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About 90% of all flowering plant species are pollinated by

animals. Animals are attracted to flowers because they often

provide food in the form of nectar and pollen. While floral nectar

is assumed to be initially sterile, it commonly becomes

colonized by yeasts after animals have visited the flowers.

Although yeast communities in floral nectar appear simple,

community assembly depends on a complex interaction

between multiple factors. Yeast colonization has a significant

effect on the scent of floral nectar, foraging behavior of insects

and nectar consumption. Consumption of nectar colonized by

yeasts has been shown to improve bee fitness, but effects

largely depended on yeast species. Altogether, these results

indicate that dispersal, colonization history and nectar

chemistry strongly interact and have pronounced effects on

yeast metacommunities and, as a result, on bee foraging

behavior and fitness. Future research directions to better

understand the dynamics of plant–microbe–pollinator

interactions are discussed.
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Assembly of nectar yeast communities in
floral nectar
About 90% of all flowering plant species are pollinated by

animals [1]. In most plant species, insects are the main

vectors of pollen, although some plant species are also

pollinated by lizards, bats, shrews, birds, or other animals
www.sciencedirect.com 
[2]. Insects are attracted to the flowers because they often

provide nectar and pollen, which they use to fuel their

flight activities and to rear their offspring. Floral nectar

mainly consists of water, monosaccharides and disacchar-

ides [3–5] and, although at lower concentrations, amino

acids, lipids, minerals, and vitamins [6,7]. In most plant

species, floral nectar is dominated by sucrose [8–10], but

in some plant species sucrose is hydrolyzed into glucose

and fructose by an apoplasmic plant invertase, eventually

yielding nectars that consist of a mixture of sucrose and its

monomers [5,8]. Besides, traces of other sugars such as

arabinose, gentiobiose, lactose, maltose, mannose, meli-

biose, rhamnose, ribose, stachyose, and trehalose, and the

sugar alcohols mannitol and sorbitol have been found in

floral nectar [4,8]. Pollen contains mainly proteins, lipids,

carbohydrates, and minerals and traces of enzymes, hor-

mones, vitamins, pigments and other minor components

[11].

While floral nectar is assumed to be initially sterile, it

often becomes rapidly colonized by microorganisms after

insects have visited the flowers [12]. Yeasts constitute one

of the main inhabitants of nectar. In accordance with their

origin, nectar-inhabiting yeasts can be categorized into

two distinct groups: (i) yeasts that originate from the

atmosphere and usually show no specific adaptations to

nectar (high C/N ratio) and pollen (low C/N ratio) con-

ditions, and (ii) yeast species that show much higher

levels of specialization and are highly adapted to survive

in nectar and pollen [12]. The latter are mainly dispersed

from one flower to the next by flower-visiting animals,

which in the case of insects may serve as the yeasts’

overwintering site when flowers are absent and therefore

serve as a transmission vector when flowers become

available in early spring [13]. Although yeast communities

in floral nectar appear simple [14], recent research has

shown that community assembly in this habitat depends

on a complex interaction between multiple factors

(Figure 1), including the filtering effect of the physical

and chemical characteristics of nectar on each yeast

species [15], dispersal limitation [16,17], and priority

effects caused by history-dependent microbe–microbe

interactions [18–21]. Nectar secretion patterns may also

affect the assembly of the nectar microbiome [22��].

When individual flowers are viewed as island-like, local

microbial habitats [16], the nectar-yeast system constitu-

tes a metacommunity, that is, a regional set of local
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mailto:bart.lievens@kuleuven.be
https://doi.org/10.1016/j.cois.2020.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cois.2020.09.014&domain=pdf
http://www.sciencedirect.com/science/journal/aip/22145745


36 Ecology

Figure 1

Priority effects

Habitat filtering

Dispersal

Microbe-microbe interactions

Current Opinion in Insect Science 

Schematic overview of the main factors contributing to the assembly of the yeast communities inhabiting floral nectar. Nectar yeasts are dispersed

from flower to flower by insects and other floral visitors. The physicochemical conditions of the nectar environment (e.g. high osmotic pressure,

scarcity of nitrogen sources, presence of plant toxins, etc.) hinders the growth of some yeast species, thus acting as a filter of the microbial taxa

brought by the floral visitors. Additionally, priority effects (i.e. effects that the arrival order and initial abundance of species have on the

development of assembling communities at a local site) and microbe–microbe interactions (either positive or negative) may determine the diversity

and abundance of yeast species in floral nectar. Interactions with bacteria or other nectar microbes are not represented in this figure, but may

also be important drivers of the assembly of yeast communities in nectar that warrant further investigation.
ecological communities that are connected by occasional

dispersal among the local communities [23]. The fre-

quency of this microbial dispersal, as affected by pollina-

tor foraging behavior, is therefore a key factor to consider

as dispersal frequency can be a major determinant of the

persistence and coexistence of yeast species at both local

and metacommunity scales [12,13,17].

