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INTRODUCTION

An ecological community's assembly history is defined 
by the order and timing of species arrival (Fukami, 
2015). Arrival timing and order have a strong random 
component (Gould, 1990; Sprockett et al., 2018), making 
it difficult to predict which assembly history will take 
place. The large number of conceivable assembly histo-
ries has highlighted the necessity of understanding how 
history affects the diversity, composition and function-
ing of an ecological community (Carlström et al., 2019; 
Clay et al., 2020; Fukami & Morin, 2003; Toju et al., 
2018). In this vein, mounting data suggest that assembly 

history affects which species survive because species can 
interact in local communities differently depending on 
arrival order and timing (Fukami, 2015), the phenom-
enon known as priority effects. Much of our present 
understanding of priority effects, however, is based on 
the simple two-species Lotka–Volterra model and its 
variants (Fukami et al., 2016; Gilpin & Case, 1976; Ke 
& Letten, 2018; Ke & Wan, 2020; May, 1977; Mordecai, 
2013; Song et al., 2020; Wittmann & Fukami, 2018). It 
remains unclear how the diversity and complexity of 
priority effects expand beyond these models and when 
considering multispecies communities (Fukami, 2015; 
Lawton, 1999).
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Abstract

The history of species immigration can dictate how species interact in local com-

munities, thereby causing historical contingency in community assembly. Since 

immigration history is rarely known, these historical influences, or priority ef-

fects, pose a major challenge in predicting community assembly. Here, we provide 

a graph-based, non-parametric, theoretical framework for understanding the pre-

dictability of community assembly as affected by priority effects. To develop this 

framework, we first show that the diversity of possible priority effects increases 

super-exponentially with the number of species. We then point out that, despite 

this diversity, the consequences of priority effects for multispecies communities 

can be classified into four basic types, each of which reduces community predict-

ability: alternative stable states, alternative transient paths, compositional cycles 

and the lack of escapes from compositional cycles to stable states. Using a neural 

network, we show that this classification of priority effects enables accurate ex-

planation of community predictability, particularly when each species immigrates 

repeatedly. We also demonstrate the empirical utility of our theoretical framework 

by applying it to two experimentally derived assembly graphs of algal and ciliate 

communities. Based on these analyses, we discuss how the framework proposed 

here can help guide experimental investigation of the predictability of history-

dependent community assembly.
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For example, arrival order dictates one of the three 
well-studied outcomes of two-species competition in the 
Lotka–Volterra model (Figure 1A; Case, 2000): (i) coexis-
tence (two species coexist regardless of who arrives first); 
(ii) deterministic exclusion (the same species always ex-
cludes the other regardless of who arrives first); and (iii) 
history-dependent exclusion (the species that arrives first 
excludes the other). Although not as widely recognised, 
three other outcomes are also possible in two-species 
competition: (iv) two species eventually coexist despite 
requiring a specific arrival order; (v) only one species 
survives or two species coexist depending on who ar-
rives first; and (vi) the species that arrives late always 
replaces the species that arrives early. The presence of 
these other possibilities has been supported by empirical 
evidence (Amor et al., 2020; Angulo et al., 2021; Drake, 
1991; Warren et al., 2003). Of these six scenarios, (iii), (v) 

and (vi) all represent priority effects. The common omis-
sion of cases (v) and (vi) in theoretical studies is a conse-
quence of assuming that model parameters are fixed and 
history independent (Rudolf, 2019; Zou & Rudolf, 2020). 
In reality, interaction strengths can be history dependent 
(Carter & Rudolf, 2019; Poulos & McCormick, 2014; 
Rasmussen et al., 2014; Sniegula et al., 2019; Vannette 
& Fukami, 2017). Thus, the scope of priority effects is 
largely underestimated by traditional parametric models 
assuming history-independent interaction strengths.

Moreover, the scope of priority effects quickly in-
creases as more species are considered. For example, 
even with only three species, 41,979 outcomes are the-
oretically possible, the bulk of which constitute priority 
effects (Figure 1D). In general, as the number of species 
increases, the number of alternative outcomes increases 
super-exponentially (Figure 1D). The core reason behind 

