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Understanding the origins and maintenance of biodiversity
remains one of biology’s grand challenges. From theory and obser-
vational evidence, we know that variability in environmental
conditions through time is likely critical to the coexistence of com-
peting species. Nevertheless, experimental tests of fluctuation-
driven coexistence are rare and have typically focused on just one
of two potential mechanisms, the temporal storage effect, to the
neglect of the theoretically equally plausible mechanism known
as relative nonlinearity of competition. We combined experiments
and simulations in a system of nectar yeasts to quantify the rela-
tive contribution of the two mechanisms to coexistence. Resource
competition models parameterized from single-species assays pre-
dicted the outcomes of mixed-culture competition experiments
with 83% accuracy. Model simulations revealed that both mecha-
nisms have measurable effects on coexistence and that relative
nonlinearity can be equal or greater in magnitude to the tem-
poral storage effect. In addition, we show that their effect on
coexistence can be both antagonistic and complementary. These
results falsify the common assumption that relative nonlinearity
is of negligible importance, and in doing so reveal the importance
of testing coexistence mechanisms in combination.
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Theory suggests that the maintenance of species diversity is
likely the outcome of multiple mechanisms acting in con-

cert (1, 2), but most empirical tests of coexistence consider
individual mechanisms in isolation (2). This discrepancy is par-
ticularly evident for the two broad classes of mechanisms that
arise in fluctuating environments: the temporal storage effect,
which formalizes the concept of temporal niche partitioning, and
relative nonlinearity of competition, which can mediate coexis-
tence through the asymmetric effects of nonlinear averaging on
population growth rates (3, 4). Not only is it a challenge to par-
tition the two mechanisms analytically (2, 5), but much work has
proceeded on the tacit assumption that relative nonlinearity of
competition is of minor importance (6–9). As a result, the joint
contribution of the temporal storage effect and relative non-
linearity has not been quantitatively investigated in an empiri-
cal system.

The familiar concept of temporal niche partitioning was orig-
inally presented as a solution to the so-called paradox of the
plankton, the seemingly inexplicable coexistence of numerous
species on just a few limiting resources (10). The proposed expla-
nation was that environmental fluctuations could afford each
species a period of competitive superiority, thus avoiding any
one species being excluded. Later, it was shown that for sta-
ble coexistence to arise via temporal niche partitioning, species
at low density have to capitalize on low levels of competition
during periods favorable to their growth, whereas the potential
gains made by high-density species during favorable periods are
constrained by high levels of intraspecific competition. Along
with the potential to buffer losses under unfavorable conditions
(e.g., via seeds or dormant cells), this density dependence in the
covariance between environmental favorability and the strength

of competition is the essential criterion for coexistence via the
temporal storage effect (2, 3, 11). Relative nonlinearity of com-
petition differs from the temporal storage effect in that it relies
on fluctuations in the intensity of competition, rather than fluctu-
ations in the environment itself. Due to nonlinear averaging on
population growth rates, species with sharply saturating (more
concave) functional responses to resource concentrations will be
more harmed by variability in a limiting resource than their less
concave competitors. This difference can reduce fitness inequal-
ities between species and also benefit species at low density
if the more concave species increases resource fluctuations while
the more linear species dampens fluctuations (2, 11). Despite
the potential for relative nonlinearity of competition to operate
widely (2), logistical challenges and its perception as an esoteric
and unlikely theoretical possibility have stymied its empirical
study relative to the temporal storage effect.

