cases in-
cluding laminar and turbulent flow over both stationary and
moving sine waves. The paper is organized as follows: section 2
describes in detail the vertical coordinate and governing equa-
tions in WRF, followed by the moving bottom implementa-
tion; section 3 presents results of two laminar flow test cases
and turbulent flow test cases with three different wave ages;
and finally, section 4 summarizes the results and discusses
future work.

2. Methods

a. Governing equations in WRF

Although details of the WRF equations can be found in
Skamarock et al. (2008), we repeat many of the equations
here in order to clearly demonstrate the implementation of
the moving bottom. WRF solves the compressible Navier–
Stokes equations in a pressure-based curvilinear coordinate
system defined by

t 5 t, j 5 x, h 5 y, z 5
ph 2 ph,top

m
, (1)

where t is the time coordinate of the curvilinear system, j and
h are the horizontal curvilinear coordinates, and z is the pres-
sure-based vertical coordinate. The subscript h denotes hy-
drostatic variables, m 5 ph,s 2 ph,top is the difference between
the hydrostatic pressure at the surface, ph,s, and the hydro-
static pressure at the top of the domain, ph,top, hence, repre-
sents the dry air mass per unit area. A schematic of the
coordinate system is given in Fig. 1. The spatial discretization
in WRF adopts C grid staggering, with velocities staggered
one-half grid length from the thermodynamic variables lo-
cated in the cell centers, as shown in Fig. 2. We note that start-
ing from version 4, WRF uses a hybrid sigma-pressure vertical
coordinate that generalizes the pressure-based vertical coordi-
nate to reduce the influence of the terrain more rapidly with
increasing height (Skamarock et al. 2019). When this hybrid
coordinate is employed, the definition of z is modified based
on Eq. (1). Nevertheless, the moving bottom implementation

discussed in this section can be easily adapted to the hybrid
coordinate, and hence we restrict our discussion to the origi-
nal pressure-based coordinate in the present study.

To write the governing equations in conservative flux form,
conservative fluxes are defined as

U 5 mu 5 (U, V, W), (2)

where u is the Cartesian velocity vector. The cross-coordinate
flux is defined as

V 5 m
dz
dt

: (3)

Noting the metrics of coordinate transformation

­z

­t
52J

­z
­t

, (4a)

­z

­x
52J

­z
­j

, (4b)

­z

­y
52J

­z
­h

, (4c)

where the determinant of the matrix of transformation, or the
Jacobian, is given by

­z

­z
5 J, (5)

the cross-coordinate flux can be written as

FIG. 1. The pressure-based curvilinear coordinate in WRF,
adapted from Skamarock et al. (2008), with the bottom repre-
sented by a moving surface at z5 h(x, y, t).
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V 5 m
­z

­t
1 u

­z

­x
1 y

­z

­y
1 w

­z

­z

( )

5 J Wn 2 m
­z
­t

( )
, (6)

where the conservative flux normal to z surfaces is given by

Wn 5 W 2 U
­z
­j

2 V
­z
­h

: (7)

Defining the nonconservative geopotential f 5 gz, the
pressure p, and inverse density a 5 1/r, the momentum equa-
tions in the pressure-based curvilinear coordinate system are
given by

­U
­t

1
­

­j
(Uu) 1 ­

­h
(Vu) 1 ­

­z
(Vu) 1 ma

­p
­j

1
­p
­z

­f

­j
5 FU ,

(8a)

­V
­t

1
­

­j
(Uy) 1 ­

­h
(Vy ) 1 ­

­z
(Vy) 1 ma

­p
­h

1
­p
­z

­f

­h
5 FV ,

(8b)

­W
­t

1
­

­j
(Uw) 1 ­

­h
(Vw) 1 ­

­z
(Vw) 2 g

­p
­z

2 m

( )
5 FW ,

(8c)

where FU, FV, and FW are the forcing terms that include tur-
bulent mixing, Coriolis force, buoyancy, and model physics,
respectively (e.g., microphysics of clouds, radiation, and plan-
etary boundary layer models). The transformed equation gov-
erning conservation of mass is given by

­m

­t
1

­U
­j

1
­V
­h

1
­V

­z
5 0, (9)

and the kinematic condition or the geometric conservation
law (GCL) is given by

­f

­t
1

1
m

U
­f

­j
1 V

­f

­h
1 V

­f

­z
2 gW

( )
5 0: (10)

The equation of state is given by

p 5 p0(Ru/p0a)g, (11)

where p0 5 105 Pa is a reference atmospheric pressure, R is
the ideal gas constant for dry air, g 5 cp/cy 5 1.4 is the ratio
of heat capacities for dry air, and because we restrict our
study to a neutral ABL, the potential temperature is assumed
to be constant and given by u 5 300 K.

Finally, the hydrostatic balance is derived as

­f

­z
5

­f

­z
­z
­ph

­ph
­z

5 g 2
1
rg

( )
m 52ma: (12)

In Eqs. (8)–(12), we omitted the map factors used to project
the computational domain onto the curved surface of Earth
as we aim to study small-scale flows with LES in which the
curvature of Earth does not play a role. We also do not con-
sider moisture in this study, and thus do not distinguish be-
tween the density of moist and dry air.

To reduce errors associated with numerical truncation and
finite-precision arithmetic in the pressure gradient and buoy-
ancy terms, WRF solves the perturbation form of Eqs. (8)–(12),
whereby the perturbation variables are given by their depar-
tures from a hydrostatic background state (denoted by the over-
bar), such that

p′ 5 p 2 p(x, y, z, t), (13a)

f′ 5 f 2 f(x, y, z, t), (13b)

FIG. 2. The grid in WRF, adapted from Skamarock et al. (2008), where (i, j, k) are the indices of grid points in the
(j, h, z) directions.
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a′ 5 a 2 a(x, y, z, t), (13c)

m′ 5 m 2 m(x, y, z, t): (13d)

Substitution into the governing equations gives

­U
­t

1
­

­j
(Uu) 1 ­

­h
(Vu) 1 ­

­z
(Vu) 1 m

­f′

­j
1 a

­p′

­j
1 a′­p

­j

( )

1
­f

­j

­p′

­z
2 m′

( )
5 FU , (14a)

­V
­t

1
­

­j
(Uy) 1 ­

­h
(Vy ) 1 ­

­z
(Vy) 1 m

­f′

­h
1 a

­p′

­h
1 a′­p

­h

( )

1
­f

­h

­p′

­z
2 m′

( )
5 FV , (14b)

­W
­t

1
­

­j
(Uw) 1 ­

­h
(Vw) 1 ­

­z
(Vw) 2 g

­p′

­z
1 m′g 5 FW ,

(14c)

­m′

­t
1

­U
­j

1
­V
­h

1
­V

­z
5 0, (14d)

­f′

­t
1

1
m

U
­f

­j
1 V

­f

­h
1 V

­f

­z
2 gW

( )
5 0, (14e)

­f′

­z
52ma′ 2 m′a: (14f)

We note that Eqs. (14a)–(14f) are exact. They are derived
without approximation or dropping high-order terms.

