
S P E C I A L I S S U E : T H E HO S T - A S S O C I A T E D M I C RO B I OM E :

P A T T E R N , P RO C E S S AND FUN C T I ON

Genomic diversity of a nectar yeast clusters into
metabolically, but not geographically, distinct lineages

Manpreet K. Dhami1,2 | Thomas Hartwig3,4 | Andrew D. Letten1,5 | Michael Banf4 |

Tadashi Fukami1

1Department of Biology, Stanford

University, Stanford, CA, USA

2Landcare Research, Lincoln, New Zealand

3Max Planck Institute for Plant Breeding

Research, K€oln, Germany

4Department of Plant Biology, Carnegie

Institution for Science, Stanford, CA, USA

5Department of Biology, University of

Canterbury, Christchurch, New Zealand

Correspondence

Manpreet K. Dhami, Landcare Research,

Lincoln, New Zealand.

Email: manpreetkdhami@gmail.com

and

Tadashi Fukami, Department of Biology,

Stanford University, Stanford, CA, USA.

Email: fukamit@stanford.edu

Funding information

VPUE Summer Research Program, Stanford

University; NSF Division of Environmental

Biology, Grant/Award Number: DEB

1149600, DEB 1555786, DEB 1737758;

Center for Computational, Evolutionary and

Human Genomics, Stanford University;

Terman Fellowship; Department of Biology,

Stanford University

Abstract

Both dispersal limitation and environmental sorting can affect genetic variation in

populations, but their contribution remains unclear, particularly in microbes. We

sought to determine the contribution of geographic distance (as a proxy for disper-

sal limitation) and phenotypic traits (as a proxy for environmental sorting), including

morphology, metabolic ability and interspecific competitiveness, to the genotypic

diversity in a nectar yeast species, Metschnikowia reukaufii. To measure genotypic

diversity, we sequenced the genomes of 102 strains of M. reukaufii isolated from

the floral nectar of hummingbird-pollinated shrub, Mimulus aurantiacus, along a 200-

km coastline in California. Intraspecific genetic variation showed no detectable rela-

tionship with geographic distance, but could be grouped into three distinct lineages

that correlated with metabolic ability and interspecific competitiveness. Despite

ample evidence for strong competitive interactions within and among nectar yeasts,

a full spectrum of the genotypic and phenotypic diversity observed across the 200-

km coastline was represented even at a scale as small as 200 m. Further, more

competitive strains were not necessarily more abundant. These results suggest that

dispersal limitation and environmental sorting might not fully explain intraspecific

diversity in this microbe and highlight the need to also consider other ecological fac-

tors such as trade-offs, source-sink dynamics and niche modification.
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1 | INTRODUCTION

Environmental heterogeneity and dispersal limitation are often

invoked to explain the distributions of organisms across space, but

their relative importance has been a contentious issue, particularly in

microbial species. Historically, microbes were thought to occur wher-

ever environmental conditions are suitable because their small size

and high propagule pressure enable microbes to disperse virtually

anywhere (Bass Becking, 1934; Finlay, 2002). More recently, a grow-

ing body of evidence contradicts the idea that microbes can disperse

unhindered (Martiny et al., 2006; Whitaker, Grogan, & Taylor, 2003),

and dispersal limitation is now considered a potential major

determinant of microbial distribution (Kivlin, Winston, Goulden, &

Treseder, 2014). Nevertheless, the importance of dispersal limitation

relative to environmental heterogeneity remains unclear (Cadotte &

Tucker, 2017; Talbot et al., 2014; Zhang et al., 2017), particularly for

intraspecific genetic variation (Andrew, Wallis, Harwood, & Foley,

2010; Lowe, Martin, Montagnes, & Watts, 2012).

The traditional concept emphasizing the role of environmental

heterogeneity is deceptively simple: the genotype with the set of pheno-

typic traits most suitable to a specific local environmental condition is

expected to be most abundant under that condition, causing local sites

that vary in environmental conditions to harbour different genotypes

having different phenotypic traits. The mechanism for this
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correspondence between environment and phenotype, which we will

refer to as environmental sorting, can be ecological or evolutionary,

resulting from differential population growth or local adaptation, respec-

tively, or both can operate at the same time. Although intuitive, this con-

cept is difficult to demonstrate empirically because resource competition

and other biotic interactions can modify the environment–phenotype

correspondence (Kraft et al., 2015). Moreover, dispersal and environ-

ment can have interactive, not just additive, effects on populations. In

nectar-inhabiting yeasts, for example, local coexistence of populations

has been attributed to resource use, in combination with plant host-

mediated phenotypic differences among strains (Pozo et al., 2016).