We studied the two mechanisms together in nectar-colonizing
yeasts. During dispersal from flower to flower via pollinators,
fluctuating carbon (sugars) and nitrogen (amino acids) concen-
trations in nectar cause these yeasts to experience high variabil-
ity in osmotic pressure and resource availability, respectively.
Assuming trade-offs in osmotolerance, as well as saturating
responses to the availability of amino acids, we expected both
the temporal storage effect and relative nonlinearity of compe-
tition to operate in this system. To investigate the contribution
of the two mechanisms, we simulated empirically parameter-
ized models to first quantify mechanistic contributions and then
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predict the outcomes of mixed-culture experiments. To this end,
we used a modified Monod competition model to mimic a
sequence of nectar colonization, followed by pollinator-assisted
dispersal to new flowers, with the potential for variation in
osmotic pressure between flowers (Materials and Methods). We
parameterized the model by running monoculture experiments
in which four yeast species were inoculated into artificial micro-
cosms across a gradient of a common sugar in nectar, sucrose
(10%, 30%, and 50%, aimed at imposing increasing levels of
osmotic pressure), and limiting amino acid concentrations (8–
16 levels from 0 to 3.16 mM) (Materials and Methods). These
treatments were chosen to reflect the range of osmotic pressure
and resource availability that nectar yeasts may encounter in wild
flowers (12).

Results and Discussion.
The four species varied in maximum growth rate (µmax ) across
the sucrose gradient (Fig. 1 and SI Appendix, Table S1). In
two pairs of species (Metschnikowia reukaufii and Metschnikowia
koreensis; and Metschnikowia gruessii and Starmerella bombicola),
maximum growth rate (µmax ) relative to each other switched
between 10% and 50% sucrose. Maximum growth rates were
most similar at 30% sucrose, indicating a trade-off in fitness
between low and high sucrose concentrations. This trade-off is
a necessary, although not sufficient, condition for a temporal
storage effect. In addition, half-saturation constants (K ) var-
ied both between and within species at different sucrose levels
(SI Appendix, Table S1). Together with fluctuations in the con-
centration of amino acids, this variation makes it possible that
nonlinear averaging differentially affects species’ growth rates.
Modeling and simulations are nevertheless required to predict
competitive outcomes and quantify mechanistic contributions to
coexistence.

We used the estimated parameters to simulate competitive
interactions between all six pairwise combinations of the four
species under three constant (10%, 30%, and 50%) and one
fluctuating sucrose treatment (10–50%) (Materials and Methods).
These simulations were designed in concert with accompanying
in vitro competition experiments, which in turn were designed
to match conditions and dispersal rates observed in nature. The
design included the transfer of a 20% fraction of the community

Fig. 1. Least-squares best fits of Monod growth functions in response to
the availability of amino acids for the four focal nectar yeast species at
low (Top), medium (Middle), and high (Bottom) osmotic pressure (10%,
30%, and 50% sucrose). Horizontal dashed lines represent the effective con-
tinuous mortality rate corresponding to an 80% instantaneous mortality
event every 48 h, as implemented in the model simulations and competition
experiments (Materials and Methods).

to a new flower every 48 h, either at the same (constant treat-
ment) or different (fluctuating treatment) sucrose level as donor
flowers, along with a single amino acid pulse at the time of intro-
duction to recipient flowers (SI Appendix, Fig. S1). In simulations
under fluctuating conditions, species stably coexisted in two of
six possible pairs: M. reukaufii and M. koreensis (Fig. 2D) and
M. gruessii and S. bombicola (SI Appendix, Fig. S5D). No species
pairs coexisted under constant environmental conditions (Fig. 2
A–C and SI Appendix, Figs. S2–S6).

To quantify the contribution of the two mechanisms, we used
additional Monte Carlo simulations to compare the growth
rate of an invader with that of a resident in the presence and
absence of environment-competition covariance and/or resource
fluctuations (ref. 5; Materials and Methods). An advantage of
this approach over previous analytic approaches (9) is that it
bypasses the need to derive model-specific formulas for each
mechanism, which can quickly become intractable with increas-
ing ecological realism (5). In simulated competition between M.
reukaufii and M. koreensis under fluctuating sucrose levels, we
found that it was only through the joint operation of the stor-
age effect and relative nonlinearity that the two species satisfied
the mutual invasibility criterion for coexistence (Fig. 3). Despite
their observed trade-off in maximum growth rate at low and
high sucrose levels (Fig. 1), only M. reukaufii benefited from a
temporal storage effect. Without a storage effect, M. reukaufii
could not invade a resident population of M. koreensis (Fig. 3).
A negligible contribution of the storage effect to M. koreensis’
growth rate was attributable to M. reukaufii being less sensitive
to variation in sucrose concentrations than M. koreensis (Fig.
1), which means that as an invader, M. koreensis experienced
little covariance between environmental suitability and compe-
tition when M. reukaufii was resident. In contrast, M. koreensis
benefited from relative nonlinearity, such that it was able to
invade a resident population of M. reukaufii. In the other
coexisting pair, S. bombicola benefited from both a temporal
storage effect and relative nonlinearity. Removing either mech-
anism would prevent it from invading a resident population of
M. gruessii.