For time advancement, WRF uses the Runge–Kutta (RK)
method. Each RK step is divided into a number of acoustic
steps that update the acoustic equations. The number of
acoustic steps can be defined by the user based on the CFL
condition related to advection and propagation of sound
waves, as discussed in section 2d.

The acoustic step equations solve for the evolution of the
deviations of the variables from their most recent RK predic-
tor step, denoted by the superscript t∗, such that

U′′ 5 U 2 Ut* , (15a)

V′′ 5 V 2 Vt* , (15b)

f′′ 5 f′ 2 f′ t* , (15c)

a′′ 5 a′ 2 a′ t* , (15d)

m′′ 5 m′ 2 m′ t* : (15e)

The governing equations for the acoustic time-substepping
are given by

­U′′

­ta
1 mt* ­f

′′ta
­j

1 at* ­p
′′ta
­j

1 a′′ta ­p
­j

( )
1

­ft*

­j

­p′′

­z
2 m′′

( )ta
5 Rt*

U 1 Ft*
U , (16a)

­V′′

­ta
1 mt* ­f

′′ta
­h

1 at* ­p
′′ta

­h
1 a′′ta ­p

­h

( )
1

­ft*

­h

­p′′

­z
2 m′′

( )ta
5 Rt*

V 1 Ft*
V , (16b)

­W′′

­ta
2 g

­

­z
C
­f′′

­z

( )
2 m′′

[ ]ta
5 Rt*

W , (16c)

­m′′

­ta
1

­U′′

­j
1

­V′′

­h
1

­V′′

­z

( )ta1Dta

5 Rt*
m , (16d)

­f′′

­ta
1

1
mt*

V′′ta1Dta
­ft*

­z
2 gW′′ ta

( )
5 Rt*

f , (16e)

where ta denotes discrete time levels in the acoustic steps, Dta
is the acoustic time step, C5 at*2c2s /u

t* and cs 5 gpt
*
at* is the

sound speed at step t∗. The discrete acoustic time-step opera-
tor for some quantity f is given by

f
ta 5

1 1 b

2
f ta1Dta 1

1 2 b

2
f ta , (17)

where the implicitness parameter satisfies 0 # b # 1 and de-
termines the degree of implicitness of the discrete time inte-
gration of Eqs. (16c) and (16e). If b 5 0, the time marching
scheme is Crank–Nicolson, while if b 5 1, the scheme is the
fully implicit backward Euler. A nonzero b damps instabilities as-
sociated with vertically propagating sound waves (Skamarock
et al. 2008). The acoustic pressure p′′ is diagnosed with the linear-
ized equation of state:

p′′ 52
c2s
at*

a′′

at*
1

m′′

mt*

( )
: (18)

The terms on the right-hand side of Eqs. (16a)–(16e) are
given by

Rt*
U 52

­

­j
(Uu) 1 ­

­h
(Vu) 1 ­

­z
(Vu)

[ ]

2 m
­f′

­j
1 a

­p′

­j
1 a′­p

­j

( )
1

­f

­j

­p′

­z
2 m′

( )[ ]
1 FU ,

(19a)

Rt*
V 52

­

­j
(Uy) 1 ­

­h
(Vy ) 1 ­

­z
(Vy)

[ ]

2 m
­f′

­h
1 a

­p′

­h
1 a′­p

­h

( )
1

­f

­h

­p′

­z
2 m′

( )[ ]
1 FV ,

(19b)

Rt*
W 52

­

­j
(Uw) 1 ­

­h
(Vw) 1 ­

­z
(Vw)

[ ]
1 g

­p′

­z
2 m′g 1 FW ,

(19c)

Rt*
m 52

­U
­j

1
­V
­h

1
­V

­z

( )
, (19d)
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Rt*
f 52

1
m

U
­f

­j
1 V

­f

­h
1 V

­f

­z
2 gW

( )
, (19e)

where all values are evaluated at time step t∗. The acoustic
form of the hydrostatic relation is given by

­f′′

­z
52a′′mt* 2 at*m′′: (20)

In summary, the acoustic step equations are advanced explic-
itly by the RK method, except that Eqs. (16c) and (16e) are
solved semi-implicitly. Also, m′′ is advanced after U, V, and V

are updated for step ta 1 Dta, and thus Eq. (16d) is explicitly
solved. Boundary conditions at the sea surface (z 5 1) are
needed for Eqs. (16a)–(16e) as discussed in what follows.

b. Moving bottom implementation

The implementation of a moving bottom in WRF is divided
into two parts. The first is to specify boundary conditions, and
the second is to update the hydrostatic balance at each time
step as the bottom moves.

1) BOTTOM BOUNDARY CONDITIONS

We define the location of the water surface as z 5 h, which
is also the surface defined by z 5 1. Since the vertical velocity
across the air–sea interface should be continuous, we require

the vertical velocity of the water surface to match the air ve-
locity at the surface, such that

w|z5h 5
dh
dt

5
­h
­t

1 u|z51
­h
­j

1 y |z51
­h
­h

: (21)

Since f 5 gz, the kinematic boundary condition [Eq. (21)] at
the water surface in terms of the geopotential is

gw|z5h 5
­f

­t
1 u

­f

­j
1 y

­f

­h

( )∣∣∣∣
z51

: (22)

From Eq. (6), the cross-coordinate flux at the water surface is
then given by

V|z51 5 J Wn 2 m
­z

­t

( )

5 mJ w|z51 2 u|z51
­h
­j

2 y |z51
­h
­h

2
­h
­t

( )
(23a)

5 0: (23b)

Equations (22) and (23b) are the general boundary conditions for
a moving bottom in a curvilinear coordinate system. The specific
implementation in WRF, however, requires that the boundary
conditions for f and w are consistent with Eqs. (16e) and (16c).
To this end, Eq. (16e) is discretized semi-implicitly in time with

f′′ta1Dta 2 f′′ta
Dta

1
1
mt*

V′′ta1Dta
­ft*

­z
2 g

(
1 1 b

2
W′′ta1Dta 1

1 2 b

2
W′′ta

)]
52

1
mt*

Ut* ­f
t*

­j
1 Vt* ­f

t*

­h
1 Vt* ­f

t*

­z
2 gWt*

( )
:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (24)

In practice, b 5 1 gives a good balance between stability and
accuracy for moving bottom applications.