Impact of nectar yeasts on nectar chemistry
After yeasts have colonized floral nectar, they may change

the chemical traits of nectar such as pH and sugar and

amino acid content and composition [24�,25], although

the effects depend on the yeast species involved. Most

yeast species consume glucose and sucrose and decrease

amino acid content [9,18,26,27��]. In some cases, nectar

yeasts release detectable amounts of byproducts that may

increase the fitness of pollinators. For example, Pozo

et al. [27��] observed a significant increase in the
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concentration of hetero-oligosaccharides that contained

fructosyl–fructose linkages and that were not found in

sterile nectar. These molecules may have a prebiotic

effect on animals [28]. Nectar also contains plant second-

ary metabolites that are potentially toxic or deterrent for

insects. Microbial activity has been shown to decrease the

concentration of these secondary metabolites [29,30].

Apart from inducing changes in sugar and amino acid

concentration and the concentration of plant secondary

metabolites, yeasts also have the potential to change the

odor of floral nectar [31,32]. During sugar fermentation,

different volatile organic compounds (VOCs) are

released, and sometimes additional compounds are added

to the floral olfactory bouquet [33,34��].

Impact of nectar yeasts on foraging behavior
Most pollinators are well equipped to detect and recog-

nize microbial infestation of food sources [35], and yeasts
www.sciencedirect.com
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might therefore provide an honest signal (via volatiles) of

sugar-rich microsites to plant visitors [36]. Behavioral

tests under both controlled greenhouse conditions and

field conditions have shown that individual bumblebees

generally prefer nectar inoculated with the nectar spe-

cialist Metschnikowia reukaufii over non-inoculated nectar

[37–39]. Although it can be assumed that bumblebees

preferentially visit yeast-containing nectar [37,40,41]

because they can detect these flowers more easily, or

find them more rewarding due to the increased tempera-

ture of the nectar [42] or their more complex olfactory

display [34��], it remains still unclear what signals the

bees are precisely responding to. Recent experiments

have also shown that learning of microbial community

cues is associative and reward context dependent and

mediated by microbial volatiles [43]. At the level of entire

colonies, however, no conclusive effects of nectar coloni-

zation by yeasts on foraging behavior were found, and

effects differed between yeast species [27��]. Addition of

Candida bombiphila and Metschnikowia gruessii, for exam-

ple, did not increase the probing time of bumblebees

foraging on inoculated flowers. Captive bumblebee colo-

nies, however, showed a preference in terms of number of

visits for live suspensions of M. gruessii, but the opposite

was found for C. bombiphila.

Impact of nectar yeasts on nectar
consumption and pollinator fitness
Because nectar yeasts affect nectar quality and scent,

they may also affect pollinator fitness. Altered nectar

scent profiles may increase flower visitation rates and

therefore nectar consumption, while yeast-induced

changes in nectar chemistry and depletion of sugars

and amino acids may constitute an energetic cost,

especially when yeasts occur at high densities [44].

Experiments using individual bees have shown that

the increased attraction of bees to inoculated nectar

results in larger amounts of nectar consumption [37,39].

Pozo et al. recently investigated the behavior of entire

bumblebee colonies that were exposed to artificial

nectar solutions with different sugar concentrations

and inoculated with different yeast species [27��].
Results showed that bumblebee queens preferred fee-

ders that contained sterile 50% sugar solutions over

feeders with 30% sugar water, irrespective of the yeast

added to the medium, while workers mostly depleted

the treatment feeders with the lowest sugar concentra-

tion. These results suggest that differences in feeding

preferences were mainly the result of differences in

sugar concentrations rather than addition of yeasts

themselves. The observed differences in sugar concen-

tration preference between castes are most likely

related to the reproductive division of labor in bumble-

bee colonies. While workers mainly use water and sugar

for thermoregulation and foraging, sugars are needed for

egg production and therefore may be a more limiting

resource for queens than for workers. This may explain
www.sciencedirect.com 
why queens were preferentially attracted to sugar fee-

ders with more concentrated sugar water [27��].

Apart from their effects on nectar consumption, yeast

cells may also constitute a nutritional supplement for

insects as they act as a source of vitamin B, sterols, and

minerals [45,46]. Yeast cell digestion by foraging insects

may therefore compensate for the costs arising from

nutrient depletion and thus provide a fitness benefit,

although direct evidence is still largely lacking. Experi-

ments with micro-colonies of Bombus impatiens showed

that inoculation of nectar by yeasts did not affect the

number of worker-laid eggs [39]. Pozo et al., contrastingly,

showed that development of entire bumblebee colonies

was significantly affected by the presence of yeasts, but

the effects depended on the identity of the yeast species

added. Interestingly, effects were more pronounced at

the colony level than at the individual level, indicating

that in the case of social organisms entire colonies should

be investigated instead of individual insects to fully grasp

the effects of nectar-inhabiting yeasts on pollinator fitness

[27��].

Future perspectives
The role of nectar yeasts as insect endosymbionts?