By canceling out the contribution that each mechanism makes
to the low-density growth rate of M. reukaufii and M. koreen-
sis (Fig. 3), it is clear that in the simultaneous absence of both
mechanisms, M. reukaufii would exclude M. koreensis. It is nev-
ertheless helpful to consider each mechanism independently to
better discern how the two mechanisms interact. In an equilib-
rium system, where resources are supplied at a constant rate and
the sucrose concentration remains at the mean level, M. reukau-
fii would still exclude M. koreensis because M. reukaufii has a
lower mean R∗ (minimum resource level required to maintain
a nonnegative growth rate). Independent of either coexistence
mechanism, the pulsed delivery of resources goes some way to
leveling the playing field because it shifts the time-averaged
resource level higher, resulting in a reduced fitness differential
between the two species. However, in the presence of a tem-
poral storage effect alone, only M. reukaufii benefits, and M.
koreensis would still be excluded. Conversely, in the presence of
relative nonlinearity alone, the reverse would be true (i.e., M.
koreensis would exclude M. reukaufii). By virtue of a less non-
linear functional response (averaged across sucrose variation; SI
Appendix, Table S1), M. koreensis benefited from resource fluctu-
ations, while M. reukaufii was harmed by them. Even though the
amount M. reukaufii was harmed is smaller in magnitude than the
amount M. koreensis benefited, a necessary condition for relative
nonlinearity to act as a stabilizing mechanism, the swing in fitness
was large enough for M. koreensis as the resident to prevent M.
reukaufii from invading. It was then only through the additional
contribution of the temporal storage effect that M. reukaufii
achieved a positive growth rate as an invader. Without this mech-
anistic decomposition, one could have mistakenly assumed that
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Fig. 2. Simulations of resource competition between M. reukaufii (blue)
and M. koreensis (light orange) at constant sucrose concentrations of 10%
(A), 30% (B), and 50% (C) and fluctuating every 2 d between sucrose
concentrations of 10% (white bars) and 50% (gray bars) (D).

coexistence between these two dominant species was driven
exclusively by a temporal storage effect.

We next evaluated the simulation predictions in 24-d mixed-
culture experiments. The results of these experiments matched
the competitive outcomes predicted by simulations in 83% of
cases. As predicted, M. reukaufii and M. koreensis often coexisted
(three of four replicates) under fluctuating sucrose levels (Fig.
4D), and M. koreensis excluded M. reukaufii in all four replicates
under constant conditions at both low and moderate sucrose
levels (Fig. 4 A and B). Under constantly high (50%) sucrose
levels, their populations initially behaved as predicted, with M.
reukaufii on the brink of excluding M. koreensis, but contrary to
predictions, M. koreensis recovered after 8 d and excluded M.
reukaufii after 20 d in one replicate (Fig. 4C). This recovery by
M. koreensis might have been caused by rapid evolution, which
our model did not account for. To test the robustness of coex-
istence between M. reukaufii and M. koreensis, we replicated the
fluctuating treatment in an additional eight microcosms. After
24 d, the pair coexisted in four of eight microcosms, with both
species surviving in all eight microcosms up until day 16 (Fig.
S13). The only other mixed-culture experiments that deviated
from the simulation predictions were between M. gruessii and S.
bombicola under low, high, and fluctuating sucrose concentra-
tions (SI Appendix, Fig. S7). Specifically, at low and fluctuating
sucrose levels, M. gruessii excluded S. bombicola, and at high
sucrose, neither species persisted. Despite S. bombicola being the
more efficient resource competitor in the low-sucrose treatment
(Fig. 1), its exclusion by M. gruessii may suggest the presence of

a non-resource-mediated interaction between these two species,
which would explain the erroneous predictions.