Since V 5 V′′ 5 0 at z 5 h(x, y, t), Eq. (24) can be used to
solve forW′′ta1Dta at z5 h(x, y, t), such that

W′′ta1Dta 5
2

1 1 b
mt* h

ta1Dta 2 hta

Dta
1 Ut* ­h

t*

­j
1 Vt* ­h

t*

­h
2 Wt*

(

2
1 2 b

2
W′′ta

)
: (25)

Because h is prescribed, hta1Dta and hta are known. Therefore,
Eq. (25) can be used to computeW′′ta1Dta at z5 h(ta1 Dta, x, y),
and then f′′ta1Dta at z 5 h(ta 1 Dta, x, y) can be computed by
using the value ofW′′ta1Dta in Eq. (24).

Boundary conditions for the horizontal velocities depend
on the flow condition. For inviscid flow, the horizontal veloc-
ity of the air is free-slip at the bottom, and hence horizontal
velocity information from the wave is not needed. For viscous
flow, the horizontal velocities are continuous across the inter-
face, i.e., Dirichlet boundary conditions should be applied.
For a rough wall, the original WRF–LES code has a quadratic
drag law at the bottom, which is modified to account for a
moving bottom by computing the stress based on the velocity

of the air relative to the velocity of the water, such that the
relative velocity at z5 h is given by

ur 5 u 2 uw, (26)

where uw is the velocity of the water at z 5 h. Defining the
components of velocity parallel to the water surface as

uk 5
ur 1 wr(­h/­j)����������������
(­h/­j)2 1 1

√ , (27a)

yk 5
y r 1 wr(­h/­h)�����������������
(­h/­h)2 1 1

√ , (27b)

the horizontal components of the stress by the water on the
flow are given by

t13 5 Cd|ur|uk, (28a)

t23 5 Cd|ur|yk, (28b)

where the drag coefficient Cd ensures that the horizontal ve-
locity in the bottom-most WRF grid cell (at z5 h1 Dz/2) sat-
isfies the log law, such that
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Cd 5
k

lnDz/(2z0)
[ ]2

, (29)

where k 5 0.4 is the von Kármán constant and z0 is the rough-
ness height. We use z0 5 0.0002 m, which is a typical roughness
height value for the low wind marine boundary layer (Sullivan
et al. 2008). This implementation of the quadratic drag law for a
moving wavy bottom is consistent with previous numerical studies
(e.g., Yang et al. 2013; Sullivan et al. 2014; Hao and Shen 2019).

2) HYDROSTATIC REBALANCING

In the original WRF code, the hydrostatic variables p, f, a,
and m are fixed in time since they are based on the height of a
stationary bottom, except for moving nested domains that typically
evolve over synoptic time scales. With surface water waves, how-
ever, the height of each grid point changes as the wave height
changes, and therefore the hydrostatic variables at each grid point
also change.With waves with small steepness, although the change
is small, recomputing the hydrostatic variables gives a more accu-
rate representation of the hydrostatic pressure gradient terms in
Eqs. (16a), (16b), (19a), and (19b), which improves the accuracy
of the simulation results. In the moving bottom implementation,
this change in hydrostatic variables is addressed through the hy-
drostatic rebalancing procedure illustrated as follows.

At the end of each time step, we first update the hydrostatic
variables at the bottom (z 5 h or z 5 1). The geopotential
height at the water surface is first updated based on the wave
height at the next time step, such that

ft1Dt
h |z51 5 ght1Dt, (30)

after which p|z51 and m are linearly interpolated from a profile of
hydrostatic pressure at different heights. Next, the hydrostatic
pressure above the water surface is updated with Eq. (1), such that

pt1Dt
k 5 zkm

t1Dt 1 ph,top, k $ 2, (31)

where k is the index of the vertical grid. Next, the inverse den-
sity is updated with the equation of state, Eq. (11), such that

a t1Dt 5
pt1Dt

p0

( )21/g
Rdu

p0
, (32)

and then f is updated by integrating the hydrostatic Eq. (12)
upward with

f
t1Dt
k 5 f

t1Dt
k21 2 Dzk21mak21, k $ 2: (33)

Finally, the perturbation variables are updated with Eqs. (13a)–(13d),
such that

f′ t1Dt
5 ft 2 f

t1Dt
, (34a)

p′t1Dt 5 pt 2 pt1Dt, (34b)

m′ t1Dt 5 mt 2 m t1Dt, (34c)

a′ t1Dt 5 at 2 a t1Dt: (34d)

The resulting rebalanced hydrostatic and perturbation variables
are then used to compute the terms in the governing equations
at the next time step. If a hybrid sigma–pressure vertical coordi-
nate is used instead of the pressure-based vertical coordinate,
such as in WRF version 4 and onward, only Eq. (31) needs to
be modified based on the definition of z in the hybrid sigma-
pressure vertical coordinate. The other numerical schemes in
hydrostatic rebalancing and boundary conditions in the moving
bottom implementation remain the same.

c. Numerical procedure

The numerical procedure for the moving bottom implemen-
tation in WRF is summarized here, and is slightly modified
from Skamarock et al. (2008). In each RK step, the forcing
terms FU, FV, and FW and the Rt∗ terms in Eqs. (16a)–(16e) are
computed. Then we compute each acoustic step as follows:

1) Advance horizontal momentum with Eqs. (16a) and
(16b), with boundary conditions (28a) and (28b) for a
rough surface and free- or no-slip, otherwise.

2) Advance m′′ with Eq. (16d) and compute Vt1Dt after as-
suming V′′ 5 0 at the bottom and top boundaries.

3) Advance f′′ and W′′ with Eqs. (16e) and (16c) and with
boundary conditions (24) and (25).

4) Compute p′′ and m′′ with Eqs. (18) and (20).

After the acoustic update, p′ and a′ are updated based on
Eqs. (11) and (14f) to make sure they satisfy the equation of
state and the hydrostatic relation at every RK step. Finally,
after all RK steps, we conduct hydrostatic rebalancing, and
then the model advances to the next time step.

d. Model stability

We implemented the moving bottom in WRF version 3.8.1
with a third-order RK method (RK3) to integrate the model
in time, a fifth-order spatial discretization for horizontal ad-
vection and a third-order spatial discretization for vertical
advection. For time discretization, the RK3 method is third-
order accurate only for linear equations, and second-order
accurate for nonlinear equations (Skamarock et al. 2008). For
spatial discretization, terms other than advection in the gov-
erning Eqs. (16a)–(16e) and (19a)–(19e) are discretized with a
second-order central difference scheme. Therefore, the over-
all accuracy of WRF is second-order in both time and space.
Model stability is dictated by the RK3 and the acoustic time
step constraints. For 3D flows, the time step should satisfy

Dt ,
Cr��
3

√ Dx
umax

, (35)

where Cr is the maximum CFL number (Skamarock et al.
2008). Theoretical Cr values for different temporal and spatial
scheme combinations are documented in Wicker and Skamarock
(2002), and the 1/

��
3

√
factor is to account for the fact that in prac-

tice the maximum CFL number should be less than the theoreti-
cal valueCr.