F I G U R E  1   Non-parametric graph-based approach. Panel (A) presents the traditional model-based phase diagram of assembly dynamics 
in two-species communities using coexistence theory. The balance between niche overlap (x axis) and fitness ratio (y axis) determines the types 
of assembly dynamics: (i) deterministic existence, (ii) deterministic exclusion or (iii) priority effects. Panel (B) presents all six types of possible 
assembly dynamics (model-free) using the graph-based approach. In an assembly graph, the nodes represent the species combinations, while the 
links represent how the species combination changes into another combination after a non-resident species invades. Take Case (ii) for example: if 
species B (blue line) invades the community with species A, species A is excluded and the community composition changes into species B (hence, 
the arrow goes from circle A to circle B); and if species A (red line) invades the community with species B, species A cannot establish and the 
community composition remains the same (hence, the arrow turns back on itself). Cases (iii), (v) and (vi) are all priority effects (marked with 
an asterisk) as at least two different assembly histories can lead to different compositions. Panel (C) plots how the diversity of priority effects 
increases with community size. We find a super-exponential increase of diversity of topologically different assembly dynamics (Equation 1)
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this super-exponential increase is that, while all history-
independent dynamics are alike, priority effects can be 
unique in their own way (Fukami, 2015). Only when all 
conceivable assembly histories result in the same com-
munity composition does history-independent dynamics 
arise. The extremely large number of assembly dynamics 
in multispecies communities makes the prospect of pre-
dicting community assembly daunting (Lawton, 1999; 
Srivastava, 2018).

While knowing the exact assembly dynamics operat-
ing in a community may be an impossible task indeed, 
we may still be able to understand the predictability 
of community assembly affected by priority effects, 
or extent to which we can predict community compo-
sition given the stochasticity of assembly history. For 
instance, if in one case all different assembly histories 
lead to different outcomes, and if in another case only 
one assembly history leads to a different outcome, the 
latter case has a much more predictable outcome than 
the former (Margalef, 1958). Understanding the pre-
dictability of community assembly is not only of basic 
interest to ecologists but can also aid applications of 
community ecology for ecosystem management, in-
cluding ecological restoration, biological control and 
the medical treatment of the gut microbiome (Deng 
et al., 2021; Rohr et al., 2020; Song & Saavedra, 2018; 
Sprockett et al., 2018). Yet, a theoretical framework 
is largely lacking for quantifying the predictability of 
community assembly in this context.

Here, we introduce a non-parametric graph-based 
approach to studying the diversity of priority effects in 
multispecies communities. Taking this approach, we 
propose an information-based metric to quantify com-
munity predictability, with a focus on the influence of 
priority effects. We show that the predictability of com-
munity assembly has two types of regularities: (a) The 
higher the invasion times, the higher the predictabil-
ity; (b) Predictability of final composition and of tem-
porary changes in community compositions is strongly 
correlated. We then show that the consequences of pri-
ority effects for community predictability can be clas-
sified into four basic sources: the number of alternative 
stable states, the number of alternative transient paths, 
the length of compositional cycles and the presence or 
absence of an escape from cycles to stable states. We 
demonstrate both theoretically and empirically that this 
classification allows for an accurate explanation of com-
munity predictability. Finally, we discuss how our results 
can be used to guide experimental studies for commu-
nity assembly.

A NON-PARA M ETRIC GRAPH-
BASED APPROACH

To capture the full diversity of priority effects, we in-
troduce a non-parametric graph-based approach. This 

approach maps any assembly dynamics uniquely onto 
an assembly graph, where nodes represent combina-
tions of coexisting species and directed links represent 
how species combinations change when a new species in-
vades. This form of graph presentation is not new (Hang-
Kwang & Pimm, 1993), but has been largely underused. 
We illustrate this approach with two hypothetical spe-
cies, where species are denoted as A and B (Figure 1B). 
This illustrative assembly graph has 22‒1  =  3 nodes: 
{A}, {B} and {A, B}, which represent all possible species 
combinations. The link starting from community (node) 
{A} is generated by the invasion of species B, which can 
lead to all three possible species combinations (similarly 
for community {B}). In turn, community {A, B} does 
not have any directed link since all species are present 
in this community. For example, case (II) in Figure 1B 
shows the graph representation of deterministic exclu-
sion: invasion from species B into community {A} leads 
to community {B}, whereas invasion from species A into 
community {B} also leads to community {B}. Note that 
there are in total 3 × 3 = 9 assembly dynamics without 
considering which species is named as {A} or {B} (which 
is arbitrary). Formally, this only considers topologically 
unique assembly dynamics (graphs), where an assem-
bly graph is unique up to the ordering of species labels. 
Thus, with two species, there are only six topologically 
unique assembly dynamics (Figure 1B).

We now generalise our approach to multispecies com-
munities. For simplicity, we present this extension with 
three  species with species denoted as A, B and C. The 
assembly graph has 23‒1 = 8 nodes, representing all pos-
sible species combinations. In a community with a single 
species ({A}, {B} or {C}), there are two outgoing links rep-
resenting invasions by the other two species respectively. 
For instance, in community {A}, one of the two outgo-
ing links represents the invasion by species B, which can 
lead to all three possible combinations of species A and 
B ({A}, {B} or {A,B}). Then, in a community with two 
species ({A,B}, {A,C} or {B,C}), there is one outgoing link 
representing the invasion by the only species not present 
in the community. That is, in community {A,B}, the only 
outgoing link represents the invasion by species C, which 
can lead to all eight possible combinations of species A, 
B and C. Note that community size may decrease after 
an invasion. Finally, in the community with all three spe-
cies ({A,B,C}), there is no outgoing link since all species 
are present. In total, there are 41,979 topologically differ-
ent assembly dynamics for just three species.

