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Abstract
Floral nectar is commonly colonized by yeasts and bacteria, whose growth largely depends on their capacity to assimilate nutrient
resources, withstand high osmotic pressures, and cope with unbalanced carbon-to-nitrogen ratios. Although the basis of the
ecological success of these microbes in the harsh environment of nectar is still poorly understood, it is reasonable to assume that
they are efficient nitrogen scavengers that can consume a wide range of nitrogen sources in nectar. Furthermore, it can be
hypothesized that phylogenetically closely related strains have more similar phenotypic characteristics than distant relatives.
We tested these hypotheses by investigating the growth performance on different nitrogen-rich substrates of a collection of 82
acinetobacters isolated from nectar and honeybees, representing members of five species (Acinetobacter nectaris, A. boissieri,
A. apis, and the recently described taxa A. bareti and A. pollinis). We also analyzed possible links between growth performance
and phylogenetic affiliation of the isolates, while taking into account their geographical origin. Results demonstrated that the
studied isolates could utilize a wide variety of nitrogen sources, including common metabolic by-products of yeasts (e.g.,
ammonium and urea), and that phylogenetic relatedness was associated with the variation in nitrogen assimilation among the
studied acinetobacters. Finally, nutrient source and the origin (sample type and country) of isolates also predicted the ability of the
acinetobacters to assimilate nitrogen-rich compounds. Overall, these results demonstrate inter-clade variation in the potential of
the acinetobacters as nitrogen scavengers and suggest that nutritional dependences might influence interactions between bacteria
and yeasts in floral nectar.
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Introduction

Floral nectar has traditionally been regarded as a mere sugar-
rich reward that angiosperms offer to animals in return for
their pollinating services [1, 2]. However, this canonical view

of floral nectar as a sweet fluid mediating a bipartite relation-
ship between pollinating animals and plants has been chal-
lenged in recent years. Nowadays, floral nectar is considered
a complex solution of not only sugars but also proteins, amino
acids, minerals, and other components (e.g., secondary

* Sergio Álvarez-Pérez
sergioaperez@ucm.es

* Bart Lievens
bart.lievens@kuleuven.be

1 Department of Microbial and Molecular Systems, Laboratory for
Process Microbial Ecology and Bioinspirational Management
(PME&BIM), KU Leuven, B-3001 Leuven, Belgium

2 Department of Animal Health, Complutense University of Madrid,
28040 Madrid, Spain

3 Center for Ecological Research, Kyoto University, Hirano 2,
Otsu, Shiga 520-2113, Japan

4 Department of BioSciences, Rice University, Houston, TX 77005,
USA

5 Department of Entomology and Nematology, University of
California Davis, Davis, CA 95616, USA

6 Estación Biológica de Doñana, CSIC, 41092 Sevilla, Spain

7 Biology Department, Laboratory of Plant Conservation and
Population Biology, KU Leuven, B-3001 Leuven, Belgium

8 Department of Biology, Stanford University, Stanford, CA 94305,
USA

https://doi.org/10.1007/s00248-020-01671-x

/ Published online: 6 January 2021

Microbial Ecology (2021) 81:990–1003

http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-020-01671-x&domain=pdf
http://orcid.org/0000-0002-6587-8995
https://orcid.org/0000-0001-5020-5184
https://orcid.org/0000-0001-9077-8411
https://orcid.org/0000-0002-5016-0489
https://orcid.org/0000-0002-0447-3468
https://orcid.org/0000-0003-2452-3888
https://orcid.org/0000-0001-9600-5794
https://orcid.org/0000-0001-5654-4785
https://orcid.org/0000-0002-7698-6641
mailto:sergioaperez@ucm.es
mailto:bart.lievens@kuleuven.be


metabolites and volatile organic compounds) that can play
many roles beyond pollinator attraction, including mediating
interactions with herbivores, nectar robbers, and natural ene-
mies [2–4]. Furthermore, floral nectar has been regarded as a
short-lived, island-like habitat for diverse microorganisms
(yeasts and bacteria in particular), which can alter nectar
chemistry and affect plant-animal interactions in multiple
ways [4–9]. Recent work has shown that flower visitors can
influence the composition of nectar microbiota, by altering
dispersal, growth, and long-term survival (e.g., between
flowering seasons) of the microbial species [10–13].

Growth of microorganisms in floral nectar depends on their
capacity to efficiently use the available nutrients and to toler-
ate the challenging conditions of nectar, including high osmot-
ic pressures, unbalanced carbon-to-nitrogen ratios, diverse
toxins of plant origin, and the fact that flowers are ephemeral
habitats in which rapid growth is needed for population per-
sistence [8, 9, 14–19]. For example, the chemical properties of
floral nectar, especially carbon and nitrogen composition, vary
between and within plant species [20–22], potentially shaping
the spatial distribution of nectar microbes [18–23]. In partic-
ular, variation in the sugar concentration and composition
among plants has been shown to contribute to maintaining
spatial phenotypic variation in the nectar specialist yeasts
Metschnikowia reukaufii and M. gruessii [18, 23].
Furthermore, nectar yeasts can use a variety of nitrogen
sources and significantly decrease their concentration in floral
nectar [24]. Genetic research has suggested that, through tan-
dem duplications of genes involved in nitrogen metabolism
and transport, nectar yeasts have evolved strategies to thrive in
nitrogen-stressed environments like floral nectar and continue
cell proliferation under conditions where other microbes per-
ish [25]. However, how bacteria grow under these conditions
remains largely unknown.