The acoustic time steps are integrated in an explicit forward
scheme (except the semi-implicit scheme related to Eqs. (16c)
and (16e) for 0 # b , 1), for which stability requires Cr 5 1/2
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in practice (Skamarock et al. 2008). The acoustic time step is
Dt 5 Dt/ns, where ns is the number of sound steps in each
model time step, and the constraint Dt , Dx/(2cs) gives

Dt ,
ns
2
Dx
cs

: (36)

The smaller of (35) and (36) is the maximum time step limit
of the model. The value of ns can be set to maximize the effi-
ciency of the computation. The acoustic step, Eqs. (16a) to
(16e), are faster to advance than the RK step, Eqs. (14a) to
(14e), because the right-hand sides of (16a) to (16e) reuse the
values computed in the last RK step, and are not updated dur-
ing every acoustic step. The trade-off is that the more acoustic
steps, the longer it takes to advance each model step, while on
the other hand, a larger ns gives a larger limit for the model
time step as indicated by Eq. (36). In fact, a simulation with
ns 5 40 is twice as fast as a simulation with ns 5 4. Neverthe-
less, care should be taken using large values of ns with a mov-
ing bottom. If the bottom is stationary, then setting ns 5 40
gives similar turbulent statistics as in ns 5 4, but if the bottom
moves, sound waves will be enhanced and reflected in the
computational domain with ns 5 40. The resulting Reynolds
stress profile will show vertical oscillations with a wavelength
of CsDt, which are not present in simulations with ns # 4. This
is likely due to the fact that when ns is very large, the acoustic
step Eqs. (16a) to (18) keep reusing the values of the last RK
step while they are no longer a good estimate of the right-
hand sides of (16a) to (18). When the bottom is stationary, the
effect of this mismatch is small, but when the bottom moves,
surface motions resonate with standing acoustic modes leading
to errors. We found that using ns 5 4 takes advantage of the
acoustic substepping while eliminating the vertical oscillations.

3. Model validation

In this section, we present three test cases to validate the
moving-wave implementation in WRF–LES: 1) inviscid lami-
nar flow, 2) viscous laminar flow and 3) turbulent flow. For all
three cases, the bottom boundary is prescribed as a monochro-
matic linear water wave. The wave propagates in the streamwise
direction, here taken to be the x direction, and there is no variation
in the spanwise (y) direction. Cases 1 and 2 have analytical solu-
tions of the airflow over moving waves, whereas case 3 does not
have an analytical solution. Therefore, for case 3 we validate the
code by comparing the moving-wave simulation results to an
equivalent case in a wave-following reference frame, such that it
can be simulated with the original fixed-bottomWRF–LES code
that has already been extensively validated.

a. Inviscid flow over a linear water wave

For this test case, the height of the bottom boundary is
given by the linear monochromatic water wave

h 5 a sin(kx 2 vt), (37)

where a is the wave amplitude, k 5 2p/l is the horizontal
wavenumber associated with wavelength l, and v is the wave

frequency, which is assumed to satisfy the deep-water disper-
sion relation v5

����
gk

√
. In the limits of small steepness and am-

plitude, i.e., ka ,, 1 and a/H ,, 1, where H is the domain
height, the motion of the air is given by solving the potential
flow equations (Kundu et al. 2016), which gives the analytical
solution for the airflow and pressure above the wave as

u 52av
cosh[k(z 2 H)]

sinh(kH) sin(kx 2 vt), (38a)

w 5 av
sinh[k(z 2 H)]

sinh(kH) cos(kx 2 vt), (38b)

p′ 52
rav2

k
cosh[k(z 2 H)]

sinh(kH) sin(kx 2 vt): (38c)

To ensure linear dynamics as well as no flow separation in
WRF, we set a 5 0.08 m and l 5 56.2 m, giving steepness
ka 5 0.01, wave period T 5 6 s, and wave phase speed
c5

�����
g/k

√
5 9:37m s21. These settings are representative of a

typical wave found in coastal seas. The computational domain
is L 5 l 5 56.2 m and H 5 100 m. Periodic boundary condi-
tions are applied in the horizontal directions. WRF has sev-
eral options to damp the vertical velocity near the top
boundary, including a layer of increased diffusion, a Rayleigh
relaxation layer and an implicit gravity wave damping layer.
They are efficient to reduce acoustic and gravity wave reflec-
tion at the top of the domain but are not necessary for this test
case. In fact, for all test cases in this paper, we use no damping
on the top boundary, and apply free-shear boundary condition
at the top. The flow is homogeneous in the spanwise direction,
with uniform grid spacings Dx 5 Dy 5 1.12 m and Dz 5 1 m.
The time step is Dt5 0.01 s with ns 5 4 acoustic steps.

As shown in Fig. 3, the x–z contours of u, w, and p′ show
good agreement between the simulation results and the ana-
lytical solutions. The moving-bottom WRF Model also repro-
duces the analytical vertical profiles of u, w, and p′ as shown
in Fig. 4.

As an additional validation of the inviscid flow case, we use
the original WRF–LES code to simulate inviscid flow over a
fixed wavy bottom, but initialize the horizontal velocity with
u 5 2c everywhere so that it is equivalent to the moving-
wave case, except in a wave-following reference frame. We re-
fer to this case as the moving-frame case, and the previous
case with a moving wave as the fixed-frame case in the remain-
der of the paper. The moving-frame case uses the same com-
putational domain and resolution as the fixed-frame case. We
expect the results from the moving-frame case to be the same as
the fixed-frame case after transforming the solutions to the same
reference frame. To compare the results from the two cases, we
assume that any transients in each solution have vanished, giving
a steady solution for the moving-frame case and a time-periodic
solution for the fixed-frame case. Then we note that the stream-
wise velocity in the steady solution of the moving-frame case,
um(x, z), is related to the streamwise velocity for the fixed-frame
case, uf(x, z, t), with um(x, z) 1 c 5 uf(x 2 ct, z, t). Meanwhile,
wm(x, z)5 wf(x2 ct, z, t) and p′m(x, z)5 p′f (x2 ct, z, t). To en-
sure that the fixed-frame solution is aligned with the horizontal
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grid points associated with the moving-frame solution, we re-
quire xm 5 xf 2 ct 1 nl, where n is an integer, and compare
points at x5 xm in the moving-frame case with points at the cor-
responding location x5 xf in the fixed-frame case.