The methodological capacity to quantify mechanistic contri-
butions even in the absence of coexistence revealed that rela-
tive nonlinearity consistently reduced fitness difference between
competing species (SI Appendix, Table S2). By design, our model
and experiments were characterized by only a limited number
of niche axes, but many other opportunities may exist for other
stabilizing mechanisms to overcome these reduced fitness differ-
ences in real flowers. Our results, therefore, suggest that relative
nonlinearity will likely still affect species coexistence in this sys-
tem. Furthermore, contrary to current perceptions (7, 8, 13), the
prevalence of nonlinear functional responses in many organisms
points to a significant role for relative nonlinearity in other sys-
tems, including those that are more species-rich. It is generally
underappreciated that the number of species that can exist via
relative nonlinearity scales with the square of the number of
fluctuating resources (14). Despite potentially playing a critical
role in sustaining multispecies coexistence, relative nonlinearity
has gone almost completely unexplored in both theoretical and
empirical studies of species-rich systems (but see simulations in
ref. 15). The analytical approach adopted here is equally applica-
ble in the presence of multiple residents (5) and therefore offers
untapped potential for future experimental work on multispecies
coexistence.

A challenge for both analytic and simulation-based approaches
to the mechanistic decomposition of coexistence is the choice
of scaling factors, which weight invader and resident popula-
tion growth rates to remove linear terms in the partitioning of

A

B

Fig. 3. Contribution of the storage effect (∆I) and relative nonlinearity
(∆N) to the growth rate (hr−1) of each species as an invader (rinv ) in
pairwise competition, where rinv = average fitness differences + ∆I + ∆N.
(A) Pairs where coexistence is predicted because rinv > 0 for both species. In
the case of M. koreensis (Mk) and M. reukaufii (Mr), rinv would be nega-
tive for M. koreensis without the contribution of ∆N, and negative for M.
reukaufii without the contribution of ∆I. In the case of S. bombicola (Sb)
and M. gruessii (Mg), M. gruessii would still have rinv > 0 without either
mechanism, while persistence of S. bombicola requires one or both mech-
anisms. (B) Pairs where coexistence is not predicted because one species
has rinv < 0. In all pairs, ∆I is weak to nonexistent, while ∆N is strongly
equalizing (i.e., differences in rinv > 0 would be much larger without the
contribution of ∆N).
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Fig. 4. Mixed (solid lines) and monoculture (dashed lines) times series for
M. reukaufii (blue) and M. koreensis (light orange) at constant 10% (A and
E), 30% (B and F), and 50% (C and G) and fluctuating 10–50% (D and H)
sucrose. The fluctuating treatment was replicated in an additional eight
microcosms (SI Appendix, Fig. S12).

invasion growth rates into different mechanisms (refs. 16 and 17:
Materials and Methods). The scaling factors have a clear theoreti-
cal definition, but they can be difficult to estimate empirically (5).
To account for this potential source of error, instead of assum-
ing equal scaling factors, we recalculated both mechanisms using
a model-specific formula for the scaling factors with parameters
estimated from our data (Materials and Methods and SI Appendix,
Eq. S10). These adjusted values for the temporal storage effect
and relative nonlinearity were qualitatively consistent with our
main findings in the majority of cases (SI Appendix, Table S3).
Although the contribution of the adjusted storage effect to M.
reukaufii’s growth rate was no longer critical to its coexistence
with M. koreensis under fluctuating conditions, it still accounted
for almost 25% of its growth rate as an invader, whereas the
contribution of adjusted relative nonlinearity to M. koreensis’s
invader growth rate increased by 25% (SI Appendix, Table S3).
Given that scaling factors and adjusted values were sensitive to
choices that should be inconsequential under the assumptions of
the analytic theory (SI Appendix, Derivation of Scaling Factors),
we anticipate that robust estimation of scaling factors will be an
active area for research in coexistence theory.