M e m b e r s o f t h e g e n u s A c i n e t o b a c t e r
(Gammaproteobacteria) rank among the most frequent bacte-
rial inhabitants of floral nectar [6, 8, 26–29]. Acinetobacters
isolated from nectar have also been found on pollinators and
other flower visitors [11, 30]. The main nectar- and pollinator-
associated acinetobacters identified so far include
Acinetobacter nectaris, A. boissieri, A. apis, and the recently
described species A. pollinis, A. rathckei, and A. bareti [28,
31] (Álvarez-Pérez S. et al., unpublished results). These spe-
cies form a well-supported, deep-branching clade within the
genus and are only capable of assimilating a limited selection
of the main carbon sources available in floral nectar, including
D-fructose in most cases and sucrose and D-glucose in some
cases [28, 31, 32]. However, there is still limited information
about the nitrogen assimilation capabilities of this bacterial
group in nitrogen-poor environments such as floral nectar or
the insect gut [15, 19, 33]. Furthermore, although in a previous
study, we observed that phenotypic traits related to carbon
assimilation and chemical sensitivity were linked to the

phylogenetic placement of other Acinetobacter species [34],
the phylogenetic and trait diversity of the nectar-and insect-
inhabiting representatives are still poorly characterized [8, 28].

In this study, we investigated the nitrogen assimilation pro-
files of a diverse collection of acinetobacters isolated from
nectar and honeybees, which can act as a vector of nectar
microbes. Based on these profiles, we tested the hypotheses
that (i) the studied isolates are capable of consuming a wide
range of nitrogen sources, including those typically found in
floral nectar and the insect digestive tract; and (ii) the phylo-
genetic affiliation of studied isolates was linked to their
growth performance on different nitrogen-rich compounds,
so that closely related lineages would phenotypically resemble
each other more than distant relatives would. The effect of
geographic origin, habitat (floral vs. insect), and specific mi-
croenvironments on nitrogen assimilation were also consid-
ered in these analyses.

Materials and Methods

Isolates

Eighty-two Acinetobacter isolates were analyzed in this study
(Table S1). These isolates were isolated between 2011 and
2018 from different locations in the USA (42 isolates, 51%),
Spain (20 isolates, 24%), Belgium (19 isolates, 23%), and
Japan (1 isolate, 1%) from floral nectar and honeybees (Apis
mellifera) (further referred to as “sample type”). Fifty-seven
(70%) isolates originated from floral nectar of 16 different
plant species, and 25 isolates (31%) had been obtained from
the mouthparts, honey crop, or gut of honeybees (Table S1).
All bacterial isolates were grown on trypticase soy agar (TSA;
Merck Millipore, Overijse, Belgium) at 25 °C and stored at –
80 °C in brain heart infusion (BHI) broth (Becton Dickinson,
Erembodegem, Belgium) containing 25% glycerol (Merck
Millipore) until further use. Identification of isolates as mem-
bers of the genus Acinetobacter was based on some traits
(Gram-negative, strictly aerobic, catalase-positive, and
oxidase-negative coccobacilli [28, 35]) and the results of
molecular-based methods (see Supplementary Methods).

Phylogenetic Reconstruction

Partial sequences of the gene encoding the β subunit of RNA
polymerase (rpoB), which is a commonly used marker gene
for assessing inter- and intra-species relationships of
Acinetobacter members [36], were obtained as detailed in
the Supplementary Methods and included in multiple align-
ments generated by MUSCLE [37]. The resulting alignments
were trimmed with BioEdit v.7.0.9.0 [38] to ensure that all
sequences had the same start and endpoint. Sequences differ-
ing in at least one nucleotide were classified into different
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sequence types (STs) and a neighbor-joining (NJ) tree of STs
was obtained using the maximum composite likelihood meth-
od, as implemented in MEGA X [39], and considering the
rpoB gene sequence of Acinetobacter calcoaceticus NIPH
2245T as an outgroup. The rate variation among sites was
modeled with a gamma distribution, and support for the in-
ferred topology was tested using 100 bootstrap replications.
To provide solid evidence of the rpoB-based classification,
additional phylogenetic trees were built by maximum likeli-
hood (ML) and Bayesian inference (BI) approaches. The nu-
cleotide sequences determined in this work have been depos-
ited in the GenBank/ENA/DDBJ databases (see accession
numbers in Table S1).

Nitrogen Assimilation Tests

The Acinetobacter isolates analyzed in this study were tested
for their ability to assimilate 24 different nitrogen sources
(Table S2, Fig. S1). These included nine protein amino acids
(glycine, L-arginine, L-asparagine, L-cysteine, L-glutamic acid,
L-histidine, L-leucine, L-proline, and L-tryptophan) and the
non-protein amino acid L-ornithine, all of which are usually
found in the floral nectar of diverse plant species [2, 22, 24,
40]. Other nitrogen sources tested in this study are usually
included in the panels for metabolic analysis of
Acinetobacter and other bacterial genera (e.g., [34, 41]). All
assimilation tests were performed in 96-well assay plates,
which were prepared as detailed in the Supplementary
Methods.

Isolates from the −80 °C stock cultures were grown on
TSA agar for 72 h at 25 °C, and then restreaked on TSA agar
and incubated for 96 h at the same temperature. Next, cell
suspensions were prepared by scraping bacterial colonies
from the agar surface with a disposable loop (VWR, Oud-
Heverlee, Belgium) and resuspending them in 10 mL of
nitrogen-free basal mineral medium (BMM; see composition
in the Supplementary Methods) to reach an optical density of
85%, as determined using a benchtop turbidimeter (Biolog,
Hayward, CA, USA), which corresponds to a CFU count of
1.3 107 ± 1.1 107 CFU/mL (as determined using a selection of
10 A. nectaris and 5 A. pollinis isolates; no relevant differ-
ences in the CFU count was observed between these two
species (Álvarez-Pérez S., unpublished data)). Then, bacterial
cells were starved by incubating the cell suspensions in BMM
inside an orbital shaker (150 rpm) at 25 °C for 4 h.
Subsequently, each column of the assay plates was inoculated
with 50 μL per well of a different strain (i.e., eleven isolates
were tested per plate, and the twelfth column was left for cell-
free sterility controls). Inoculated microplates were covered
with a breathable membrane (Breath-Easy; Diversified
Biotech, Boston, MA, USA). Final concentration of the tested
compounds after adding the bacterial suspensions was 0.06%
w/v in all cases, which corresponded with a nitrogen