The same procedure above applies to an arbitrary 
number of species. The assembly graph for S species 
has 

(
2S − 1

)
 nodes. The nodes representing communities 

with n species have (S‒n) outgoing links. Each of the as-
sociated outgoing links from the node with n species can 
possibly lead to 

(
2(n+1) − 1

)
 nodes. Then, of the 

(
2(n+1) − 1

)
 

nodes, only one node contains (n + 1) species, 
(
S

n+1

)
 nodes 

contain n species, while all the other nodes contain 
less than n species. As a first order of approximation, 
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the diversity (number) of topologically different assem-
bly dynamics can be calculated as (see Appendix A for 
derivation):

Figure 1d shows how the diversity of priority effects 
scales with the number of species. Note that already with 
six species, the diversity is significantly greater than the 
total number of atoms in the entire universe (Kragh, 
2003).

PRIORITY EFFECTS A N D 
TH E PREDICTA BILITY OF 
COM M U N ITY ASSEM BLY

Priority effects resulting from stochastic dispersal give 
rise to assembly dynamics that are not fully predictable. 
To quantify this lack of predictability owing to priority 
effects, it is necessary to define both the pool of possible 
assembly histories for a given community and the type 
of uncertainty to analyse (Figure 2). Focusing on the 
pool of assembly histories, if an infinite number of inva-
sions are possible, the pool of assembly histories is also 

infinite. While this assumption is typically applied to 
allow statistical convergence, it is a rather strong assump-
tion that is often not met (Capitán et al., 2009; Hubbell, 
1997; Serván & Allesina, 2021). As the assembly graph 
fully determines the trajectory of community composi-
tion given any assembly history, we can study any arbi-
trary pool of assembly histories (Appendix B). Here, for 
simplicity, we assume that each species invades m times. 
With two species, if species can only invade m =1 time, 
the pool of possible assembly histories consists of only 
two assembly histories: AB

→
 (meaning species A invades 

first and then species B invades) and BA
→

. But if we have 
three species that each invade m = 2 times, the pool of 
possible assembly histories consists of 6 !

2 !2 !2 !
= 90 assem-

bly histories. For example, ACBCAB
→

 is a possible assembly 
history, meaning that species A invades first, then spe-
cies C invades, and so on until species B invades last. By 
changing the number of invasion attempts (m), it is also 
possible to answer how large m has to be to effectively 
generate the same effects as infinite invasions. Similarly, 
our framework can be easily adapted to incorporate 
more ecological complexity, such as that some species 
arrive with higher frequency than others (see Appendix 
B for details).

Shifting our focus to the type of uncertainty to anal-
yse, we suggest that, given a pool of assembly histories, 
it is possible to measure two types of uncertainties re-
lated to community composition. The first type is the 

(1)
∏S

n=1
(2n+1−1)

(S−n)

⎛⎜⎜⎝
S

n

⎞⎟⎟⎠

S !
∼

22S−2S
2

eS√
2�SS+

1

2

,

F I G U R E  2   Quantifying the predictability of community assembly. Panel (A) presents the general procedure used for the calculation: First, 
based on a given uncertainty (either final composition or temporary compositions), we define a pool of potential assembly histories. Second, 
we need to know the assembly dynamics of the community. Third, each assembly history produces its community trajectory (how community 
composition changes with an invading species) based on the assembly dynamics. Last, we compute predictability on the final composition 
across the community trajectory (boxed with dashed lines) and on the temporary compositions along the community trajectories (boxed with 
solid lines). The definition of predictability is based on normalised entropy (see the mathematical definition in Equation 2 or in the figure). 
Panel (B) illustrates this procedure with an example of a three-species community. First, we define the pool of potential assembly histories 
when each species invades only once. This gives us six potential assembly histories:ABC

→ ,
ACB

→
, BAC
→

, BCA
→

, CAB
→

, CBA
→

. Second, we choose a three-species 
assembly dynamics for illustration. Third, we show the community trajectories defined by assembly history and assembly dynamics. For 
example, the community trajectory is {A} → {A,B} → {A,B} for the assembly history 