However, resource competition can be strong among these yeasts, and

the outcome of competition can depend on the order in which different

strains disperse to flowers (Peay, Belisle, & Fukami, 2012), potentially

obscuring the matching of phenotype and environment.

Despite this complexity, several characteristics of nectar-coloniz-

ing microbes make them a good study system with which to assess

the influence of environmental sorting and dispersal limitation on

intraspecific variation. Initially sterile, floral nectar is colonized by a

variety of bacterial and fungal (mainly yeast) species (Alvarez-Perez,

Herrera, & de Vega, 2012; Brysch-Herzberg, 2004). Many of these

species are found almost exclusively in nectar or on the animals that

visit flowers to forage for nectar such as bees and hummingbirds

(Belisle, Mendenhall, Brenes, & Fukami, 2014; Brysch-Herzberg,

2004). Nectar microbes rely on these animals for dispersal among

flowers (Belisle et al., 2014; de Vega, Herrera, & Johnson, 2009;

Wehner, Mittelbach, Rillig, & Verbruggen, 2017). As such, flowers

represent discrete and ephemeral habitats (Toju, Vannette, Gauthier,

Dhami, & Fukami, 2018) where environmental sorting and dispersal

limitation can be studied relatively easily (Belisle, Peay, & Fukami,

2012). Different yeast genotypes tend to be found in different host

plant species, providing strong evidence for environmental sorting

(Herrera, Pozo, & Bazaga, 2011, 2014). Analysis of genetic diversity

in a single host species complements these previous studies because

it should allow dispersal limitation to be detected more easily, if it

exists (Belisle et al., 2012).

Here, we focus on the naturally occurring genotypic diversity of

the nectar yeast Metschnikowia reukaufii in a single host plant, Mimu-

lus aurantiacus, to achieve two goals: (i) to determine whether

genetic diversity is spatially structured, which might suggest dispersal

limitation, and (ii) to search for phenotypic and metabolic clustering

of the genotypes, which might suggest environmental sorting. To this

end, we quantified genotypic diversity by whole-genome sequencing

of field-collected strains and characterized cellular, metabolic and

competitive phenotypes in these strains.

2 | MATERIALS AND METHODS

2.1 | Nectar microbial diversity and strain collection

We collected nectar from 12 M. aurantiacus plants per site and eight

flowers per plant from 12 sites across an approximately 200-km

coastline around San Francisco, California (Figure 1c, Table S1,

n = 1,152 flowers). We chose M. aurantiacus as the study species

because this common native shrub pollinated primarily by humming-

birds (Calypte anna) produces a copious amount of nectar (up to

10 ll per flower) and because the knowledge gained through our

previous field research with M. aurantiacus facilitated the design of

this study (Belisle et al., 2012; Toju et al., 2018; Tsuji et al., 2016;

Vannette & Fukami, 2017).

To sample nectar from flowers, the corolla tube was separated

from the calyx, and nectar was extracted from each flower using a 10-

ll microcapillary tube. The volume of each sample was quantified, and

nectar sample diluted in 30 ll of sterile water, which was kept on ice

while in the field. Bacteria often co-occur in the nectar environment

with the yeasts and can alter nectar properties. We therefore esti-

mated bacterial abundance in parallel with yeasts in each nectar sam-

ple. All samples were processed the same day in the laboratory, by

spread-plating 1 in 10 dilution onto YM media supplemented with

100 mg/L chloramphenicol (antibacterial) for yeast colonies and 1 in

100 dilution onto R2A agar supplemented with 20% sucrose and

100 mg/L cycloheximide (antifungal) for bacterial colonies, as speci-

fied in Vannette and Fukami (2017). All colonies were enumerated and

yeast strains were phenotypically described, and their pure cultures

obtained via streaking. Further identification of isolated strains was

performed using PCR amplification of the D1/D2 domain of the LSU

rRNA gene from single yeast colonies using the NL1-NL4 primer pair

(O’Donnell & Gray, 1994), because this region provides species-level

distinction for Metschnikowia yeasts (Kurtzman & Robnett, 1998). A

collection of phenotyped and identified yeasts was prepared and

stored at �80 °C in 15% glycerol + YM stocks.