We have demonstrated multiple fluctuation-dependent coex-
istence mechanisms operating in a simple microbial system.

Although this study was designed to mimic a natural system as
closely as possible, it remains an open question to what extent
these results are reflective of this and other wild systems. An
important avenue of future research will be to attempt sim-
ilar partitioning exercises in more complex variable systems,
such as soil, tropical rainforests, or the human gut, where
both fluctuation-dependent and -independent mechanisms (e.g.,
resource partitioning) may often be comparable in magnitude.
At the same time, to foster rapid feedback between theory
and experiments, there remains significant demand for rigor-
ously controlled laboratory studies that enable high-resolution
partitioning of multiple mechanisms. We venture that a bet-
ter understanding of the relative importance of simultaneously
acting coexistence mechanisms will not only advance fundamen-
tal theory, but facilitate the predictability and management of
ecological systems that affect environmental and human health.

Materials and Methods
Study System. The floral nectar of animal-pollinated plants often hosts
dense, but species-poor, yeast communities, making it a tractable system
to investigate microbial community assembly (18). Flower-visiting animals
introduce these yeasts to initially sterile nectar at low density, where they
grow rapidly, thus increasing their probability of being dispersed to new
flowers by subsequent visitors (19–21). Nectar chemistry can be highly vari-
able, both within and across species, with sugar concentrations ranging
from 5% to >50% (12). Although sugars are an essential resource for
yeasts, sugars appear to primarily mediate nectar yeast population dynamics
through osmotic stress (18, 20). Nevertheless, previous studies have shown
that yeasts significantly deplete amino acids in nectar, which can lead to
strong resource competition (19, 20). Some species of bacteria can withstand
the high osmotic pressure of sugar-rich nectar (21–23), but experiments and
observations have indicated that, owing to priority effects, bacteria are
rarely abundant in flowers in which yeasts are abundant, and vice versa
(24, 25).

We used four common species of nectar yeast isolated from Mimulus
(Diplacus) aurantiacus nectar at Jasper Ridge Biological Preserve in the Santa
Cruz Mountains of California: M. reukaufii, M. koreensis, M. gruessii, and
S. bombicola (19, 21, 26). The colonies and cells of all four species are
morphologically distinct on yeast malt (YM) agar and under a microscope,
respectively.

Monoculture Experiments. Monoculture assays were conducted across a fac-
torial gradient of sucrose (10%, 30%, and 50%) and digested casein (eight
concentrations from 0 to 3.16 mM) comprising a similar composition of
amino acids to real nectar (27). These treatments were chosen to reflect the
range of sucrose and nitrogen concentrations that nectar-dwelling microor-
ganisms typically encounter (12, 27). Other potentially important sources
of environmental variability in nectar, including temperature and pH, were
held constant. Because yeast cell densities in artificial nectar are usually
below the detection threshold for optical density measurements, per capita
growth estimates were necessarily obtained by plating dilutions onto YM
agar at set intervals.

For each “species × sucrose × amino acid” combination, 12 microcosms
(4 replicates× 3 time points) were prepared to enable destructive sampling
at 12, 24, and 48 h, for a total of 1,152 monoculture assays. Inoculations
were prepared immediately before the beginning of the experiment, with a
single colony picked for each strain from stock solutions streaked onto YM
agar 2–4 d previously. A hemocytometer was used to obtain an intended
cell density of ∼400 cells µL−1 in the inoculum. One µL of the inoculum
was then added to 9 µL of artificial nectar for a final intended cell density
in each microcosm of ∼40 cells µL−1. However, due to stochasticity in the
number of viable cells, inoculations were also plated, and the number of
colony-forming units (CFUs) was enumerated to estimate the initial number
of viable cells introduced. Microcosms were incubated at 27 ◦C and then
destructively sampled at 12-, 24-, and 48-h intervals, and dilutions (1:10
and/or 1:50) were plated onto YM agar and incubated for 2–3 d before
enumerating the number of CFUs per plate.