concentration ranging from 0.38 × 10-2 to 4.67 × 10-2 % w/v
(mean ± SD = 1.28 × 10-2 ± 0.93 × 10-2) (Table S2), whereas
the sugars were at a concentration of 1% w/v (sucrose) or
0.1% w/v (glucose and fructose). The optical density (OD)
at 600 nm of assay plates was measured using a benchtop
spectrophotometer (Multiskan GO; Thermo Fisher,
Merelbeke, Belgium) immediately after inoculation of bacte-
rial cells (OD0) and again after 96 h of static incubation at 25
°C (ODf). At least three replicates for each isolate and test
condition were run on different dates, and the order of isolates
and cell-free controls in the columns of the plates was ran-
domized in all cases. Additionally, some randomly chosen
isolates were inoculated in two different columns of the same
plate to test for intra-plate reproducibility of the assays.

Data Analysis

Performance of each isolate in a specific nitrogen assimilation
test was assessed by determining the increase in the OD value
obtained under that condition (i.e.,ΔOD = ODf − OD0), after
subtracting the OD obtained in the negative control (which
accounted for possible growth due to, for example, nutrient
reserves remaining after the starvation step). Then, the average
of the ΔOD values obtained for the replicates of each isolate
and test condition was determined, and growth scores were
calculated by dividing isolate-specific average ΔOD values
by the maximum ΔOD obtained for all tested isolates in that
particular assimilation assay. Furthermore, we calculated a
nutrient assimilation (NA) index as the sum of the growth
scores obtained for the assimilation of all nitrogen sources
and which, therefore, gives an overall idea of the performance
of isolates in the phenotypic tests considered in this study. The
normal distribution of growth scores and the NA index was
evaluated by the Shapiro-Wilk test, using the shapiro.test()
function of R v. 3.6.1 package ‘stats’ [42].

Intra-plate reproducibility of the phenotypic assays was
evaluated by calculating the concordance correlation coeffi-
cient (CCC) for agreement on continuous measures [43, 44],
as implemented in the R library “epiR” (epi.ccc() function)
[45]. Lin’s CCC quantifies the agreement between two mea-
sures of the same variable and ranges from − 1 to 1, with
perfect agreement at 1. In general, intra-plate reproducibility
for testing assimilation of nitrogen compounds was good to
excellent (the CCC 95% confidence intervals (CI) included
values > 0.9 in 87.5% of the assimilation tests) (Table S3).

The distributions of growth scores obtained in each pheno-
typic test for the different rpoB clades and groups of isolates
according to their geographical origin and sample type (floral
nectar vs. insect) were visualized by beanplots [46], and
pairwise correlations between traits were assessed by non-
parametric Spearman rank tests, using the R package
“Hmisc” [47]. In order to control for the non-phylogenetic
independence of the isolates, correlation analyses were
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repeated using phylogenetically independent contrasts (PICs)
[48], as implemented in the R package “ape” (pic() function
[49]). Phenotypic differences between groups of isolates ac-
cording to their origin (sample type and geographic location)
were analyzed by a phylogenetic ANOVA, which controlled
for the non-independence of the data because of shared ances-
try [50]. This latter test was carried out using the
phylANOVA() function in the R package “phytools” [51].
In all cases, P values were adjusted for the number of simul-
taneous comparisons using Holm’s correction.

Phylogenetic dependence of the phenotypic traits deter-
mined in this study was evaluated by calculating Blomberg’s
K and Pagel’s λ [52–54], as implemented in the R packages
“picante” (multiPhylosignal() function [55]) and “phytools”
(phylosig() function), respectively. In both cases, the closer
the value to zero, the more phylogenetically independent is a
trait, while a value of 1 corresponds to a Brownian motion
expectation (i.e., random walk with constant trait variance
over time [48]), and values > 1 mean that close relatives are
more similar than expected under Brownian motion [54, 56,
57]. Because some phylogenetic signal metrics are sensitive to
polytomic branches [57], K and λ obtained for the whole data
set (i.e., nitrogen assimilation and NA index data for all iso-
lates, n = 82) were also compared to those obtained for a
reduced data set that included the average growth scores and
NA index obtained for each ST (n = 32, see below) in the
different phenotypic tests. Relationships between pairwise
phylogenetic distances and trait differentiation among isolates
and STs were assessed by the Mantel test (mantel.test() func-
tion of the “ape” package), as detailed in Van Assche et al.
[34]. In addition, we used the fitContinuous() function of R
package “geiger” [58] to assess if the Brownian motion model
of trait evolution actually provided a good fit to the phe-
notypic data or alternative models explained better trait
evolution in the studied acinetobacters. The relative like-
lihood of different models was assessed by calculating
their Akaike’s information criterion (AIC) and Akaike
weights [59], and when no evolutionary model showed
an AIC weight ≥ 0.5, it was concluded that none of them
performed substantially better than the others [34, 60].
The inputs of all these analyses were the NJ phylogenetic
trees built from rpoB sequences (all sequences or a repre-
sentative sequence of each ST) and converted into an
ultrametric tree by using the force.ultrametric() function
of “phytools,” and the results obtained for nitrogen assim-
ilation. Statistical significance was tested by randomiza-
tion with 1000 repetitions and Holm-corrected P values <
0.05 were considered significant. Additionally, visualiza-
tion of phenotypes on the NJ rpoB tree based on STs was
achieved by using the phylo.heatmap() and contMap()
functions of “phytools.” In the contMap method, a color
gradient is used to map observed and reconstructed trait
values onto the edges of a phylogeny [61, 62].