Metschnikowia reukaufii was the most commonly isolated yeast

species in M. aurantiacus nectar (93/223 strains), followed by Candida

rancensis (59/223 strains) and Hanseniaspora valbyensis (21/233)

(Table S2). Metschnikowia reukaufii dominated over half the sites (7/

12), while no other species dominated more than a single site

(Table S2). Site OH did not yield any Metschnikowia strains and was

therefore omitted from further analysis. Bacterial densities varied from

0 to 105 colony-forming units/ll, allowing for the classification of low

abundance and high abundance flowers. Nectar volume ranged from

0.1 to 6 ll, allowing classification of low and high nectar flowers.

We subsequently regenerated M. reukaufii (n = 81) and Metschni-

kowia sp. (n = 7) strains (outgroup) from �80°C stocks, for whole-

genome sequencing (Table S3). We included an additional 21 strains

of M. reukaufii from a previous collection made in 2014 at Jasper

Ridge Biological Preserve (JR). A total of 102 M. reukaufii and seven

strains of closely related species (M. gruessii, M. koreensis, M. viticola

and C. rancensis) were whole-genome sequenced, and the pooled

data were used for further analysis.

2.2 | Genotyping by whole-genome sequencing

2.2.1 | Genomic library preparation and sequencing

Overnight cultures (at 25°C) from single colonies grown in yeast

media (YM) were obtained and 106 cells were harvested by
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centrifugation, followed by two washes with sterile distilled water.

Genomic DNA was extracted using the DNeasy Blood and Tissue 96

sample kit (Qiagen). Bacterial contamination of gDNA was tested via

PCR amplification of the 16S rRNA gene using universal primers

(Weisburg, Barns, Pelletier, & Lane, 1991), but no amplicons were

returned. gDNA was quantified using Qubit HS kit (ThermoFisher

Scientific) and diluted to 2.5 ng/ll, and genomic library was prepared

as described previously (Baym et al., 2015). Each genomic library

F IGURE 1 Structure and phylogenetic relatedness of Metschnikowia reukaufii population. (a) Population structure identified in 109
Metschnikowia strains. The vertical axis depicts the fractional representation of resolved genotypes (colours) within each strain for K = 4
assumed ancestral populations. (b) Principal component projection, using the same set of single nucleotide polymorphisms as in Figure 1a.
Colours represent different genotypic groups, green (~M. reukaufii group 1), orange (~M. reukaufii group 2) and yellow (M. reukaufii group 3),
and grey (Metschnikowia outgroup). (c) Distribution of population genotype proportions at each of the sampled sites, with the relative size of
the pie graph representing the total number of strains at the site. No M. reukaufii strains were reported from sites, SG and SB, and no
Metschnikowia species were reported at site OH. (d) Identity-by-state (IBS) phylogenetic tree of 109 Metschnikowia strains sequenced in this
study, using the 7 Metschnikowia spp. strains as outgroup to 102 M. reukaufii strains. Colour bar adjacent to the strain labels indicates the
three main population genotypes at K = 4, and circle colour codes denote the sites as coded in Figure 1c. Branch lengths reflect the average
pairwise distances estimated by IBS. See Figure S4 for results at K = 6
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was dual-labelled using the Nextera index kit (Illumina, San Diego,

CA) and pooled for sequencing. The library was run on an Illumina

HiSeq 3000 sequencer with 150 9 2 paired-end mode. gDNA from

additional 21 strains of M. reukaufii from JR (37°40054.35″N,

122°24037.08″W) was extracted and prepared for sequencing simi-

larly and run on Illumina HiSeq 2500 sequencer with 100 9 2

paired-end mode.

2.2.2 | Genome assembly, variant calling and
analysis

We identified single nucleotide polymorphisms (SNPs), and inserts

and deletions (InDels) using a reference-based alignment and variant

calling approach. We followed the Genome Analysis Toolkit (GATK)