ABC

→ . Last, we calculate the community predictability: 
The predictability on final composition is the predictability of the states ({C} , 4 {A,B} , {A,B,C}), that is, the final compositions in each 
community trajectory (boxed in dashed lines), which is 0.55; and the predictability on temporal composition is the average predictability of six 
trajectories corresponding to six assembly histories (boxed in solid lines), which is 0.51.
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uncertainty associated with the final community com-
position across all assembly histories. The second type 
is the uncertainty associated with transient community 
compositions along all assembly histories. Here, to quan-
tify the predictability of assembly dynamics, we adopt 
a normalised information entropy metric (Rohr et al., 
2016). Although there are many alternative uncertainty 
metrics (Vellend, 2016), information entropy has been 
useful to quantify and explain different ecological pro-
cesses (Margalef, 1958; Marleau et al., 2020; O’Connor 
et al., 2019; Zu et al., 2020). We define the predictability 
of an assembly dynamics as

where x
i
 is a species combination and P

(
x
i

)
 is the proba-

bility that combination x
i
 occurs (Figure 2A). The entropy 

is normalised to [0, 1] to ensure interpretability across dif-
ferent community sizes. Thus, a predictability of one (resp. 
zero) implies that that there is no (resp. full) uncertainty 
about the assembly dynamics.

To illustrate this measure, let us consider the assembly 
dynamics defined by case (IV) shown in Figure 1B, where 
each species invades only once. In this example, if assem-
bly history AB

→
 takes place, the trajectory of the community 

is from {A}→ {B}. Instead, if assembly history BA
→

 takes 
place, the trajectory is from {B}→ {A,B}. Therefore, 
the predictability of the final community composition 
is given by predictability ({B} , {A,B}) = 1 +

.5log(.5)+ .5log(.5)

log(3)
= 0.37.   

Similarly, the predictability of the assembly trajec-
tory (the temporary community compositions) is 
predictability ({A} , {B}) = . 37 and predictability ({B} , {A,B}) = . 37.   
Figure 2B illustrates the process of quantifying this pre-
dictability for a set of three  species. The agreement be-
tween the two types of predictability is not a coincidence. 
Figure 3A shows the strong correlation between the two 
types of predictability across all possible assembly dy-
namics for three species. The level of correlation is invari-
ant across different pools of potential assembly histories. 
Thus, without loss of generality, hereafter our results are 
based on the first type of predictability (i.e. on the final 
community composition). Communities become more 
predictable when species are allowed to invade multi-
ple times. Figure 3B shows how the distribution of pre-
dictability across all possible assembly dynamics with 
three species increases as a function of the number of in-
vasion attempts.

CLASSI FY ING PRIORITY EFFECTS

As shown above, there are significant differences in the 
predictability of community assembly. Here, we show 
that we can decompose community predictability into 
four basic sources: the number of alternative stable 
states, the number of alternative transient paths, the 

length of compositional cycles and the presence or ab-
sence of an escape from cycles to stable states.

Alternative stable states occur when a community 
has more than one stable composition (left column of 
Figure 4A) (Gilpin & Case, 1976; Schooler et al., 2011; 
Schröder et al., 2005). Alternative transient states occur 
when there are more than one assembly histories (or tra-
jectories) from the founding species to the stable states 
(middle column of Figure 4A) (Fukami & Nakajima, 
2011, 2013; Sarneel et al., 2019). Compositional cycles 
occur when the assembly histories involve cyclic se-
quences of community composition (right column of 
Figure 4A) (Fox, 2008; Schreiber & Rittenhouse, 2004). 
Our graph-based approach can identify these dynamical 
sources as topological features. That is, alternative sta-
ble states arise when the assembly graph has more than 
one sink (nodes that have incoming links but no outgoing 
link); alternative transient states arise when more than 
one directed path exist from single species to a sink; and 
compositional cycles occur when directed cycles exist in 
the assembly graph. These three dynamical sources of 
unpredictability have already been hypothesised to be 
consequences of priority effects (Fukami, 2015).

The three dynamical sources are not mutually exclu-
sive, implying that assembly dynamics can potentially 
exhibit all of these sources. For example, the assem-
bly graph for the three species shown in Figure 4B has 
two alternative stable states ({A,C} and {C}), one 
transient path for each stable state ({A}→ {A,C} and 
{A}→ {B}→ {A,C}) and one compositional cycle of 
length 3 ({B}→ {A,B}→ {B,C}→ {B}). However, the 
picture is not complete with only these three sources. 
Figure 4C shows another example of an assembly graph 
for three species with the same types and number of dy-
namical sources as shown in Figure 4B. Nevertheless, the 
assembly dynamics in Figure 4C has lower predictability 
than the one shown in Figure 4B. The difference between 
these two cases is that only in Figure 4B, the assembly 
dynamics exhibit the possibility to escape from a cycle 
to a stable state (i.e. the trajectory can escape the com-
positional cycle ({B}→ {A,B}→ {B,C}→ {B}) into 
a stable state ({C}). Because cycles are less predictable 
than stable states in general, this possibility to escape 
can increase the predictability of assembly dynamics. 
According to some original definitions of compositional 
cycles (Fukami, 2015; Morton & Law, 1997; Steiner & 
Leibold, 2004), compositional cycles are strictly perma-
nent such that, if a ‘cycle’ has an escape to a stable state, 
it actually does not represent a compositional cycle, but 
rather constitutes alternative transient paths. In this 
paper, we adopt a broader definition of compositional 
cycles to refer to those with an escape to a stable state as 
well as those without.