For each species, per capita growth rate at each “amino acid × sucrose”
concentration was obtained from the slope of linear models fitted for
the natural logarithm of CFUs (as a proxy for cell density) as a function
of time. The maximum per capita growth rate was taken as the steepest
significant (P< 0.05) estimate for the slope over the first 24 or 48 h, i.e.,

equivalent to the largest
lnXt−lnX0

t for t = 24, 48 (we excluded densities at
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12 h as an endpoint due to high variability at the within-species level). For
some “species× sucrose” combinations, growth rates obtained from the ini-
tial 1,152 monoculture assays were supplemented by additional growth rate
data obtained from associated experiments applying the same methods.

Monod models were subsequently fit for per capita growth as a function
of amino acid concentration for each species and sucrose level,

1

X

dX

dt
=µmax

R

K + R
, [1]

where X is the population density (µL−1), µmax is the maximum growth rate
(h−1), R is the resource (amino acid) concentration (millimolar), and K is
the half-saturation constant (millimolar). For the purposes of model fitting,
a 0.01-mM positive offset was applied to all resource values in all treat-
ments. This was done to compensate for observed growth at 0 amino acids
in some microcosms, which we speculate arises from recycling of nutrients
from dead cells in the inocula and/or resource storage. The only exception
was for M. gruessii at 30% where it was necessary to increase the offset to
0.02 to prevent nonsensical negative estimates for K. Nonlinear least squares
was used for parameter estimation (µmax , K) using the nls function in R
(Version 3.4.0).

Model Simulations: Competitive Outcomes. A modified Monod model,
described by an impulsive nonautonomous system of ordinary differen-
tial equations (ODEs), was formulated for two species competing for a
single resource. (Impulsive and nonautonomous ODEs allow for abrupt time-
dependent changes to the state variables and the parameters, respectively.)
The model was designed to mimic a sequence of nectar colonization fol-
lowed by pollinator-assisted dispersal to new flowers. To facilitate a close
replication of in silico competition assays in subsequent in vitro mixed-
culture assays, the model assumes indiscriminate dispersal with respect to
species identity, sterile recipient flowers at the time of colonization, and
negligible mortality during growth within flowers. These assumptions are
also broadly consistent with observations of yeast growth in wild and arti-
ficial flowers (19–21). Each model simulation followed the fate of a single
two-species community characterized by periods of within-flower growth
(Eqs. 2 and 3), punctuated by population crashing dispersal events (Eqs. 4
and 5), with zero immigration from outside the system. The model can be
written as follows:

dXi

dt
=µmaxi

RXi

Ki + R
, t 6= kτ , k = 1, 2, ..., [2]

dR

dt
=−

n∑
i=1

Qi
dXi

dt
, t 6= kτ , k = 1, 2, ..., [3]

∆Xi = dXi , t = kτ , k = 1, 2, ..., [4]

∆R = (1− d)(S− R), t = kτ , k = 1, 2, ..., [5]

where Qi is the resource quota (amount of resource per unit individual), d
is the proportion of individuals transferred to a new flower, S is the mag-
nitude of resource pulses, and τ is the period between dispersal events.
Eqs. 4 and 5, respectively, describe the magnitude of density-independent
mortality and resource supplementation that accompany a dispersal event.