(McKenna et al., 2010) recommendations of DNAseq best practices

for calling variants. Clean reads (q20 trimmed) were mapped to the

previously published M. reukaufii diploid reference genome A10

(Dhami, Hartwig, & Fukami, 2016) using the Burrows Wheeler

Aligner (BWA, version 0.7.5) using BWA-mem (Li, 2013). The work-

flow included the following steps: (i) alignment to MR1 diploid refer-

ence genome, version A10 (length = 19 Mbps, N50 = 1,244,334 bp,

122 scaffolds), (ii) realignment around InDels and (iii) variant discov-

ery. Polymorphisms were initially identified with relaxed settings

individually using the g.vcf haplotype caller function in joint genotyp-

ing mode, after being marked for duplicates. SNP and InDel discov-

ery and genotyping were performed across all 109 strains

simultaneously. Hard filtering of initial SNPs was performed using

the GATK variant filtration tool (version 3.4) and VCFtools (version

1.5) as per best practices (Danecek et al., 2011), using the following

parameters: base quality = 20, quality by depth = 2.0, mapping qual-

ity = 30, Fisher strand bias = 60, mapping quality rank sum = �12.5,

and ReadPosRankSum = �8.0. Post-InDel removal, the SNP set con-

sisting 1.27 million SNPs across 109 strains was further filtered to

exclude: non-biallelic SNPs, a minor allele frequency below 0.05 and

polymorphisms with more than 50% missing data. To resolve SNPs

in linkage, a window size of 50 SNPs advanced by 5 SNPS at a time

and an r2 threshold of .5 was used. The final set of high confidence

SNPs consisted of 88, 192 polymorphisms (for mapping quality

statistics see Figure S1). Sequence data have been archived under

GenBank (PRJNA431678), and final SNPset and scripts have been

archived in Dryad repository (https://doi.org/10.5061/dryad.hg375).

2.2.3 | Population structure and diversity analysis

The model-based Bayesian algorithm fastSTRUCTURE (version 1.0) was

used to identify and quantify the number of genetically distinct pop-

ulations and degree of admixture in the 109 sequenced genomes

(Raj, Stephens, & Pritchard, 2014). fastSTRUCTURE was run on the fil-

tered set of 88, 192 SNPs, with varying the number of ancestral

populations (K) between 1 and 10 using the simple prior imple-

mented in fastSTRUCTURE. The number of iterations varied from 10 at

K = 1 up to 80 at K = 10. Optimal K = 4 was identified by scoring

the highest marginal likelihood (K4 = �0.596). Analysis of ancestry

matrices and plotting were performed in R (version 3.3.4) (R Devel-

opment Core Team, 2008).

2.2.4 | Phylogenetic clustering analysis

Sets of genes that have descended from a single ancestral gene are

likely to be identical, forming the basis of relatedness measure: iden-

tical-by-descent (IBD) (Weir & Cockerham, 1984; Weir & Hill, 2002).

Therefore, at any given locus for a pair of individuals with known

genotype, identity-by-state (IBS) can have three possible outcomes:

one shared allele, two shared alleles or no shared alleles. When pedi-

gree of individuals and therefore a priori information on ancestry is

not known, IBS distance can be used to generate probabilities of

shared alleles and therefore an IBD estimate of relatedness (Zheng

& Weir, 2016). Using this framework, we built a pairwise IBD relat-

edness matrix for all 109 strains using both PLINK Method of

Moments (Purcell et al., 2007) and the maximum-likelihood approach

as implemented in SNPRelate package (Zheng et al., 2012). The kin-

ship between strains was estimated via IBS allele-sharing propor-

tions, and a hidden Markov model approach was used to detect

extended chromosomal sharing to estimate underlying hidden IBD

state given the observed IBS sharing and genomewide level of relat-

edness between each pair. Cluster analysis was performed on the

genomewide IBS pairwise distances, and groups were determined by

a permutation score (z threshold = 15, outlier threshold = 5). Genetic

covariance matrix was calculated from the genotypes to perform

principle components analysis (PCA), and PCA1 and PCA2 repre-

sented the respective eigenvectors, as implemented in SNPRelate

package (Zheng et al., 2012). Only linkage filtered informative sites

as contained in the pruned SNP set of 88, 192 sites were used for

each analysis. Population-wide nucleotide diversity metrics such as

Fst, Tajima’s D and p were calculated in R package ADEGENET (Jombart,

2008).

2.3 | Phenotypic characterization of M. reukaufii
strains

We measured four traits to describe the phenotype of M. reukaufii

strains, as we detail below. We refer to them as colony morphology,

maximum growth rate, lmax (when nutrients are not limited, i.e., in

liquid YM media), nectar growth rate, lnectar (when nutrients are lim-

iting but resembling natural environment) and lN-limited (when nectar

is increasingly N-limited, likely due to competition).