Therefore, to classify priority effects by their predict-
ability, we propose to use the four dynamical sources (to-
pological features): alternative stable states, alternative 
transient states, compositional cycles and the presence 

(2)

predictability: = 1 − entropy(uncertainties) = 1 +

∑
i
P(x

i
)log(P(x

i
))

log(2S − 1)
,
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or absence of an escape from cycles to stable states. We 
used a neural network to carry out this classification. In 
short, the architecture of the neural network is as follows: 
the input layer is a four-dimensional vector, which en-
codes the four topological features of an assembly graph; 
the five hidden layers all have ReLU activation; and the 
output layer is the explained predictability. Appendix C 
provides a more detailed description of the neural net-
work. For simplicity, we measure the explanatory (clas-
sification) power using the correlation between observed 
and classified predictability in the out-of-sample test set. 
Focusing on the case of three species, we found that the 
classification works better for assembly dynamics with 
multiple invasions. Specifically, the classification dis-
played an explanatory power of 0.57 and 0.98 for single 
(m = 1; Figure 5A) and multiple (m = 15; Figure 5B) inva-
sions, respectively. The explanatory power increases with 
the number of invasions and reaches a plateau around 
m = 8 invasions (Figure 5C). These results are qualita-
tively the same for larger communities (Appendix D).

Finally, we used a regression-based scheme 
(Grömping et al., 2006) to quantify the relative impor-
tance (contribution) of each topological feature (dynam-
ical source) to the classification power of priority effects. 
Figure 5D shows that the relative importance of topo-
logical features changes with the number of species in-
vasions. Additionally, this figure shows that the relative 

importance of the number of stable states remains con-
stant across invasion times, while the relative importance 
increases for both the number of transient paths and the 
presence of an escape from cycles to stable states, but it 
decreases for the length of cycles. Moreover, this result 
shows that the relative importance of the number of sta-
ble states can be smaller than the combined importance 
of the other three sources (similar results are found for 
larger communities, see Appendix D), revealing the need 
to account for these other topological features to bet-
ter understand the role of priority effects in ecological 
communities.

FROM TH EORY TO 
TESTA BLE H Y POTH ESES

Our theoretical framework illustrates that priority ef-
fects can take a large set of possibilities, most of which 
are outside the realm of traditional theoretical predic-
tions. However, only empirical evidence can discern 
which assembly dynamics are possible and which are 
not, given the internal and external constraints acting 
on ecological communities (Medeiros et al., 2021). For 
example, Drake (1991) recorded all the necessary data to 
empirically map the assembly graph for three species of 
algae (see also Zimmermann et al. (2004)), while Warren 

F I G U R E  3   Regularities in the predictability of community assembly. Panel (A) shows the correlation (Pearson correlation = .72 with 
95% confidence interval [.68,.75]) between the predictability of community assembly on the temporary compositions (x axis) and on the 
final compositions (y axis). Recall that all assembly dynamics with predictability less than 1 correspond to priority effects. The colour map 
represents the number of data points. Panel (B) plots the predictability distribution of assembly dynamics as a function of invasion times. The 
predictability (x axis) corresponds to the predictability on the final composition. The distribution converges to a stationary distribution with 
increasing invasion times, that is, the multiple humps in the distributions would be fixed
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et al. (2003) empirically mapped the assembly graph for 
six  species of ciliates. In Figure 6, we analysed these 
two assembly graphs following our methodology. The 
predictions of our framework apply to these two com-
munities. First, they exhibit combinations of dynamical 
sources (topological features). Second, their predictabil-
ity increases with more invasions and then saturates to a 
fixed value. Third, their predictability can be explained 
from the generic importance (obtained from the trained 
neural network) of each dynamical source.

Unfortunately, we were unable to locate any other 
empirical studies that mapped assembly graphs. The 
dearth of empirical studies regarding these dynamics 
is not surprising given both the challenges involved in 
performing detailed experiments and also their under-
appreciated potential to answer central questions in 
community ecology (Fukami, 2015; Vellend, 2016). In 
this regard, we discuss some viable empirical designs for 
inferring assembly graphs in ecological communities. A 
direct approach to infer assembly graphs should include 

determining which species combinations can persist and 
then mapping how these combinations change after a 
new species is introduced. Although this direct approach 
may seem to require an exhaustive combinatorial design 
that is too labour-intensive to be feasible, the actual ex-
perimental workload can be much lower.