Classic and phylogenetic principal component analysis
(PCA) on the covariance matrices, as implemented in the R
packages “stats” (princomp() function) and “phytools”
(phyl.pca() function), respectively, were used to identify the
test conditions accounting for most variability in the pheno-
typic data. PCA scree plots, loading plots, and scores plots
were created using the R packages “graphics” and “ggplot2”
[42, 63]. Additionally, permutational multivariate analysis of
variance (PERMANOVA) was used to compare the growth
performance of all the isolates in different test conditions,
considering explanatory variables the nitrogen source, the
rpoB clade and geographic origin (country) of the isolates,
and the sample type from which these were obtained. These
PERMANOVAs were carried out using the adonis() function
of the R package “vegan” [64] and, given the high dimension-
ality of the data set, dissimilarity matrices between isolates
were calculated based on the Manhattan distances using the
vegdist() function of the same package.

Results

Partial sequencing of the rpoB gene revealed a total of 32 STs
for the collection of isolates included in this study (Fig. 1,
Table S1). The number of isolates of each ST ranged from
one (in 19 STs, i.e., 59.4% of total) to 13 (one ST, ST14).
Nineteen of those STs, comprising a total of 56 isolates, were
identified as members of the species A. nectaris in BLASTn
searches (98.1% to 100% sequence identity with the type
strain). Five STs, representing a total of 14 isolates, formed
a well-supported clade in the rpoB tree (> 90% bootstrap
support and > 0.9 posterior probability in the NJ and BI anal-
yses, respectively; Fig. 1, Figs. S2 to S4) and were identified
as A. pollinis (99.8 to 100% sequence identity with the type
strain). Five STs, comprising nine isolates, were identified as
A. boissieri (99.3 to 99.9% identity with the type strain) and
were closely related to the type strain ofA. bareti (B10AT) and
a second isolate showing 99.7% identity to this type strain.
Finally, a single ST containing just one isolate was identified
as A. apis (99.8% sequence identity with the type strain).

The growth scores obtained in the 24 nitrogen assimilation
assays and the NA index departed from normal distributions
(correctedP values were < 0.05 in all cases). In general, results
of nitrogen assimilation obtained for isolates from the differ-
ent rpoB clades and groups of isolates according to their origin
(sample type and geographic location) were broadly distribut-
ed, and the presence of outliers (i.e., isolates with a score
which largely departed from the average for the clade/group)
was a common finding for most nitrogen sources (see
beanplots in Figs. S5–S7). NA indices were also broadly dis-
tributed across isolates from different rpoB clades, sample
types, and geographical locations (Fig. S8). Correlation anal-
ysis of the growth scores and their corresponding PICs
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revealed 83 and 60 significant correlations between assimila-
tion assays (30% and 21.7% of the total number of pairwise
comparisons, n = 276), respectively, most of which (100%
and 98.3%, respectively) were positive (Fig. S9). The only
negative significant correlation corresponded to the PICs ob-
tained for assimilation of nitrite and nicotinic acid (ρ = −
0.409). In any case, Spearman’s rank correlation coefficients
were low for most trait pairs (absolute values of Ρ were > 0.8
for only ten pairs of traits in the analysis based on growth
scores and four pairs of traits when PICs were considered;
Fig. S9).

The scores plot obtained by conventional and phylogenetic
PCA of covariance matrices of nitrogen assimilation results
are shown in Figs. 2 and 3, respectively, and the

corresponding scree plots can be found in Fig. S10. The first
two principal components explained 60.7% of the total vari-
ance in the conventional PCA and 70.2% in the phylogenetic
PCA. The three variables with the highest contribution (i.e.,
the highest absolute value of loadings) to the first principal
component in the conventional PCA were assimilation of L-
asparagine (0.39), L-proline (0.37), and ammonium (0.37),
whereas those with the greater influence on the second prin-
cipal component were assimilation of uridine (− 0.47), L-his-
tidine (− 0.44), and L-arginine (− 0.38) (Fig. 2 and S11). In
contrast, assimilation of nitrite, betaine, and formamide had
the greater influence on the first principal component of the
phylogenetic PCA (loadings = − 0.99, − 0.99, and 0.61, re-
spectively) (Fig. 3 and S11). Assimilation of L-glutamic acid,

Fig. 1 Neighbor-joining (NJ) consensus tree, based on rpoB gene se-
quences, showing the relationships of the Acinetobacter isolates included
in this study (n = 82). Branches correspond to the different rpoB sequence
types (STs) identified based in nucleotide sequence alignments. The num-
ber of isolates belonging to each ST or species is indicated between
square brackets. The small phylogram is included to illustrate branch
length heterogeneity (see also Fig. S2). Evolutionary distances were com-
puted using the maximum composite likelihood method and are in the
units of number of base substitutions per site. The rate variation among
sites was modeled with a gamma distribution. Alternative phylogenetic