2.3.1 | Colony morphology

Strains were incubated at 25°C for 4 days on YM agar and colony

phenotype noted. Metschnikowia reukaufii strains developed either

circular, matt opaque colonies, hereafter called smooth, or increas-

ingly undulate and shiny colonies, hereafter called bumpy (Figure S2).

Production of large thick-walled oblong cells, called chlamydospores,

was consistently correlated with bumpy-ness of colonies (Kurtzman,

Fell, & Boekhout, 2011). Chlamydospores are common among
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Metschnikowia species and are postulated to store lipids, but this

function remains to be tested (Kurtzman et al., 2011). We enumer-

ated vegetative and chlamydospore cells for each strain using a

hemocytometer, and the chlamydospore-to-vegetative cell ratio (C/

V) was used as a measure of morphological variance across strains.

2.3.2 | Physiology and nitrogen stress tolerance

Metschnikowia reukaufii thrives in a nutrient-limited nectar environ-

ment, where resource competition from other nectar microbes such

as yeasts and bacteria appears to further exacerbate resource limita-

tion (Peay et al., 2012; Tucker & Fukami, 2014). We compared the

growth of M. reukaufii strains in an optimum environment (lmax), in a

simulated nectar environment [lnectar, in synthetic nectar, i.e., a mix-

ture of 4 mM amino acids and vitamins (Difco) in 20% sucrose, as

specified in Vannette and Fukami (2014)] and in an N-limited nectar

environment (lN-limited, in synthetic nectar but with 4 mM proline as

the only N source). Each treatment was inoculated with approxi-

mately 103 yeast cells and incubated at 25°C with shaking for 5 s

followed by OD600 measurements every 5 min using a Tecan

M1000 Pro (ThermoFisher Scientific, Swedesboro, NJ, USA).

2.3.3 | Metabolic characterization

Sixteen strains of M. reukaufii (Table S3) were selected from a single

site (JR) to measure metabolic capabilities using the BiologTM YT sys-

tem. Briefly, cells from a 2-day-old colony were harvested, washed

twice in sterile PB buffer to remove traces of growth media and

resuspended in sterile distilled water. Approximately 104 cells were

applied to each of the 96 wells of a YT microplate, with 2 plate

replicates per strain. Four blank YT plates were included as controls.

The plates were incubated at 25°C for 80 hr, and spectrophotometer

readings were taken every 30 min. The spectrophotometer data

were transformed and analysed by R package opm (version 1.1.0)

(Vaas et al., 2013).

2.3.4 | Testing hypotheses on phenotypic trait
evolution

To search for a signal of environmental sorting via adaptation to the

local environmental conditions of floral nectar, we used the mod-

elling approach developed by Butler and King (2004). For three traits

(lmax, lnectar, and C/V), we fitted six evolutionary models to the

SNP-based phylogeny and quantified their fit to the data using maxi-

mum-likelihood-based criteria. Briefly, we tested (a) neutral drift

(Brownian motion), (b) global optimum (Ornstein–Uhlenbeck process),

(c) habitat selection by nectar volume, (d) habitat selection by nectar

bacterial abundance, (e) clade-specific model 1 and (f) clade-specific

model 2 (Figure S3). The first model assumes that the character of

interest, in this case lmax, lnectar or C/V, is not under selection and

therefore characterized by neutral drift. The second model assumes

that the selective regime is a combination of environmental and

organismal traits that can vary across the phylogeny, leading to a

trait value close to a fitness optimum (Butler & King, 2004). Remain-

ing models are adaptive, based on habitat affinities, with nectar vol-

ume and bacterial abundance used as a proxy for local

environmental conditions (models c and d), or via clade-specific shar-

ing of characters (models e and f). Evidence of selection along these

habitat levels, as tested via models c and d, would identify characters

that have presumably responded to variation in resource availability.

The remaining two models assume that phenotypic characters are a

result of all strains along a clade sharing a common set of selective

pressures (see, e.g., Knope & Scales, 2013). We tested two levels of

clade differentiation across models e and f. Maximum likelihood of

model fits to the data were compared using the Akaike information

criterion corrected for small sample size (AICc) (Burnham & Ander-

son, 2004), and all analyses were conducted in R.