Nectar-inhabiting yeasts have the potential to affect the

flower-visiting insects’ immune system and health by

affecting other microorganisms or microbial products,

host products, and food components in the gut of the

host insects [46,47]. For example, in vitro tests have

shown that typical nectar yeasts have the potential to

reduce growth of the bee pathogen Crithidia bombi, most

likely because the pathogen was outcompeted by the

superior growing capacities of the yeasts [27��]. Some

yeast species have also been shown to facilitate the

establishment of a beneficial gut microbiome by releasing

non-digestible short-chain sugars that are selectively fer-

mented by beneficial bacteria in the gut [48]. There is

some evidence that yeasts added to the diet of bees can

temporarily establish in the gut of adult individuals and

can even be successfully passed on to future generations

[13]. However, at present it remains unclear whether

nectar yeasts are able to establish permanently in the

gut and how they interact with the resident core micro-

biota. Future research should, therefore, quantify changes

in nectar-inhabiting yeast abundance between food pro-

visions and the gut, and investigate whether nectar-inha-

biting yeasts have any importance above and beyond the

extra nutrition being added to the food.

Microbial consortia, priority effects, and effects on

pollinators

It is clear that addition of individual yeast species to

floral nectar can have lasting effects on foraging behav-

ior and fitness of bees. However, there are still very few

studies that have investigated the effect of more com-

plex communities consisting of multiple yeast species
Current Opinion in Insect Science 2021, 44:35–40
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on nectar quality or pollinator fitness. However, com-

munities that contain more than one microbial species

are likely to influence the metabolome differently than

monocultures [49,50]. Moreover, floral nectar is not

solely colonized by yeasts, but also by bacteria [51–

53], which can have markedly different effects on nectar

traits [54,55�] and life-history parameters of insects [56].

Because bacteria are incredibly diverse in terms of

metabolism, it can be expected that the effects of

different taxonomic groups on pollinators will be

diverse as well. Currently, little is known about how

the relative abundance of bacterial versus yeast groups

changes over time in nectar provisions and it is reason-

able to assume that, even if they arrive at the same time

to floral nectar, yeast and bacteria establish at different

times in this habitat. For example, Pseudomonas spp. are

often the first ones to arrive in floral nectar, with yeasts

coming in later once pH and osmotic conditions are

conducive. However, depletion of suitable nutrients and

production of inhibitory substances by the early colo-

nizers of nectar may hinder the growth of other

microbes [20,22��]. In contrast, environmental variabil-

ity can counteract these inhibitory effects generated by

nectar microbes and therefore promote coexistence of

yeasts and bacteria in floral nectar [20].

So far, the effects of microbial consortia consisting of a

mixture of different yeasts and bacteria on nectar scent,

pollinator behavior and fitness have received little atten-

tion. A recent study has indicated that volatile emissions

of co-cultures that consisted of the yeast M. reukaufii and

the bacterium Asaia astilbes closely resembled the sum of

the volatile emissions of the monocultures [57]. Despite

these differences in volatile emissions, honey bee feeding

did not differ significantly between nectars inoculated

with monocultures and co-cultures, suggesting that mul-

tispecies assemblages in nectar not necessarily affect

foraging behavior and resource consumption by insects.

In another study, it was shown that supplementation of

bacteria to food provisions of the bumblebee B. terrestris
led to faster egg-laying, higher brood size and increased

production of workers, while supplementation of yeasts or

a combination of yeasts and bacteria had less impact on

colony development [58]. These results also suggest that

yeast–bacteria consortia do not necessarily result in better

colony development than the interacting species alone.

Besides, VOC profiles and associated insect responses

most likely do not only depend on the microbial species

added to the nectar, but also on the nutrient medium that

is used to cultivate the microorganisms [59]. Most experi-

ments conducted so far used artificial nectars, and it is not

unlikely that use of another medium or nectars from

different plant species affects scent profiles and as a result

the olfactory response of the insects. Future research

should, therefore, use different media or natural nectars

to investigate how culturing conditions affect the compo-

sition of VOC blends and associated response of insects.
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Microbial communities in pollen

Apart from nectar, many flower-visiting animals consume

pollen, but at present little is known about how microbial

presence in pollen affects the chemical properties of

pollen, and how these changes affect the foraging behav-

ior and fitness of insects. There is some evidence that

microbes can significantly lower the starch level of the

pollen [60], but it remains unclear how these changes

affect pollinator fitness. Recent research has shown that

larvae of mason bees (Osmia ribifloris) feeding on increas-

ingly sterile, microbe-deficient pollen provisions experi-

enced significant adverse effects on growth rates, bio-

mass, and survivorship. When larvae were completely

deprived of pollen-borne microbes, they consistently

exhibited noticeable decline in fitness [61��]. Similarly,

administration of microbes through pollen had a stronger

positive impact on colony development of B. terrestris
than when provided via sugar water [49], indicating that

microbial colonization of pollen has more pronounced

effects on insect fitness than colonization of nectar. In an

era of global insect decline [62,63], future research

should, therefore, investigate more realistic scenarios that

use more complex microbial communities and different

nectar sources to better understand the dynamics of

plant–microbe–pollinator interactions and the impact of

microbes on pollinator behavior and fitness.
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