trees were obtained bymaximum likelihood (ML) and Bayesian inference
(BI) approaches (see details in the main text and Figs. S3 and S4). Node
support values (bootstrap ≥ 90% based on 100 simulations for the NJ- and
ML-based trees, and/or posterior probabilities ≥ 0.9 for the BI-based tree)
are indicated by color-filled circles (see the legend at the lower left side of
the figure). Color-filled squares on the tips of branches indicate the envi-
ronmental origin of isolates (see the legend). GenBank accession numbers
are given in Table S1. The tree was rootedwith the rpoB gene sequence of
Acinetobacter calcoaceticus NIPH 2245T.
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L-proline, and uridine had the highest absolute loading values
for the second principal component of the phylogenetic PCA
(0.98, 0.97, and 0.96, respectively), but there were seven other
variables with loadings > 0.8. The score plot obtained in the
conventional PCA suggested phenotypic differentiation of the
A. bareti-A. boissieri rpoB clade members, whereas the points
representing the isolates of the other three species tested
(A. apis, A. nectaris, and A. pollinis) were more intermingled
and their corresponding 68% data concentration ellipses,
which enclose approximately 2/3 of bivariate normal data,
overlapped completely (Fig. 2). However, rpoB clade-based
phenotypic differences were not supported by the phylogenet-
ic PCA results (Fig. 3). Likewise, there was no clear grouping
of isolates according to their origin, as isolates obtained from
different sample types, geographic locations, and “microsites”
(defined as different insect body parts or the floral nectar of
different plant families) were intermingled in both the conven-
tional and phylogenetic PCA scores plot (Figs. 2 and 3 and
S12). Similar results were obtained when correlation matrices
were used in the conventional and phylogenetic PCA (see
Figs. S13 and S14, respectively); albeit in these cases, there

was a clearer separation of the A. bareti-A. boissieri rpoB
clades in the scores plot based on species identity.

Phylogenetic signal analysis based on the trait data obtained
for the whole collection of Acinetobacter isolates (n = 82)
yielded significant results for assimilation of most nitrogen
sources when tested by Blomberg’s and Pagel’s method (19/
24 and 18/24, i.e., 79.2% and 75%, respectively; Table 1).
Accordingly, significant phylogenetic signal was also observed
for the NA index (P ≤ 0.001 in both methods).K values were in
most cases low (≤ 1.23·10-7), indicating that the strength of
phylogenetic signal was weaker than would be expected under
a Brownian motion model. In contrast, high λ values (≥ 0.9)
were obtained for 70.1% of the nitrogen assimilation assays and
the NA index. Moreover, results of the Mantel test indicated
that phylogenetic relatedness was associated with the observed
variation in growth scores for most of the nitrogen sources
tested (16/24, 66.7%) and the NA index (Table S4).
Evolutionary model fitting of the whole data set indicated that
the kappa model was the most commonly supported (87.5% of
the assimilation assays and the NA index), followed by the
white noise model (12.5%) (Table S5).

Fig. 2 a, b, and c Scores plots
showing the distribution of
Acinetobacter isolates according
to the first two components
obtained by conventional
principal component analysis
(PCA) of the covariance matrix of
nitrogen assimilation data. Colors
of points and the 68% data con-
centration ellipses denote differ-
ent rpoB clades (panel a), sample
sources (b) or countries of origin
(c). d PCA loadings plot, where
each arrow represents the load-
ings on the first two principal
components for one factor
(growth performance on a given
nitrogen source). AA,
Acinetobacter apis (n = 1); AB,
Acinetobacter boissieri (n = 9);
ABT, Acinetobacter bareti (n =
2); AN, Acinetobacter nectaris (n
= 56); AP, Acinetobacter pollinis
(n = 14). Codes of nitrogen as-
similation tests are as in Table S2
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A phylogenetic heatmap of the average growth scores
obtained for the different rpoB STs in the nitrogen as-
similation assays performed in this study is shown in
Fig. 4, and the contMap trees mapping observed and
estimated growth scores and NA indices onto the edges
of the NJ tree built from STs can be found in Figs. S15
and S16, respectively. Repetition of the phylogenetic
signal analysis using the average trait values of STs
(reduced data set, n = 32) yielded significant results
for assimilation of only six nitrogen sources (25%),
namely glycine, L-arginine, glycyl-L-glutamic acid
(Gly-Glu), and glycyl-L-aspartic acid (Gly-Asp) (signifi-
cant results for both K and λ), L-tryptophan (only for
K), and L-ornithine (only for λ) (Table 1, Fig. 4).
Similarly, Mantel tests pointed to the phylogenetic de-
pendence of the same six traits (Table S4). No signifi-
cant phylogenetic signal was detected for assimilation of
other nitrogen sources or the NA index. In addition,
evolutionary model fitting of the reduced data set

indicated that the white noise model was the most com-
monly supported (45.8% of the assimilation assays and
the NA index), followed by the lambda and the kappa
models (25% and 12.5%, respectively), and there were
four traits (16.7%) for which no evolutionary model
performed substant ia l ly bet ter than the others
(Table S6).

Phylogenetic ANOVAs using sample type and geographic
origin of the isolates as factors revealed no significant differ-
ence between the groups considered for most nitrogen assim-
ilation tests or the NA index (Table S7). The only two excep-
tions were the assimilation of the amino acids L-cysteine and
L-tryptophan, for which significant differences were found
between the nectar and insect isolates in the phylogenetic
ANOVA (P = 0.046 and 0.024, respectively), with the insect
isolates showing in general higher growth scores (see
beanplots in Fig. S6). Furthermore, PERMANOVA analyses
revealed that the performance of Acinetobacter isolates in the
nitrogen assimilation assays depended significantly on the

Fig. 3 a, b, and c Scores plots showing the distribution of Acinetobacter
isolates according to the first two components obtained by phylogenetic
principal component analysis (PCA) of the covariance matrix of nitrogen
assimilation data. Colors of points and the 68% data concentration ellip-
ses denote different rpoB clades (panel a), sample sources (b) or countries
of origin (c). d Phylogenetic PCA loadings plot, where each arrow

represents the loadings on the first two principal components for one
factor (growth performance on a given nitrogen source). AA,
Acinetobacter apis (n = 1); AB, Acinetobacter boissieri (n = 9); ABT,
Acinetobacter bareti (n = 2); AN, Acinetobacter nectaris (n = 56); AP,
Acinetobacter pollinis (n = 14). Codes of nitrogen assimilation tests are as
in Table S2
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nitrogen source, the rpoB clade, the sample type, the geo-
graphical origin, all two-way interactions of these factors,
and the three-way interaction between rpoB clade, geograph-
ical origin, and nitrogen source (Table 2).