2.4 | Competitive ability of M. reukaufii genotypes

We expected more competitive strains to be more abundant. To

investigate whether an estimate of competitive ability as a pheno-

typic trait can explain strain abundance, we conducted microcosm

competition experiments as described previously (Dhami et al., 2016;

Peay et al., 2012). Briefly, 200 cells of each strain of M. reukaufii

were introduced 2 days before or after the introduction of the

strongly competitive and second most abundant species in this

study, C. rancensis (CR1) (Peay et al., 2012). This set up mimics the

natural nectar environment where serial introductions of nectar

microbes are carried out by pollinators. At the end of 5 days, nectar

microcosms were plated on YM media and relative population densi-

ties of each strain enumerated. Each treatment was repeated four

times. Eight different strains of M. reukaufii were tested and their

respective invasion scores (ratio of population density as a resident

or invader compared to baseline growth in monocultures) calculated

(Peay et al., 2012). We regressed the population density ratios as a

function of genetic distance, treating resident/invader status as a

fixed effect.

3 | RESULTS

3.1 | Genotypic diversity and population structure
of M. reukaufii

Three main lineages were revealed across the M. reukaufii strains

genotyped (Figure 1d), hereby referred to as group 1 (green), group

2 (orange) and group 3 (yellow). Of these, groups 1 and 2 further

split into two clades each, resulting into total 5 clades (Figure 1d).

The outgroup contained 7 strains, as was expected (Figure 1d).

We recreated the population structure in a filtered set of 88,192

SNPs across all strains, using the Bayesian model-based clustering

approach implemented in fastSTRUCTURE (Raj et al., 2014). This analy-

sis yielded a pattern of population structure that is consistent with

the main lineages defined in the phylogeny, here represented as esti-

mated number of ancestral populations, K = 4 (including outgroup,

Figure 1a). The overall population structure matched between the
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two analyses, with one exception, where at K = 4, phylogenetic

M. reukaufii group 1 did not completely overlap with the strains

included in the major population structure grouping (green). At

K = 6, this was resolved when the phylogenetic subgroups split (see

Figure S4). The overall population structure is further supported by a

principal components analysis of the SNP data (Figure 1b). We

observed shared ancestry among the in-group strains of groups 2

and 3, likely arising from incomplete lineage sorting because this

species is typically clonal in nature (Herrera et al., 2014). There were

also instances of shared ancestry between outgroup and a few in-

group strains, but this was also resolved at K = 6 (Figure S4). Addi-

tionally, nonconformant strains such as Y798/Y797, which phyloge-

netically cluster with group 2 (Figure 1d), but share group 1 and

group 2 genotype almost equally (Figure 1a), represent cases where

ancestry plots while informative for overall population patterns are

unable to resolve highly admixed individuals.

The population subgroups were not aligned by geographic origin.

Group 3 genotype was widespread across the region sampled, and

multiple genotypes were represented at many of the sites (Fig-

ure 1c). Comparison of pairwise genetic distance and geographic dis-

tance matrices revealed no significant relationship between the two

(Mantel statistic r = �.063, p-value = .84, Figure S5). The filtered set

of 88,192 SNPs was used to calculate nucleotide diversity metrics

such as p, Tajima’s D, heterozygosity and FST (Table 1, Figure S6).

Across the strain collection, the nucleotide diversity, p, was 0.001,

which is high for closely related strains, but similar to the values

reported for natural populations of wine yeasts (Liti et al., 2009).

Consistent intergroup FST values further support the three lineages

identified in the M. reukaufii population (Table 1).

3.2 | Phenotypic features of M. reukaufii genotypes

In the optimum environment (lmax), group 3 strains showed signifi-

cantly lower per-capita growth rates (mean = 1.6 9 10�5, p = .007),

while group 1 showed the highest (mean = 2.5 9 10�5), although

not significantly higher than group 2 strains (mean = 1.9 9 10�5)

(Figure 2a). In the synthetic limited nectar (lnectar), group 1 per-

capita growth (mean = 1.2 9 10�6, p = .007) differed significantly

from that of group 3 (mean = 1.1 9 10�6), but not group 2

(mean = 1.5 9 10�6) (Figure 2b). In the N-limited synthetic nectar

(lN-limited), growth rates were severely depressed such that the popu-

lation densities could not be reliably measured by OD600.

Strains with low C/V ratios (smooth morphology) largely

belonged to group 3, whereas the distribution of high C/V strains

(bumpy morphology) was not concordant with the genotypic or geo-

graphic differentiation (Figure S1). Overall, there were no significant

differences in chlamydospore proportions across the three geno-

types.