To explain the work required, we first focus on iden-
tifying the persistent species combinations (i.e. knowing 
the nodes in assembly graphs). While a community with 
S species has 2S ‒ 1 potential species combinations, it 
has been shown that only a small fraction of such com-
binations can persist (Angulo et al., 2021). Because of the 
sparsity of these persistent combinations, recently devel-
oped computational tools based on Bayesian inference 
(Maynard et al., 2020) and deep learning (Michel-Mata 
et al., 2021) can facilitate the inference of all persistent 
combinations using a small number of experiments in a 
community with S species. In brief, the method devel-
oped by Maynard et al. (2020) can infer the coexistence 
of all 2S ‒ 1  species combinations from a minimum of 

F I G U R E  4   Dynamical sources of priority effects. Panel (A) presents the three known dynamical sources of priority effects (Fukami, 
2015): alternative stable states, alternative transient paths and compositional cycles. We illustrate these sources with two plants (cartoons). 
Panels (B) and (C) illustrate how these dynamical sources can be represented as topological features of assembly graphs. Panel (B) 
shows an assembly graph for three hypothetical species. It has two alternative stable states ({A,C} and {C}; boxed in purple lines), one 
transient path for each stable state ({A} → {A,C} and {A} → {B} → {A,C}; boxed in green lines) and one compositional cycle of length 3 
({B} → {A,B} → {B,C} → {B}; boxed in purple lies). Panel (C) shows an assembly graph for another set of three hypothetical species (B). 
It also has two alternative stable states ({A} and {A,B,C}; boxed in purple lines), one transient path for each stable state ({A} → {A} and 
{C} → {A,C} → {A,B,C}; boxed in green lines) and one compositional cycle of length 3 ({B} → {A,B} → {B,C} → {B}; boxed in purple lies). 
However, the assembly graphs in Panels (B) and (C) have drastically different predictability. The cause of this difference is a missing fourth 
topological feature: escape from compositional cycle to stable states. In Panel (B), the system can escape from the compositional cycles to stable 
states (i.e. from {B} to {C}). In Panel (C), the system cannot escape
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S + 1 experiments based on measures of species’ abso-
lute abundances (1 experiment is to grow the full com-
munity of S species and the other S experiments are to 
grow leave-one-out communities comprising S ‒ 1 spe-
cies each). The goal of the method proposed by Michel-
Mata et al. (2021) is similar to Maynard et al. (2020), 
but a major difference is that Michel-Mata et al. (2021) 
only requires experimental measures of species’ relative 
abundances. Moreover, if we are only interested in bot-
tom-up assembly (i.e. starting with no species, and then 
adding species one by one), then persistent combinations 
that are unreachable via introduction of single species 
do not need to be mapped to construct the correspond-
ing assembly graph. In Appendix E, we analysed all as-
sembly dynamics for three species and found that more 
than 90% of assembly dynamics contained unreachable 

combinations (Figure S7), which would make the infer-
ence problem more feasible.

Focusing now on how species composition changes 
after the introduction of a new species (i.e. knowing the 
edges in assembly graphs), we suggest that the experi-
mental procedure can follow the standard procedures in 
assessing the effects of species introductions (Friedman 
et al., 2017; Grainger et al., 2019a; Meroz et al., 2021; 
Spaak & De Laender, 2020). In brief, one would introduce 
an invader species to the resident community at low abun-
dance (relative to the abundance of the resident species) 
and assess whether species composition changes. Recently 
developed computational tools can also facilitate the in-
ference (Deng et al., 2021; Pande et al., 2021). If we are 
only interested in bottom-up assembly, then many edges 
do not need to be mapped to construct the corresponding 

F I G U R E  5   Explaining the predictability of community assembly using topological features. This figure illustrates the out-of-sample 
explanation power of the four dynamical sources (topological features) in classifying the predictability on the final composition for 
three species. We used 80% of 41,979 assembly dynamics as the training set, while the remaining 20% was used as the test set (the classification). 
We used a neural network to achieve the maximum classification power (see Appendix C for details). Panel (A) shows the explanation power 
for the pool of assembly histories where each species invades only once. The x-axis represents the classified predictability (from the test set) 
using the four topological features, while the y-axis represents the observed predictability. The colour of the point indicates how many assembly 
graphs are represented by the point. The grey line is the 45-degree line, representing that the observed predictability equals the classified 
predictability. Panel (B) shows the explanation power for the pool of assembly histories where each species invades 15 times. Panel (C) shows 
how the explanatory power increases with invasion times and reaches a plateau fast. We indicate the explanatory power using the correlation 
between the observed and classified predictability (using different pools of potential assembly histories). Panel (D) shows the relative 
importance of each topological feature (dynamical source) to the explanation power
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assembly graph. In Appendix E, we analysed all assembly 
dynamics for three species and found that more than 80% 
of dynamics contained unreachable edges (Figure S8).