Discussion

Recent research has revealed that carbon metabolism in bac-
teria follows some phylogenetic structure, and that this struc-
ture allows for some predictability in community assembly
[34, 65, 66]. Although nitrogen is a major component of bac-
terial cells which accounts for 10–15% of their dry weight
[67], there is still very limited information about the conser-
vation and community ecology consequences of nitrogen
metabolism.

The results of this study indicate that nectar- and pollinator-
associated Acinetobacter clades differ in nitrogen assimilation
capabilities. Moreover, as previously observed for nectar
yeasts [18, 23, 68], we also found that phenotypic variation
among the studied species was broad, with some outlying
isolates of most species. Phylogenetic differences in assimila-
tion of most individual nitrogen sources and the NA index,
which was used as a measure of overall nitrogen assimilation,
were confirmed by the results obtained for two different phy-
logenetic signal metrics (Blomberg’s K and Pagel’s λ) and
Mantel tests using trait data for all isolates under study.
However, there was some incongruence between the results
obtained for Bloomberg’s K and Pagel’s λ, with most traits
showing K values close to 0 but λ values close to 1. Unlike
Blomberg’s K, Pagel’s λ is strongly robust to incomplete phy-
logenetic information (e.g., polytomies and non-accurate

Table 1 Phylogenetic signal of the growth performance of Acinetobacter isolates (n = 82) and rpoB sequence types (STs, n = 32) in nitrogen
assimilation assays

Nitrogen assimilation test [code]a Phylogenetic signal metrics for isolates (P valueb) Phylogenetic signal metrics for STs (P valueb)

Blomberg’s K Pagel’s λ Blomberg’s K Pagel’s λ

Ammonium [N1B] 2.49E-08 (0.024*) 0.989 (< 0.001*) 2.59E-02 (0.195) 0.100 (1)

Nitrite [N1C] 2.20E-09 (1) 0.015 (1) 6.96E-03 (1) 0.059 (1)

Nitrate [N1D] 2.15E-08 (0.024*) 0.981 (< 0.001*) 3.14E-02 (0.204) 0.000 (1)

Urea [N1E] 3.15E-08 (0.024*) 0.989 (< 0.001*) 3.01E-02 (0.112) 0.000 (1)

Betaine [N1F] 2.14E-09 (1) 0.035 (1) 4.25E-03 (1) 0.030 (1)

Uracil [N1G] 3.70E-08 (0.024*) 0.997 (< 0.001*) 1.78E-02 (1) 0.188 (1)

Glycine [N2B] 2.35E-07 (0.024*) 0.754 (< 0.001*) 1.10E-01 (0.024*) 0.825 (< 0.001*)

L-Leucine [N2C] 4.92E-08 (0.024*) 0.995 (< 0.001*) 3.96E-02 (0.096) 0.000 (1)

L-Cysteine [N2D] 1.52E-08 (0.024*) 0.963 (< 0.001*) 3.93E-03 (1) 0.000 (1)

L(-)-Proline [N2E] 2.08E-08 (0.024*) 0.989 (< 0.001*) 2.70E-02 (0.096) 0.000 (1)

L-Asparagine [N2F] 1.76E-08 (0.024*) 0.985 (< 0.001*) 3.09E-02 (0.076) 0.213 (1)

N-Acetyl-D-glucosamine [N2G] 5.02E-09 (0.387) 0.000 (1) 6.44E-03 (1) 0.000 (1)

L-Histidine [N3B] 1.23E-07 (0.024*) 0.999 (< 0.001*) 3.17E-02 (0.090) 0.312 (1)

L-Arginine [N3C] 6.22E-08 (0.024*) 0.993 (< 0.001*) 7.00E-02 (0.024*) 0.764 (< 0.001*)

L-Glutamic acid [N3D] 2.28E-08 (0.024*) 0.992 (< 0.001*) 2.56E-02 (0.204) 0.000 (1)

L-Tryptophan [N3E] 1.73E-07 (0.024*) 0.999 (< 0.001*) 4.10E-02 (0.024*) 0.032 (1)

L-Ornithine [N3F] 8.93E-08 (0.024*) 0.930 (< 0.001*) 4.92E-02 (0.090) 0.920 (< 0.001*)

Glucosamine [N3G] 6.54E-09 (0.108) 0.000 (1) 2.24E-03 (1) 0.000 (1)

Ethanolamine [N4B] 2.43E-08 (0.024*) 0.995 (< 0.001*) 2.07E-02 (0.480) 0.000 (1)

Formamide [N4C] 1.32E-08 (0.024*) 0.792 (0.683) 1.24E-02 (1) 0.173 (1)

Uridine [N4D] 3.26E-08 (0.024*) 0.993 (< 0.001*) 2.54E-02 (0.250) 0.309 (1)

Nicotinic acid [N4E] 5.56E-08 (0.105) 0.223 (0.087) 5.10E-02 (0.432) 0.333 (0.853)

Gly-Glu [N4F] 8.57E-08 (0.024*) 0.998 (< 0.001*) 4.45E-02 (0.024*) 0.674 (0.001*)

Gly-Asp [N4G] 3.15E-07 (0.024*) 0.999 (< 0.001*) 9.53E-02 (0.024*) 0.855 (< 0.001*)