For growth rate in the optimum environment (lmax), the global

optimum model offered a slightly better explanation than the other

models (Table 2). Under a more realistic selection pressure, such as

that experienced in nectar-like conditions (lnectar), a more adaptive

selection regime, based on clade-based models, was suggested

(Table 2). For the only morphological character assessed here, C/V,

the neutral drift model could be clearly ruled out, but it was difficult

to select an appropriate explanatory mechanism among the global

optimum model and the habitat-bacterial abundance models.

3.3 | Metabolic characterization of M. reukaufii
genotypes

The strains from JR differed in per-capita growth rates as well as

membership to the three main genotypic lineages similar to those

observed across the wider population (Figure S7). Of these, 16

strains were selected for detailed assessment of their nutrient utiliza-

tion abilities against a range of carbon and nitrogen substrates.

Groups 1 and 2 showed similar patterns of substrate utilization, and

the range of substrates used by them were more diverse than those

TABLE 1 Genotypic diversity across the three genotypes of
Metschnikowia reukaufii

Genotype pairs Mean FST Weighted FST

Group 1–Group 2 0.231 0.324

Group 1–Group 3 0.326 0.595

Group 2–Group 3 0.242 0.316

Group 1—Outgroup 0.509 0.770

Group 2—Outgroup 0.323 0.500

Group 3—Outgroup 0.308 0.687

(a)

(b)

F IGURE 2 Phenotypic characterization of Metschnikowia reukaufii
genotypes. Growth of M. reukaufii strains in (a), optimum nutrients
(lmax), (b) synthetic nectar (lnectar), shows concordance with the
genotypic groupings [Colour figure can be viewed at wileyonline
library.com]
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used by group 3 (Figure 3). Particularly, utilization of sugars (dextrin,

turanose, glucose, cellobiose, melibiose and xylose, and galactose

and xylose) varied between groups 1 or 2 and 3. A few nitrogenous

compounds such as N-acetyl-glucosamine and other derivatives of

glutamic acid also showed similar differences in patterns of utiliza-

tion.

3.4 | Competitiveness of M. reukaufii genotypes
against C. rancensis

Survival in floral nectar is likely to be a combination of growth per-

formance in nectar and ability to persist in the nutrient-limited envi-

ronment. Group 2 strains outperformed group 3 strains both as

residents invaded by C. rancensis, the second most dominant species

after M. reukaufii (Table S2), and as invaders (p = .004, Figure 4).

When introduced first, C. rancensis resists M. reukaufii group 2 strain

invasion better than group 3, but as an invader, it exhibits lower

invasion success against group 2 strains (Figure S8).

4 | DISCUSSION

We used genetic diversity estimates from a population of dominant

nectar yeast to identify patterns of geographic distribution (affected

by dispersal) and local adaptation (arising from environmental

sorting). In some respects, our results are consistent with previous

studies on nectar yeasts, but contrast in other aspects that affect

how one views the role of dispersal limitation and environmental

sorting. For example, our use of high-density marker maps supported

previous estimations of a high level of genetic diversity in Metschni-

kowia species found in nectar (Herrera, 2014; Herrera et al., 2011).

However, we found no significant correlation between geographic

and genetic distance, in contrast to previous studies indicating that

dispersal limitation may be important (Herrera et al., 2011). Likewise,

although the large differences we found in the growth rates of the

genotypic groups are consistent with previous work (Pozo et al.,

2016), the phenotypic characteristics of the strains we measured did

not explain the observed patterns of strain abundance and distribu-

tion well, suggesting that environmental sorting may not adequately

explain the patterns for the populations we studied here. Instead,

our adaptive evolution modelling suggested that the three genotypic

lineages might have evolved under different selective pressures in

terms of the ecologically relevant trait, lnectar, possibly towards fit-

ness optima that might be diverging across the lineages.