As shown in Fig. 5, the two cases agree with each other in
terms of their vertical profiles of u, w, and p′, and also match
the analytical solutions. The overshoot of w in the fixed wave
case at the top of the domain is likely due to acoustic wave

FIG. 3. Validation of the inviscid linear sine wave:
x–z contours of (a) u, (b) w, and (c) p′. The colored
contours are WRF simulation results and the black
contour lines are analytical solutions, taken at
t/T5 17.67.

FIG. 4. Validation of the inviscid linear sine wave: vertical profiles of (a) u, (b) w, and (c) p′. The red symbols are WRF simulation results
and the black lines are analytical solutions. Different symbols refer to different time instances.
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reflection because there is no damping applied at the top bound-
ary. Figure 5 shows an example of the vertical profile comparison
taken at x5 0 in the moving-frame case, although the same level
of agreement is attained for other locations as well.

Having demonstrated that the method reproduces the lin-
ear inviscid theory, we now demonstrate the error conver-
gence of the moving-bottom WRF code using an inviscid
wave with a 5 0.16 m and l 5 100 m. The domain size is L 5

100 m and H 5 100 m. For temporal convergence, a spatial
resolution of Dx 5 2.5 m is used, and for spatial convergence,
a temporal resolution of Dt5 0.0005 s is used. The simulations
run for one second. Figures 6 and 7 show relative errors of u,
w, and p′ as a function of Dt and Dx, respectively. The relative
error is defined as the absolute difference in u, w, or p′ between
each case and the case with the next smaller Dt or Dx. Given a lo-
cation in x (at the centerline in y), we compute the relative error
using three types of norms: the L1, L2, and L‘ norms computed
with data over all grid points from z 5 0 to 1. The convergence
rates are sensitive to the error metric that is chosen, as shown in
Figs. 6 and 7. The numerical values of the convergence rates are
computed as the slopes of the lines in Figs. 6 and 7. They are
listed in Table 1. Convergence rates indicated by the L1 and L‘

norms are almost the same for u and w, but different for p′. For
temporal convergence, errors using the L2 norm indicate roughly
second-order accuracy for w, nearly third-order accuracy for u,
and between first- and second-order accuracy for p′. The devia-
tion from second-order accuracy for u and p′ might be due to the
fact that inviscid flow is sensitive to initial transients. For spatial

convergence, errors using the L1 and L‘ norms indicate second-
order accuracy, while errors using the L2 norm indicate roughly
fourth-order accuracy. Although we do not have a clear explana-
tion for the behavior of the different norms, we can find error
metrics that display second-order accuracy for spatial conver-
gence, consistent with the fact thatWRF is second-order accurate
in space as discussed in section 2d.

b. Viscous laminar flow over a linear wave

In this case, molecular viscosity is added to the flow. A Dirich-
let boundary condition is applied at the bottom, and periodic
boundary conditions are applied in the horizontal directions. The
wave prescribed at the bottom is the same as Eq. (37). The linear
analytical solutions for a viscous laminar flow over such a wave
in a deep domain (kH .. 1) are given by the real parts of the
complex solutions (Yang and Shen 2011b):

u 5 u0 1 un , (39a)

w 5 w0 1 wn , (39b)

u0 5 aA1ke
i(kx2vt)e2kz, (39c)

un 52ikk1aA2e
i(kx2vt)e2kk1z, (39d)

w0 5 iakA1e
i(kx2vt)e2kz, (39e)

wn 5 aA2ke
i(kx2vt)e2kk1z, (39f)

FIG. 5. Validation of the inviscid linear sine wave in different frames of reference: profiles of (a) u, (b) w, and (c) p′ of the fixed-frame
(blue circles) and the moving-frame simulations (black plus signs), along with the analytical solution (red lines), taken at t/T 5 20 and
x5 0 in the fixed reference frame.
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where n is the molecular viscosity of the air, u0 and w0 are the
inviscid components of the solution [Eqs. (39c) and (39e)],
while un and wn are the viscous components of the solution
[Eqs. (39d) and (39f)]. The coefficients k1, k2, A1, and A2 are
given by

k1 5

�����������
1 2

iv
k2n

√
, (40a)

k2 5

�������������
1 2

iv
k2nw

√
, (40b)

FIG. 7. Spatial discretization error in (a) u, (b) w, and (c) p′ relative to the results from the case with the next smaller Dx for the inviscid
flow test case. The errors are computed with three types of norms: L1 norm (black stars), L2 norm (black circles), and L‘ norm (black tri-
angles). Lines are as follows: first-order slope (red solid line),second-order slope (red dashed line), and third-order slope (red solid line
with dots).

FIG. 6. Time-stepping error in (a) u, (b) w, and (c) p′ relative to the results from the case with the next smaller Dt for the inviscid flow
test case. The errors are computed with three types of norms: L1 norm (black stars), L2 norm (black circles), and L‘ norm (black trian-
gles). Lines indicate the following: first-order slope (red solid line), second-order slope (red dashed line), and third-order slope (red solid
line with dots).
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A1 5 ic
k1k2 1 k2 1 rrrnk

2
1 2 1 1 k1

(k2 1 rrrnk1 1 rrrn 1 1)(k1 2 1) , (40c)

A2 5 2c
k2 1 rrrn

(k2 1 rrrnk1 1 rrrn 1 1)(k1 2 1) , (40d)

where nw is the molecular viscosity of water, rr 5 r/rw
and rn 5 n /nw are the ratios of density and molecular vis-
cosity between the air and the water, respectively. In this
test case, we use rr 5 1023, rn 5 10, and n is set to a value
such that the Reynolds number Re 5 c/(kn) 5 100. To re-
solve the Stokes boundary layer, which has thickness
d 5

�������
2n /v

√
5 1:3m, Dz 5 0.1 m at the bottom, and is

stretched upward with a ratio of 1.05. The horizontal grid
spacing is Dx 5 Dy 5 1.12 m. The wave amplitude,

wavelength and domain size are the same as the inviscid
linear sine wave case discussed in section 3a.

Figures 8 and 9 show good agreement between WRF simu-
lation results and the analytical solutions for the viscous lami-
nar flow test case. In Fig. 8a, strong shear is present in u in the
boundary layer (z , d) due to the Stokes boundary layer.
Above the boundary layer, u and w transition to the inviscid
solutions. The error in u between the WRF simulation results
and the analytical solution has a magnitude of 0.05av, which
is 5% of the analytical solution (Fig. 9c). The error in w has a
magnitude of up to only 0.01av, which is 1% of the analytical
solution (Fig. 9d). The errors are concentrated in the height
below 5d, above which they approach zero. Figure 9 shows
vertical profiles of the viscous velocities un and wn in the
boundary layer, which again agree well with the analytical sol-
utions. Because the simulation results and the analytical solu-
tion for p′ remain the same in the viscous and the inviscid
flow cases, the results for p′ are not shown here.