The model was parameterized from the monoculture experiments, with
µmax and K determined by the sucrose conditions of the different simula-
tion treatments. Qi was calculated once for each species as the ratio of initial
resource concentration and number of cells µL−1 at 48 h averaged across all
sucrose and amino acid treatments (excluding the minimum and maximum
amino acid levels). This approximation for Qi is justified by the observation
that all four species reach carrying capacity within 48 h under the different
study treatments. The model was then simulated for all six pairwise species
combinations, at three constant sucrose conditions (10%, 30%, and 50%)
and one variable condition (10–50% switching every 2 d). In each simula-
tion, the state variables (X1, X2 and R) were reduced by 80% (i.e., d = 0.2 in
Eq. 4) every 48 h [48 h was considered a good approximation of the aver-
age time between dispersal/immigration events in this system (19)], with
the remaining 20% fraction receiving a fresh resource pulse (S = 2.683 mM
in Eq. 5) (SI Appendix, Fig. S1). Simulations were run by using a Runge–Kutta
method (ode45) with a fixed time step of 0.1 h (dt = 0.1) for 8,640 “hours,”
with both competitors starting from an initial density of 10 cells µL−1. In all
simulations, population dynamics reached a steady state comprising one of
three qualitatively different outcomes: coexistence, competitive exclusion,
and extinction of one competitor (i.e., outside fundamental niche of one
competitor). All simulations were run by using the deSolve package (Version
1.14) (28) in R (Version 3.4.0).

Model Simulations: Quantifying Fluctuation-Dependent Mechanisms. To quan-
tify the contribution of the storage effect and relative nonlinearity to
coexistence outcomes, we used a Monte Carlo-based simulation approach
developed by Ellner et al. (5). The approach is summarized here, but see
ref. 5 for a more comprehensive explanation of the procedure.

Following ref. 5, we first explain how to quantify the temporal stor-
age effect before outlining the additional calculations needed to quantify
relative nonlinearity. For two species, the storage effect is defined as
the contribution of environment-competition covariance to the difference
between invader and resident long-term average growth rate (4),

r̄i(Ei\i , Ci\i)− qir r̄r (Er\i , Cr\i), [6]

where the population growth, rj , is assumed to be a positive function of the
environment, Ej(t), and a decreasing function of competition Cj(t). In our

modified Monod model, Ej(t) =µmaxj (t) and Cj(t) =
Kj (t)+R

R . The j\k denote
a value for species j when k is effectively absent (i.e., at very low density),
such that Cr\i and Ci\i are the competitive pressures on the resident and
the invader, respectively, when the invader is at low density. The qir is a
scaling factor that translates changes in competitive pressure experienced
by a resident into those experienced by an invader.

Simulations were conducted for each species as resident and invader,
where the invader’s density was held at 0 (this differed from the compet-
itive simulations described above where the model was initiated with both
species at 10 cells µL−1). After removing a burn-in period, reflecting the
time it takes for the resident to achieve a steady state, the long-term aver-
age invader and resident growth rates were then calculated directly from
the simulation output, where

rj(Ej , Cj) =
1

n

n∑
t=1

Ej(t)

Cj(t)
−D. [7]

The parameter D here is the equivalent instantaneous mortality rate,
defined as − ln d

τ (29).
Next, we recalculated rj using the Cjs from the simulation with new

randomly shuffled values for Ej . The effect of randomly shuffling Ej is to
break down E-C covariance, giving rise to r#j , which is the expected average
growth rate in the absence of E-C covariance. If we assume for now the scal-
ing factors (qir ) are equal to 1, the storage effect (∆I) for a given invader
is then the effect of removing E-C covariance on the difference between
invader and resident growth rates, i.e.,

∆I = (ri − rr )− (r#i − r#r ). [8]

We can then quantify relative nonlinearity (∆N) using a similar approach,
where the “flattened” growth rate calculated at mean resource levels, r[j ,
removes the effect of both the storage effect and relative nonlinearity, i.e.,

∆N + ∆I = (ri − rr )− (r[i − r[r ), [9]

and therefore,
∆N = (r#i − r#r )− (r[i − r[r ). [10]

Note that Eq. 10 only holds when growth is linear in the environmental
response, E, which it is in our model. When growth is nonlinear in E, the
flattened simulations remove additional variance terms corresponding to
the effect on r of variance in E and the interaction between variance in E
and C, which require separate partitioning.