While alternative stable states have been the most 
studied consequence of priority effects, our framework 
indicates that the three other consequences of prior-
ity effects can have a stronger contribution to commu-
nity predictability, especially in small communities. 
This possibility can be tested by exploiting the strong 
constraints between dynamical sources and predict-
ability of priority effects. Specifically, to study these 
additional dynamical sources, we can use alternative 
computational approaches based on pairwise interac-
tion strengths inferred from experiments on two-species 
communities (Case, 2000). Such empirical data are in-
creasingly available spanning a wide range of study sys-
tems, such as annual plants (Godoy et al., 2014; Kraft 
et al., 2015), perennial plants (Song et al., 2021; Uricchio 
et al., 2019) and microbial systems (Kehe et al., 2020; 

Xiao et al., 2017). Thus, the empirical assembly graphs 
can be computationally mapped with empirically pa-
rameterised population dynamics models. However, it 
is worth remembering that a defining feature of prior-
ity effects is that interaction strengths likely depend on 
assembly (Fukami, 2015; Song et al., 2018), questioning 
the validity of inferences based on fixed interaction 
strengths. Because we know little about how variable 
these interaction strengths are (Park, 1954), it would be 
best to combine experimental and computational ap-
proaches. That is, the differences between the observed 
assembly graph in the experimental approach and the 
inferred graph from the computational approach may 
provide clues as to how variable interaction strengths 
are due to the assembly history. A caveat, though, is that 
these assembly dynamics may take many generations to 
emerge, thus computational models with fitted empiri-
cal interactions from only a few generations risk finding 
spurious dynamics that do not exist.

F I G U R E  6   Applying the theoretical framework to empirical data. Panel (A) shows the empirical assembly graph for the three algal species 
studied by Drake (1991). Species A, B and C are Scenedesmus quadricauda, Selenastrum bibrium and Ankistrodesmus falcatus,respectively. This 
assembly graph has three stable states, one transient path, one compositional cycle with length 2, from which the community can escape to a 
stable state. Panel (B) shows the empirical assembly graph for the four protist species studied by Warren et al. (2003). Species A, B, C and D are 
Blepharisma japonicum, Colpidium striatum, Paramecium caudatum and Tetrahymena pyriformis,respectively. This empirical assembly graph 
has two stable states, one transient path and no compositional cycles. Some lines are missing in Panel (B) because Warren et al. (2003) did 
not resolve those links (see table 2 in Warren et al., 2003). Panel (C) shows the application of our framework on these two empirical examples. 
Similar to Figure 5A–B, the x-axis represents the classified predictability (from the test set) using the four topological features, while the y-axis 
represents the observed predictability. The colour represents the number of repeated invasions (ranging from each species invades two times 
to 15 times). As the number of repeated invasions increases (the direction of the arrows), the observed predictability of the two communities 
increases and saturates to a fixed value. The grey line is the 45-degree line, representing that the observed predictability equals the classified 
predictability. The classified predictability is close to the observed predictability
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DISCUSSION

In the story ‘The Garden of Forking Paths,’ Jorge Luis 
Borges envisioned a labyrinth where divergence takes 
place in time rather than space, and where different paths 
sometimes lead to the same conclusion. Similarly, an as-
sembly history on an assembly graph can be thought of 
as a forking path since it also creates temporal trajecto-
ries of species composition that can lead to the same final 
state or different ones. By borrowing tools from graph 
theory, we have provided a non-parametric framework 
to scan the complete terrain of the labyrinth of priority 
effects. This framework has allowed us to classify pri-
ority effects, enumerate all possible assembly dynamics 
operating in a community, and quantify how predictable 
these dynamics would be if species arrival history was 
stochastic and unknown.

We have introduced the concept of topologically 
unique assembly graphs. This concept has allowed us 
to estimate the diversity of priority effects in multispe-
cies communities. We have estimated the exact diversity 
for two-species and three-species sets, and, as a first-
order approximation, for sets of more than three species 
(Figure 1D). We have revealed a much richer set of assem-
bly dynamics than traditional parametric approaches 
typically capture. The parametric approaches typically 
make two pivotal assumptions: history-independent in-
teraction strength and invasion analysis. In invasion 
analysis (Grainger et al., 2019b), the invasion criteria 
assume only two possibilities for a community with n 
species after invasion: Either it has n + 1 species (if the 
invasion was successful) or remains with n species (if the 
invasion was unsuccessful). However, evidence indicates 
that the set of potential assembly dynamics in ecological 
communities can be larger than those considered by in-
vasion analyses (Amor et al., 2020; Angulo et al., 2021; 
Barabás et al., 2018; Carlström et al., 2019; Deng et al., 
2021; Saavedra et al., 2017; Warren et al., 2003). Thus, 
our graph-based approach may provide a more realistic 
analysis of ecological dynamics than those approaches 
focusing on history-independent interaction strength 
and invasion analysis.