Using the same setup as the inviscid flow test case, dis-
cussed in section 3a, we show the temporal and spatial conver-
gence of the viscous laminar flow case in Figs. 10 and 11. The
numerical values of the convergence rates are computed as
the slopes of the lines in Figs. 10 and 11. They are listed in
Table 1. For temporal convergence (Fig. 10), errors using the
L2 norm indicate roughly second-order accuracy for w and p′,
and third-order accuracy for u. The L1 and L‘ norms yield
lower convergence rates that are between first- and second-
order. For spatial convergence (Fig. 11), errors using the L‘

and L1 norms are parallel to each other for all variables and

FIG. 8. The viscous linear sine wave case: x–z contours of (a) u, (b) w, (c) the error in u, and (d) the error in w be-
tween the WRF simulation results and the analytical solution. The colored contours are WRF simulation results and
the black contour lines are analytical solutions, taken at t/T 5 17.67. The y axis on the right shows the height normal-
ized by the Stokes boundary layer thickness d.

TABLE 1. Temporal and spatial convergence rates of the
inviscid flow and the viscous laminar flow test cases for u, w, and
p′ using L1, L2, and L‘ norms.

Inviscid Viscous laminar

L1 L2 L‘ L1 L2 L‘

u Temporal 1.53 2.80 1.20 1.53 3.06 1.51
Spatial 2.01 4.04 2.01 2.01 4.01 2.01

w Temporal 1.10 2.14 1.05 1.12 2.52 1.45
Spatial 2.00 4.01 1.99 2.00 3.99 1.99

p′ Temporal 0.45 1.39 0.84 1.04 2.21 1.29
Spatial 1.99 3.98 1.99 2.03 4.05 2.02
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indicate second-order accuracy, but errors using the L2 norm
indicate fourth-order accuracy, similar to the inviscid case.
Again, we do not have a clear explanation for the behaviors
of the different norms, but at least one of the three error met-
rics show second- or higher-order convergence for both time

and space for the viscous laminar flow case. The spatial errors
for the viscous laminar flow case form straighter lines (Fig. 11)
than the spatial errors for the inviscid flow case (Fig. 7) and are
slightly closer to the expected second-order slope. This is likely
because of the smoothing effect of viscosity, which reduces

FIG. 10. Time-stepping error in (a) u, (b) w, and (c) p′ relative to the results from the case with the next smaller Dt for the viscous lami-
nar flow test case. The errors are computed with three types of norms: L1 norm (black stars), L2 norm (black circles), and L‘ norm (black
triangles). Lines are as follows: first-order slope (red solid line), second-order slope (red dashed line), and third-order slope (red solid line
with dots).

FIG. 9. The viscous linear sine wave case: vertical profiles of (a) un and (b) wn. The red symbols are WRF simulation
results, and the black lines are analytical solutions. Different symbols refer to different times.
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transients and grid-scale noise that are more likely to be present
in the inviscid test case.

c. Turbulent flow over a monochromatic wave

Here we test the moving-bottom WRF code with turbulent
flow over a moving sine wave and analyze the mean momen-
tum budget. The mean momentum budget in WRF can be de-
rived from the streamwise momentum equation:

­U
­t

1
­(Uu)
­j

1
­(Vu)
­h

1
­(Vu)
­z

2 ­j(pfz) 1­z(pfj)

5 mF 1
­

­jk
mt1j,SGS

­jk
­xj

( )
, (41)

where F 5 u2*/H is the pressure gradient force, tij,SGS is the
subgrid scale (SGS) stress and (j1, j2, j3)5 (j, h, z). Using the
transformation metrics in Eqs. (4a)–(4c) and J 5 zz 5 2rg/m,
the SGS stress term can be written as

­

­jk
mt1j,SGS

­jk
­xj

( )
5 rg t13,SGS 2 t11,SGS

­z
­j

2 t12,SGS
­z
­h

( )
:

(42)

For simplicity, we define

tSGS 5 t13,SGS 2 t11,SGS
­z
­j

2 t12,SGS
­z
­h

: (43)

Averaging Eq. (41) in time and horizontally makes the hori-
zontal advection and the horizontal pressure gradient terms
vanish due to horizontal periodicity. Then, vertical integration
from the bottom (z 5 1) to a certain height z results in

� z

1

­

­z′
hVu 1 pfj 2 rgtSGSidz′ 5

� z

1
hmiF dz′,

which gives

hVu 1 pfj 2 rgtSGSi|z 2 tw 5 hmiF(z 2 1), (44)

where tw is the total stress at the bottom, and h i represents
the average in time and in the horizontal. At the top boundary
z 5 0, the total stress hVu1 pfj 2 rgtSGSi|z50 is zero, which
requires

tw 5 hmiF: (45)

The total stress at height z is then given by

ttot 5 hVu 1 pfj 2 rgtSGSi 5 hmiFz: (46)

Since the flow in our applications is essentially incompressible
and the vertical variation in density is negligible assuming a neu-
tral atmosphere condition, we assume constant density r 5 r0. To
express the total stress as a function of z instead of z, we use the
definition of z [Eq. (1)] and the hydrostatic relation­p/­z5 2r0g
to obtain

z 5

ph,s 2
�z

0
r0g dz

′ 2 ph,s 2
�H

0
r0g dz

′
( )

ph,s 2 ph,s 2
�H

0
r0g dz

′
( )

5 1 2
z
H

, (47)

which gives, after noting that hmi 5 ph,s 5 r0gH,

FIG. 11. Spatial discretization error in (a) u, (b) w, and (c) p′ relative to the results from the case with the next smaller Dx for the viscous
laminar flow test case. The errors are computed with three types of norms: L1 norm (black stars), L2 norm (black circles), and L‘ norm
(black triangles). Lines are as follows: first-order slope (red solid line), second-order slope (red dashed line), and third-order slope (red
solid line with dots).
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hVu 1 pfj 2 r0gtSGSi 5 r0gu
2
* 1 2

z
H

( )
: (48)

With Eq. (6) and J5 2r0g/m, V can be rewritten as

V 5 J Wn 2 m
­z
­t

( )

52r0g w 2 u
­z
­j

2 y
­z
­h

2
­z
­t

( )

52r0g U3 2
­z
­t

( )
, (49)

where U3 5 w 2 u(­z/­j) 2 y(­z/­h) is the contravariant ve-
locity normal to the z surfaces for incompressible flow. Divid-
ing both sides of Eq. (48) by2r0g then gives

2h U3 2
­z
­t

( )
u 2

p
r0

­z
­j

1 tSGSi 5 u2* 1 2
z
H

( )
: (50)