NA indexc 2.19E-08 (0.001*) 0.989 (< 0.001*) 2.10E-02 (0.055) 0.000 (1)

a See details in Table S2
bHolm-corrected P values. Significant values (< 0.05) are denoted by an asterisk
cNutrient assimilation index, defined as the sum of the growth scores obtained for the assimilation of all nitrogen sources
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branch lengths) [57]. In our case, the original rpoB tree
contained multiple polytomies that may contribute to the op-
posite trends observed forK and λ. Therefore, we recalculated
the phylogenetic signal metrics using a reduced data set com-
posed of the average trait values of STs. The results of this
analysis showed a higher congruence between K and λ values
and confirmed the significant phylogenetic dependence of as-
similation of some amino acids typically encountered in floral
nectar (glycine, L-arginine, L-tryptophan, and L-ornithine) and
the dipeptides Gly-Glu and Gly-Asp, but not of the NA index.
Moreover, contMap trees mapping observed and estimated
growth scores and NA indices on the rpoB tree suggested a
high conservation of trait values between closely related STs
but a rapid loss of conservation deeper in the phylogeny (see
Figs. S15 and S16), and model testing revealed that none of
the studied traits followed a Brownian motion model of

evolution, consistent with the results from a recent study on
carbon assimilation of Acinetobacter species [34]. The kappa
model, a punctuational model in which all branch lengths of
the phylogenetic tree are raised to an estimated power (κ) and
character divergence is related to the number of speciation
events between two tips of the tree [52], fitted the results of
most nitrogen assimilation assays and the NA index. In con-
trast, the white noise model, which assumes that trait data
come from a random normal distribution and species have
no significant trait covariance [60], fitted in most cases the
average growth scores and NA indices calculated for STs.
Nevertheless, variability in more than one-third of the average
trait values of the STs (37.5%, including five of the six traits
with significant phylogenetic signal) was better explained by
more complex models of evolution, such as lambda (which
fits the extent to which the phylogeny predicts covariance

Fig. 4 Phylogenetic heatmap of the average growth scores obtained for
the different rpoB sequence types (STs, shown in rows) in the nitrogen
assimilation assays performed in this study (columns). The number of
isolates belonging to each ST is indicated in Fig. 1. Color-filled squares
on the tips of the phylogenetic tree indicate the environmental origin of

isolates (green, floral nectar; red, insect). Phenotypes for which signifi-
cant phylogenetic signal was detected when tested by Blomberg’s K,
Pagel’s λ, or both methods are indicated by red, orange, and blue dots,
respectively, next to the names of nitrogen sources
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among trait values for tips and transforms the tree by multi-
plying internal branches by λ [52]) and kappa.

Variation in microbial traits may also be linked to habitat
differences, as different environmental conditions can select
for different phenotypes. The PCA and the phylogenetic
ANOVA results of this study mostly failed to detect signifi-
cant correspondence between nutrient assimilation and sample
type (floral nectar vs. honey bee) or the geographical origin of
isolates. However, PERMANOVA results suggested that ni-
trogen assimilation depended not only on nutrient source and
clade affiliation but also on the origin of isolates (sample type
and/or country) and the interaction between origin and the
aforementioned factors. Some of those interactions were ex-
pected as, for example, all A. boissieri isolates included in the
assimilation tests had been retrieved from nectar samples col-
lected in Spain, whereas the two A. bareti isolates were of
insect origin and had been obtained in California, USA.
Furthermore, the interaction between nitrogen sources and
rpoB clade affiliation is another indication of the phylogenetic
signal of nutrient assimilation observed in this and previous
studies [34] for the members of genus Acinetobacter.

A methodological challenge that we had to face during the
experimental part of this study was the preparation of cell
suspensions from Acinetobacter plate cultures, due to the
stickiness of the colonies of some isolates [8, 69, 70]. This
trait may have contributed to the substantial variation in the
CFU counts of the cell suspensions that we used to inoculate
the assay plates. Additionally, as not all assimilation tests
contained the same concentration of nitrogen and other nutri-
ents (mostly carbon), the maximum growth possible in each

source might vary and comparison of growth rates across tests
should not be directly performed. To minimize the effect of
these variations in the CFU counts and nitrogen content and
allow a fairer comparison of the results obtained for different
tests, we standardized the OD value obtained for each isolate
in a given assimilation test with respect to maximum OD
obtained in such a test. In any case, further refinement of the
techniques used for phenotyping the nectar- and insect-
associated acinetobacters is recommended.

The most common sources of nitrogen in nectar are the
amino acids and proteins secreted by the plant and the nitro-
gen compounds released from pollen grains that fall into the
nectary [15, 19, 22]. The frass of insects that visit flowers and
the by-products of microbial metabolism can be additional
sources of nitrogen in nectar. Although we did not analyze
the chemical composition of the nectar samples from which
our isolates were obtained, the data reported in previous stud-
ies suggest that the concentrations of some compounds that
we used in our experiments are higher than those typically
found in nature. For example, the concentration of different
protein and non-protein amino acids in pristine nectar of
Diplacus aurantiacus and the nectar of Fritillaria lusitanica
(which are two of the plant species from which we obtained
Acinetobacter isolates; Table S1), was found to range between
0 and 136 nmol/mL [24, 71]. These values are clearly below
the amino acid concentrations that we used in our assays,
which ranged between 2938 and 7993 nmol/mL.
Nevertheless, as nectar chemistry can vary widely across plant
species and even within a same species [22, 24, 40, 71, 72], it
is difficult to reliably compare the nitrogen concentration in

Table 2 Output of the
permutational multivariate
analysis of variance
(PERMANOVA) for the perfor-
mance of Acinetobacter isolates
in nitrogen assimilation assaysa