The competitive ranking inferred from our experiment is particu-

larly surprising. Both as a resident population resisting invasion and

as an invader itself, group 2 strains outperformed group 3 strains

(Figure 4). As group 2 strains generally grow faster in various nutri-

ent conditions and utilized a wider range of substrates, we would

expect them to be better competitors. However, the lowest compet-

itive genotype, group 3, was the most common and widespread of

the three groups, representing about half the sampled strains

(n = 59/102, Figure 1c). Of course, it is possible that our experiment

that used artificial nectar did not capture actual competitiveness in

real nectar in wild flowers, so our results should be interpreted with

caution. Another possibility is that additional factors not assessed

here, such as tolerance to desiccation, osmotic stress and extreme

temperature fluctuations, influenced the abundance of different

genotypes. For example, desiccation tolerance, during dispersal and

off-season period (when flowers are not present), may influence the

colonization ability of different genotypes. One reason why less

competitive strains were abundant might be because they were

TABLE 2 Model selection criteria (AIC.c) for growth in YM (lmax),
growth in synthetic nectar (lnectar) and chlamydospore vs. vegetative
cell ratios (C/V) for Metschnikowia reukaufii strains. Lowest AIC.c
scores representing the most likely model are in bold

Model lmax lnectar C/V

Neutral drift �1,609.06 �1,669.59 7.84

Global optimum �1,611.47 �1,691.29 �60.62

Habitat—nectar volume �1,609.26 �1,689.39 �58.98

Habitat—bacterial abundance �1,609.25 �1,689.39 �60.26

Clade model 1 (K = 3) �1,598.07 �1,695.50 �57.29

Clade model 2 (K = 5) �1,601.06 �1,695.82 �52.09

F IGURE 3 Hierarchical clustering of
Metschnikowia reukaufii strains by metabolic
profile. Heatmap shows the growth rates of
16 M. reukaufii strains (in duplicate) against
18 selected substrates from the YM platform.
The colour panel against the clustering tree
denotes genotype membership of the strains,
as in Figures 1 and 2. Substrates along the
top of the heatmap are grouped by type and
include sugars (blue), sugar alcohols (orange),
amino acids (green), organic acids (yellow)
and other compounds (grey). The scale
indicates maximum growth rate (l) measured
as OD600 [Colour figure can be viewed at
wileyonlinelibrary.com]
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better at tolerating desiccation. Life-history traits of nectar yeasts

during the nonflowering period are little known (Brysch-Herzberg,

2004), but could explain the prevalence of noncompetitive strains.

In addition, source-sink dynamics (sensu Leibold et al., 2004) may

explain the observed genotype distribution. Nectar metacommunities

are a continuum of nectar patches across different species of coexisting

host plants that pollinators visit (Toju et al., 2018). Host-mediated

heterogeneity in nectar composition may favour one genotype over

another (Herrera, 2014; Herrera et al., 2014). Therefore, coexisting

host plants with different nectar chemistry may offer refuges to geno-

types that are not favoured in M. aurantiacus nectar. Such alternative

hosts may provide source habitats, from which certain genotypes may

have higher net migration to M. aurantiacus, thereby off-setting the

impact of competitive exclusion. Analysis of the distribution and abun-

dance of M. reukaufii genotypes among a wider range of host plants

that coexist with M. aurantiacus may elucidate the role of source-sink

dynamics in counteracting the effects of competitive interactions.

Finally, we should also note that nectar-colonizing microbes, both

yeast and bacteria, can rapidly and markedly change the chemical

composition in varied ways (Vannette & Fukami, 2014, 2016; Van-

nette, Gauthier, & Fukami, 2013). Nectar modification by microbes

can influence pollinator visitation (Vannette et al., 2013), and our

preliminary observations suggest that yeasts are more reliant on pol-

linators than bacteria, leading to unequal influence of nectar modifi-

cation on their dispersal history. These interactions may result in

divergence of flowers in their nectar conditions via differential niche

modifications by different microbes even within a single host plant

(Tucker & Fukami, 2014). The differential response of M. reukaufii

genotypes to the substrates assessed here suggests that small varia-

tions in nectar composition may determine niche utilization by these

genotypes. Monitoring biochemistry of mixed species nectar

communities may shed light on the effect of niche modification on

the distribution of M. reukaufii genotypes.

5 | CONCLUSION

We have provided an example where dispersal limitation and envi-

ronmental sorting might not fully explain the distribution of microbial

genotypes. There was no detectable correlation between geographic

and genetic distance despite the seemingly limited pollinator-assisted

dispersal. Metabolic differences might explain local patterns, but it

did not extend to the distribution across the landscape, especially

with further information on competitive hierarchy of the different

genotypes. Our results suggest that other factors such as source-sink

dynamics, niche modification, and alternative ecological trade-offs

might need to be invoked.
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