To analyze the turbulence statistics, a triple decomposition is
used following Hussain and Reynolds (1970). For a physical
quantity f, we define

f 5 f (j, z) 1 f ′(j, h, z, t) 5 hf i(z) 1 f̃ (j, z) 1 f ′(j, h, z, t),
(51)

where f is the phase average, hfi is the average over time and the
horizontal, f̃ is the wave-induced fluctuation, and f′ is the turbu-
lent fluctuation. To compute the phase average f , we first apply
the Fourier transform to f in the direction of j, and then shift it to
zero-phase in Fourier space, followed by an inverse Fourier trans-
form to map it back to physical space. In general, a quantity with
phase ct, i.e., f(x 2 ct), can be represented by e22pikct f̂ (k), where
f̂ (k) is the Fourier coefficient of f(x) associated with wavenumber
k. Therefore, the phase shifting of f(x 2 a) is accomplished by
multiplying its Fourier coefficients by e2pikct, and then applying an
inverse Fourier transform. Mathematically, this is represented by

f (j, z) 5 1
(t2 2 t1)D

� t2

t1

�D

0
F21{e2pikctF[f (j, h, z, t)]}dh dt,

(52)

where F and F21 denote the Fourier transform and its in-
verse, D is the width of the computational domain, and [t1, t2]
is the time window for averaging. The mean value and the
wave-induced fluctuation are then computed with

hf i(z) 5 1
L

�L

0
f (j, z)dj, (53a)

f̃ (j, z) 5 f (j, z) 2 h f i(z): (53b)

FIG. 12. Contours of (left) normalized wave-induced streamwise velocity ũ and (right) instantaneous stream-
wise turbulent fluctuation u′ taken after 95 eddy turnover periods along the channel center line (y 5 75 m) for
the turbulent flow cases with wave age (a),(d) c/u* 5 15 (slow wave); (b),(e) c/u* 5 28 (intermediate wave); and
(c),(f) c/u* 5 50 (fast wave).

Z HU E T A L . 2897NOVEMBER 2023

Unauthenticated | Downloaded 11/07/23 07:29 PM UTC



To separate out wave-induced effects, the mean momentum
budget needs to be analyzed in a wave-following frame, in which
the horizontal velocity u is translated by the wave phase speed c
and ­z/­t vanishes (Hara and Sullivan 2015). With the triple de-
composition applied to the velocities, Eq. (50) is given by

2hu′W′i 2 hũŨ3i 1 h p
r0

­z
­j i 2 htSGSi 5 u2* 1 2

z
H

( )
: (54)

The terms on the left-hand side are, in order from left to right,
the turbulent stress, the wave-induced stress, the pressure
stress, and SGS stress. At z 5 h, the pressure stress is the
form drag.

In the turbulent flow test case, the wave height has the
same form as Eq. (37), with a5 0.8 m and l 5 50 m, which re-
sults in a steepness of ka 5 0.1. The computational domain is
300 m3 150 m3 100 m, with 120 3 603 80 grid points in the
streamwise (x), spanwise (y) and vertical (z) directions. The
horizontal grid spacing is Dx 5 Dy 5 2.5 m. The vertical grid
spacing is Dz 5 0.5 m at the lowest level above the wave sur-
face, and is continuously stretched by a factor of 1.02 from
one grid cell to the next to the top of the domain. The time
step size is Dt 5 0.01 s, with ns 5 4. The Smagorinsky closure
scheme is used to compute the turbulent eddy-viscosity. The
flow is driven by a constant pressure gradient forcing, which is
set to achieve a desired wave age c/u*, i.e., the friction velocity
u* varies with the prescribed pressure gradient forcing while
the wave phase speed c is fixed. We ran simulations with
three different wave ages, which are categorized as a slow

wave (c/u* 5 15), an intermediate wave (c/u* 5 28) and a fast
wave (c/u* 5 50). The simulations are run for approximately
60 eddy turnover periods, and then an additional 35–40 eddy
turnover periods to compute the statistics.

The presence of surface waves has a notable effect on alter-
ing the turbulence structure of the airflow, as previously re-
ported in numerical simulations (e.g., Sullivan et al. 2000;
Yang and Shen 2009), as well as laboratory experiments (e.g.,
Cheung and Street 1988; Buckley and Veron 2016). Here, we
present results of WRF simulations on the wave-induced tur-
bulence quantities in the wind. Figure 12 shows contours of
the wave-induced streamwise velocity ũ and the turbulent
fluctuation of the streamwise velocity u′ within one wave-
length above the surface. The slow wave induces the highest
magnitudes of ũ and u′ (Figs. 12a,d) while the intermediate
wave induces the smallest magnitudes of ũ (Figs. 12b). In the
slow wave case, ũ is nearly in-phase with the wave elevation
(Fig. 12a), i.e., positive at the wave crest and negative at the
wave trough. This is consistent with the fact that the wind ac-
celerates when it travels through a contraction. In the inter-
mediate wave case, the magnitude of ũ is only one-sixth of
that in the slow wave case, and the influence of the wave ex-
tends to just 0.1l above the surface (Fig. 12b). In the fast
wave case, ũ is out of phase with the wave elevation and the
influence of the wave extends furthest among the three wave
ages, i.e., roughly 0.4l above the surface (Fig. 12c). This can
be explained by the fact that the wave moves faster than the
wind near the bottom, i.e., the wind is moving from right to
left relative to the wave, and thus has the opposite pattern in

FIG. 13. Stress profiles of turbulent flow over a moving sine wave with wave age (a) c/u* 5 15, (b) c/u* 5 28, and (c) c/u* 5 50.
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ũ when compared to the slow wave case, where the wind is
moving from left to right relative to the wave. As expected, u′

is random and does not exhibit a regular pattern over differ-
ent wave phases in all three cases (Figs. 12d–f).

Figure 13 shows the stress profiles for the turbulent flow
cases with the three different wave ages. The intermediate
wave generates near zero wave stress and form drag, while de-
creasing the wave age leads to much stronger wave stress and
form drag. The magnitudes of the wave stress and form drag
are consistent with the small magnitude of ũ and u′ for the in-
termediate wave and larger magnitudes of ũ and u′ for both
the slow and fast waves (Fig. 12). The wave stress reaches a
magnitude of 20% of the total stress for the slow wave (Fig.
13a), and about 5% for the fast wave (Fig. 13c). The pressure
stress also reaches 20% of the total stress for the slow wave,
and 10% for the fast wave, with opposite signs. Because the
pressure stress displayed in Fig. 13 is on the left-hand side of
Eq. (50), a positive (negative) pressure stress means a nega-
tive (positive) forcing by the waves on the wind, consistent
with the fact that in the slow wave case, the wave propagates
slower than the wind and consequently imposes a negative form
drag on the wind, whereas in the fast wave case, the wave prop-
agates faster than the wind and imposes a positive form drag.
The normalized total stress agrees well with the linear theoreti-
cal profile for channel flows, with the fast wave case having a
discrepancy of less than 5%.