Factorsb df Sum Sqs Mean Sqs F R2 P

Clade 4 1.75 0.44 12.02 0.010 < 0.001#

Sample type 1 3.98 3.97 108.98 0.022 < 0.001#

Location 2 1.95 0.97 26.69 0.011 < 0.001#

N source 23 62.55 2.72 74.57 0.351 < 0.001#

Clade× Sample type 1 0.15 0.15 4.11 0.001 0.036#

Clade × Location 2 2.45 1.23 33.63 0.014 < 0.001#

Clade × N source 92 20.71 0.23 6.17 0.116 < 0.001#

Sample type × N source 23 12.17 0.53 14.51 0.068 < 0.001#

Location × N source 46 6.20 0.13 3.69 0.035 < 0.001#

Clade × Sample type × N source 23 0.62 0.03 0.73 0.003 0.856

Clade × Location × N source 46 3.50 0.08 2.09 0.020 < 0.001#

Residuals 1704 62.15 0.04 0.35

Total 1967 178.17 1

aThe analysis was performed using the adonis() function of the R package vegan. df degrees of freedom, Sum Sqs
sum of squares, Mean Sqs mean squares, F F statistics, R2 partial R-squared, P P values based on 1000 permu-
tations (statistically significant values are denoted by a hash symbol, #)
bClade: rpoB clade; sample type: floral nectar vs. insect; location: country of origin (Belgium, Japan, Spain, or
USA). N source nitrogen source (see Table S2)
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our assimilation assays with that found in the floral nectar of
the sampled species.

Our collection of Acinetobacter isolates mostly contained
nectar isolates of A. nectaris (n = 34; i.e., 41.5% of the total
number of isolates), followed by insect isolates of the same
species (n = 22; 26.8%). Two of the species that we tested,
A. pollinis and A. bareti, are still pending of formal description
(Álvarez-Pérez S. et al., unpublished results), and there is not
much information about their ecology or prevalence in nectar
and insects, nor enough isolates available for a more balanced
comparison with other species such as A. nectaris and
A. boissieri. Similarly, there is still limited information about
the ecology ofA. apis, a species which was formally described
by Kim et al. [31] but, to our knowledge, has never again been
reported from any source until the present study.
Unfortunately, due to the limited number of Acinetobacter
isolates available for phenotyping in this study, our classifica-
tion according to their origin only included very broad cate-
gories, such as “nectar” vs. “insect” or the country of sam-
pling. Further classification of our collection of nectar isolates
according to their plant host (at the family level) and the insect
isolates according to their microsite of origin (mouth, crop, or
gut) was attempted (see Fig. S12) and suggested no significant
differentiation of isolates according to these criteria, but the
number of isolates per category was too small to get reliable
conclusions.

Acinetobacters frequently co-occur with other microorgan-
isms in floral nectar, in particular with yeasts of the genus
Metschnikowia [27]. In some cases, co-occurrence might be
facilitated by resource partitioning between yeasts and bacte-
ria in nectar as, for example, Metschnikowia spp. and the
nectar acinetobacters have complementary nutrient assimila-
tion profiles: the yeasts use glucose and enrich floral
nectar in fructose, whereas the bacteria appear to pref-
erentially use fructose [8, 28]. Furthermore, the results
of the present study demonstrate that Acinetobacter iso-
lates are capable of assimilating ammonium, urea, and
different amino acids. These compounds are normally
scarce in nectar, but may be supplemented through re-
lease of metabolic by-products by yeasts [73–75], diffu-
sion from pollen grains that fall into nectar [19], and
“directed bursting” of the fallen pollen grains by nectar
yeasts [15]. However, because the common nectar yeast
M. reukaufii is an efficient scavenger of scarce nitrogen
[25, 76], it remains uncertain whether nitrogen released
into nectar by yeasts can be taken up by bacteria or
quickly scavenged by the yeasts themselves, leaving it
possible that antagonistic competitive interactions are
more prevalent than resource partitioning or facilitation
among Acinetobacter and Metschnikowia spp. as their
populations grow rapidly in nectar [76].

In general, bacteria use a large diversity of inorganic and
organic compounds as sources of nitrogen [67]. However, as

nitrogen assimilation can be energetically demanding, path-
ways for assimilation of nitrogen sources alternative to am-
monium (which is generally the least expensive nitrogen
source) are usually activated only when bacteria experience
nitrogen deprivation [67]. Isolates from nitrogen-rich and
nitrogen-poor habitats might therefore show differences in
their nitrogen assimilation capabilities, with the latter be-
ing more efficient in nutrient scavenging. Furthermore,
given the significant phylogenetic dependence of some
phenotypes detected in this study, closely related species
may display similar responses to variation in the nitrogen
availability (overall concentration, diversity of available
sources, etc.) in the environment. Unfortunately, the
aforementioned limitations of our study precluded testing
these hypotheses for the insect- and nectar-associated
acinetobacters. Future research on this bacterial group
should consider these and other unexplored potential
sources of trait variation, including intra-species genetic
diversity and epigenetic regulation, both of which appear
to affect Metschnikowia yeasts in nectar [77, 78].

Conclusion

In conclusion, the results of this study demonstrate that
the nectar- and insect-associated acinetobacters differ
greatly in their assimilation of nitrogen sources and that
phylogenetic relatedness predicts some of this variation
in nitrogen assimilation. The results also suggest that
nitrogen assimilation may depend on the origin (sample
type and country) of isolates and the nutrient source. It
remains to be determined, however, if isolates from
nitrogen-rich and nitrogen-poor microsites (e.g., nectar
types or body parts of insects) differ in their nitrogen
assimilation patterns. Our results suggest that it would
be interesting to study whether nutritional dependences
facilitate or hinder co-occurrence of bacteria and yeasts
in floral nectar and to what extent phenotypic variability
in the acinetobacters increases spatial and temporal var-
iation in the quality of nectar as a reward for
pollinators.
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