The final consideration is the scaling factors, qir . These measure the rel-
ative sensitivity of invader and resident to change in the competitive factor
(resource depletion in our model) around the mean value of that factor
when the resident is at steady state. When invader and resident differ in
their sensitivity at Rr , qir 6=1. Consequently, following the analytic theory,
the scaling factors should be multiplied through terms 2 and 4 (rr , r#r and
r[r ) in Eqs. 8–10. In the absence of significant relative nonlinearity in invader
and resident functional responses, the qir are comparatively straightforward
to quantify empirically, either analytically (model permitting) or via a regres-
sion approach (section S1.5 of ref. 5). The combined effect, however, of a
pulsed resource supply and relatively nonlinear functional responses is that
the qir can be numerically sensitive to the point at which they are approxi-
mated. To compensate for this potential source of error, we evaluated all ∆I
and ∆N twice, (i) assuming all qir = 1, and (ii) using a semianalytical defini-
tion (following equations S1.14 and S1.15 of ref. 5; SI Appendix, Derivation
of Scaling Factors):
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qir =
E*

i Ki

E*
r Kr
×

(Kr + Rr )
2

(Ki + Rr )
2

, [11]

where E*
j is the mean environmental response, i.e., µmaxj(t)

, and Kj and

Rj are the mean Kj for each species and the mean resource level (deter-
mined by the resident), respectively. Note that the time averaging of Kj ,
which is necessary under the analytic approach, differs from the regression
approach, where it can be left as time variant. Following the analytic the-
ory, because the scaling factors multiply a term of O(σ2) they only need to
be approximated to O(1), and therefore may be suitably evaluated at mean
resource values. Given mostly qualitatively consistent results between the
two approaches, in the main text we report ∆I and ∆N assuming all qir = 1,
and include their respective values when quantified via semianalytical qir in
SI Appendix (SI Appendix, Table S3).

Competition Experiments. To test the predicted competitive outcomes of
all model simulations, we conducted a series of 24-d serial transfer
experiments (SI Appendix, Fig. S1). All four species were grown in both
mixed (pairwise) and monocultures, in three constant sucrose treatments
(10%, 30%, and 50%) and one variable treatment (10–50% switching
every 2 d).

Strains were inoculated into 10-µL nectar microcosms on day 0 at an
intended density of∼20 cells µL−1 (as described for the monoculture exper-
iment, the actual cell density was verified from CFUs) (SI Appendix, Fig. S1).
Every 2 d, a 2-µL aliquot of each microcosm was inoculated into 8 µL of

fresh nectar either at the same sucrose concentration (constant treatments)
or a different sucrose concentration (variable treatments), for a total of
12 cycles. On the assumption that cell growth did not appreciably reduce
the sucrose concentration of the nectar microcosms, the switch from 10%
to 50% sucrose was achieved by introducing the 2-µL aliquot at 10% to
8 µL of fresh nectar at 60% (i.e., 0.2 × 10 + 0.8 × 60); the switch from 50%
to 10% sucrose was achieved by introducing the 2-µL aliquot at 50% to
8 µL of fresh nectar at 0%. Similarly, on the assumption that all amino acids
had been depleted within a microcosm after 48 h of growth, all fresh nec-
tar comprised 2.625 mM amino acids for a final resource concentration of
2.1 mM at the beginning of each transfer cycle. At each transfer, CFUs were
enumerated from dilutions of the remaining 8-µL microcosm.

Three months after the original experiment, we ran an additional exper-
iment with eight microcosms to verify the replicability of observed coexis-
tence under fluctuating sucrose between M. reukauffi and M. koreensis. The
experimental design was identical to the original experiment.

Data Availability. The data that support the findings of this study are
available on Dryad (https://doi.org/10.5061/dryad.6t161c3).
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