To further validate our methodology, we compare the turbulent
flow results with a moving wave in a fixed frame to a moving-frame
case with a fixed wavy bottom. Details of the fixed- and moving-
frame cases are discussed in section 3a. For the moving-frame case,
the relative velocity ur5 u2 c2 uw is used to transform the fixed
frame to the moving frame, and then used to compute the bottom
stress in Eqs. (28a) and (28b). The moving-frame case has the
same numerical setup as the fixed-frame case. Figure 14 presents
the results for c/u* 5 28. Both the mean velocity and Reynolds
stress profiles agree well between the fixed- and moving-frame
cases. Because the original WRF–LES code with a fixed-bottom
has been extensively validated (Mirocha et al. 2010; Moeng et al.
2007; Bou-Zeid et al. 2005; Talbot et al. 2012; Di Bernardino et al.
2022), the agreement between the results from the case with amov-
ing wave and an equivalent fixed-wave case validates our moving
bottommodel.

We also compare the wave growth rate with results from the
literature. The wave growth rate bg is defined as (Li et al. 2000)

bg 5
2Fp

(ak)2 , (55)

where Fp is the normalized form drag:

Fp 5
1

lu2*

�l

0

1
r
p̃|z51

­h̃
­x

dx: (56)

FIG. 14. Normalized mean streamwise velocity and Reynolds stress profiles for the fixed- and moving-frame cases of
turbulent flow with c/u* 5 28.

Z HU E T A L . 2899NOVEMBER 2023

Unauthenticated | Downloaded 11/07/23 07:29 PM UTC



As shown in Fig. 15, bg is large for the slow wave, near zero
for the intermediate wave, and regains its magnitude but with
an opposite sign for the fast wave. This trend agrees with
results from the literature, including the simulation results
from Hao and Shen (2019) that used a wall-modeled, two-way
coupled code and from Li et al. (2000) that used a Reynolds-
averaged Navier–Stokes (RANS) model. At a wave age as
high as 50, no data from wall-modeled LES simulations are
available. Using a wall-resolved LES code, Cao and Shen
(2021) reported a wave growth rate about twice as large as
the result from WRF at a wave age of 50, but the former has
3-times-finer horizontal resolution and nearly 4-times-finer
vertical resolution near the wave surface. The discrepancy is
probably due to the use of a wall model in WRF to compute
the wall shear stress versus directly resolving the wall shear
stress, as well as a much lower grid resolution in WRF. More-
over, Cao and Shen (2021) did not report directly the wave
growth rate for a case with c/u* 5 15:38, but it can be inferred
from the corresponding pressure stress profile that bg is ap-
proximately zero. In comparison, values of bg at the same
wave age obtained from the results of WRF and the wall-
modeled LES in Hao and Shen (2019) are approximately 20,
whereas DNS results in Kihara et al. (2007) suggest a value of
around 210. This suggests that for smaller wave ages, wall-
modeled LES predicts a higher wave growth rate than DNS. A
comprehensive comparison between wall-modeled LES and
wall-resolved LES regarding their predictions of wave growth
rate requires further systematic study. Overall, the WRF simula-
tions using the present moving bottom implementation reasonably
capture the variation in wave growth rate as a function of wave

age. Furthermore, the wall-modeled WRF–LES is computation-
ally efficient and allows for a larger domain extent to study, for ex-
ample, the influence of wind power at wind turbine hub heights.

Although the explicit acoustic substepping algorithm in
WRF requires a small model time step due to the fast sound
speed, for our grid spacing we are able to use a time step of
Dt 5 0.01 s with ns 5 4, as discussed in section 2d. For the
slow wave case with c/u* 5 15, the eddy turnover period is
174 s, and it takes roughly 48 wall-clock hours to run 100 eddy
turnover periods. For the fast wave case with c/u* 5 50, the
eddy turnover period is 571 s, and it takes 6.3 wall-clock days
to run 100 eddy turnover periods. The computational cost for
the intermediate wave case is in between the other two cases.
Given the 120 3 60 3 80 grid size, all turbulent cases use 192
processors located on 6 computational nodes. Therefore, de-
spite the disadvantage of the CFL constraint on the model
time step size, WRF–LES can efficiently simulate wind over
moving waves and resolve scales relevant to LES.

4. Conclusions

In this study, we presented the implementation of a moving
bottom in WRF–LES and validated our code with idealized
test cases that have analytical solutions, including flow over a
monochromatic wave with and without viscosity. The results
showed very good agreement with analytical solutions for a
monochromatic linear sine wave. Next, we presented test
cases of turbulent flow over a moving sine wave at three dif-
ferent wave ages. The stress profiles showed expected decom-
position between Reynolds stress, SGS stress, wave stress and

FIG. 15. Wave growth rate at different wave ages. Red circles show WRF–LES results, black
triangles show wall-modeled LES results from Hao and Shen (2019), plus signs are wall-resolved
LES from Cao and Shen (2021), black squares are DNS results from Kihara et al. (2007), black
right triangles are Reynolds-averaged Navier–Stokes (RANS) results from Li et al. (2000), and
black circles are experimental data from Grare et al. (2013).
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pressure stress, and the total stress agrees with the theoretical
profile for a pressure-driven channel flow. As further evidence
for validation, we also compared the moving-wave cases with
physically equivalent cases from the original WRF–LES code.
In the former, the wave propagates in the downwind direc-
tion, while in the latter the wave does not propagate, but the
wind is adjusted so that the wind relative to the waves is the
same as in the former. Results indicate that the mean stream-
wise velocity and Reynolds stress profiles for the two cases
match. Additionally, we found that the results from WRF suc-
cessfully capture the trend of wave growth rate as a function
of wave age found in the literature.

In the future, this moving bottom implementation will
make WRF a powerful tool to study wind–wave interactions.
Moisture and temperature stratification are not considered in
this paper, but as existing features in WRF they can be easily
incorporated into moving bottom simulations. This paper fo-
cuses on idealized wave and wind conditions for the purpose
of validation. As future work, the method can be extended to
more realistic conditions such as simulating wind over seas or
combined seas and swell, or assimilating measured meteoro-
logical data as forcing conditions. With the ability of WRF to
incorporate realistic meteorological conditions, a more com-
prehensive understanding of the influence of waves on the
ABL can be achieved. This implementation will also enable
WRF to be coupled with wave models like HOS, and eventu-
ally be extended to simulate wind–wave interactions under re-
alistic conditions, contributing to scientific and engineering
applications from wave effect parameterizations to offshore
wind resource assessment.
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