Following previous work (Fukami, 2015), we have 
shown that priority effects can differ in terms of their 
contribution to community predictability. We have fo-
cused this predictability on species composition given 
the uncertainty derived from the potential assembly his-
tories (Figure 2). We have demonstrated that two types 
of predictability can be investigated: on the final com-
position and on the temporary changes in composition 
(trajectories). We found that these two types are often 
correlated and yield similar results (Figure 3A). Thus, 
the two types of predictability have similar information, 
a phenomena that is analogous to ergodicity in statis-
tics (Strogatz, 2014). However, assembly dynamics is in 
general not ergodic (e.g. a stable state would render the 
dynamics non-ergodic) and more research is necessary.

Additionally, we have shown that the predictability 
of a community generally increases with repeated in-
vasions (Figure 3B). On a conceptual level, with more 
species invasions, deterministic ecological processes 
are more likely to overwhelm stochastic events. In the 
context of assembly graphs, the topological features of 
assembly graphs become apparent only when the com-
munity trajectories are long enough. Thus, laboratory 
experiments that only allow single invasions (e.g. Drake 
(1991); Lawler and Morin (1993); McGrady-Steed et al. 
(1997)), as opposed to multiple invasions (e.g. Robinson 
and Dickerson (1987)), may underestimate community 
predictability in nature, where recurrent migrations are 
common (Newton, 2010; Secor, 2015). The predictability 
of a community does not always increase with more inva-
sions at the same rate, but rather saturates at a constant 
value (Figure 3B). Thus, laboratory studies can approxi-
mate community predictability in nature with two com-
plimentary approaches. The first approach is to perform 
a few invasions. About 10 times is more than enough 
for up to five species (Appendix D), provided that the 
time interval between invasions is large enough to allow 
the communities to approach an equilibrium. The sec-
ond approach is to empirically map the assembly graph, 
which can fully determine the community predictability 
with an arbitrarily given pool of assembly history, al-
though it generally takes more experimental efforts.

Moreover, we have shown that this predictability can 
be used to classify priority effects. We have shown that 
four dynamical sources can be expressed as topological 
features within our graph-based approach to know the 
predictability of assembly dynamics (Figure 4). These 
sources are the number of alternative stable states, the 
number of alternative transient paths, the length of com-
positional cycles and the presence or absence of an es-
cape from compositional cycles to stable states. We have 
found that both the frequency and combination of the 
four topological features are good predictors of how 
many outcomes to expect (Figure 5). We have also found 
that the explanatory power of these four topological fea-
tures increases when species attempt to invade multiple 
times (Figure 5C). While the number of alternative sta-
ble states has received most of the attention (Abreu et al., 
2020; Amor et al., 2020; Schröder et al., 2005; Serván & 
Allesina, 2021), we show that the other three sources, es-
pecially in small communities, can contribute more to 
community predictability (Figure 5D). The trained neu-
ral network has predicted the observed predictability of 
two empirical assembly dynamics (Drake, 1991; Warren 
et al., 2003) well (Figure 6).

Our non-parametric graph-based approach is not 
intended to replace the parametric model-based ap-
proach. Parametric models are irreplaceable tools to 
understand priority effects, but non-parametric ap-
proaches are more flexible for accommodating differ-
ent theoretical tools (Arnoldi et al., 2019; Barabás et al., 
2018; Pande et al., 2020; Spaak & De Laender, 2020). 
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For example, while our approach uncovers three other 
types of priority effects for two species (Figure 1) that 
are not covered in classic Lotka–Volterra approaches 
(Fukami et al., 2016; Ke & Letten, 2018), all priority ef-
fects can occur in parametric models by integrating pro-
cesses where assembly history affects parameters. Thus, 
our non-parametric graph-based approach can serve as 
a roadmap for the parametric approach by motivating 
new modelling strategies of priority effects. A major 
limitation of our approach is that we have focused on 
species richness or species composition. The general 
concept of priority effects also covers the functional 
properties of ecological communities, such as energy 
flow and productivity (Dickie et al., 2012; Fukami & 
Morin, 2003; Tan et al., 2012). A possible solution is to 
establish a functional map from the nodes or the links 
in the assembly graph onto the functional property (e.g. 
productivity function in Rohr et al., 2016). The flexibil-
ity of our framework may serve as a common currency 
to characterise priority effects across study systems and 
theoretical models.
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