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 An additional factor that is not as well studied, but 
potentially important is the ecological feedbacks between 
organisms and their local environment, whereby organisms 
modify the environment and aff ect the survival and repro-
duction of individuals that subsequently utilize the altered 
environment. Well-documented examples of organism – 
environment feedbacks include those between plants and soil 
conditions (Bever et   al. 2012) and metabolic cross-feeding 
among microbial populations (Rozen et   al. 2009, Harcombe 
2010). Such feedbacks have long been a subject of ecologi-
cal research, and an increasing number of studies indicate 
that they can infl uence a range of ecological phenomena, 
including the maintenance of species diversity (Odling-Smee 
et   al. 2003, Bever et   al. 2010), the trajectory of community 
succession (Kardol et   al. 2006, Jiang and DeAngelis 2013), 
the generation of priority eff ects (Kardol et   al. 2007), the 
spread of invasive species (Levine et   al. 2006, Eppstein and 
Molofsky 2007), and the emergence of long-term transient 
community states (Fukami and Nakajima 2011, 2013). 
However, the role of organism – environment feedbacks is 
poorly understood in the context of habitat loss and 
fragmentation. 

 In this paper, we use a spatially explicit individual-based 
model of plant communities to ask the following three 
questions. First, how do organism – environment feedbacks 
infl uence the extent of diversity loss following habitat 
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 Habitat loss and fragmentation are among the most domi-
nant anthropogenic forces causing species extinction 
(Tilman et   al. 1994, Brooks et   al. 1999, Balmford et   al. 
2003, Sax and Gaines 2003, Vellend et   al. 2006, Kuussaari 
et   al. 2009, Krauss et   al. 2010). Th erefore, understanding the 
factors that determine whether species persist or go extinct 
following these disturbances is central to eff ective conserva-
tion and management of ecological communities. Building 
on MacArthur and Wilson’s (1967) theory of island bioge-
ography, early work identifi ed fragment size and isolation 
as primary factors, although their relevance to conserva-
tion has been debated (Simberloff  and Abele 1976, Wilcox 
and Murphy 1985, Soul é  and Simberloff  1986, Lasky and 
Keitt 2013). More recent work applying the metacommu-
nity concept (Leibold et   al. 2004, Holyoak et   al. 2005) has 
emphasized species ’  dispersal ability as a major factor. For 
example, dispersal-limited species may be more likely to go 
extinct as a result of fragmentation because of the lack of 
rescue eff ects among fragmented populations (Brown and 
Kodric-Brown 1977, Gonzalez et   al. 1998, Eriksson et   al. 
2014). Studies have also suggested that the spatial scale at 
which species disperse relative to the scale at which envi-
ronmental conditions vary mediates the eff ect of habitat 
fragmentation on species diversity (Palmer 1992, Chesson 
2000, Mouquet and Loreau 2003, Mouquet et   al. 2006, 
Lasky and Keitt 2013). 
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 Understanding the factors that determine the extent of biodiversity loss following habitat destruction is central to ecosys-
tem conservation and management. One potential factor is the ecological feedbacks between organisms and local environ-
mental conditions, which can infl uence how species aff ect one another and, consequently, whether or not species persist in 
fragmented landscapes. We investigated this possibility using a spatially explicit individual-based model of plant communi-
ties. In this model, plant species aff ected their own and other species ’  competitiveness by modifying local environmental 
conditions. Th ese plant – environment feedbacks were assumed to vary among species pairs in direction and strength to 
mimic complex feedbacks observed between plants and soil conditions in real communities. We found that complex feed-
backs reduced the extent of diversity loss, eff ectively buff ering species against habitat fragmentation. Our analysis suggested 
that this buff ering eff ect operated via two mechanisms. First, complex feedbacks decreased the likelihood of immediate 
extinction by making the spatial distribution of each species less clustered and consequently less likely to be eliminated 
entirely by fragmentation. Second, complex feedbacks decreased the likelihood of additional extinction by generating 
negative density dependence among surviving species, thereby keeping low-abundance species from going extinct due 
to demographic stochasticity and other forces. Th e buff ering eff ect was particularly strong when species dispersed locally 
and abiotic environmental conditions varied globally. Our fi ndings highlight the potential importance of organism – 
environment feedbacks in explaining species extinction by habitat destruction.   
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fragmentation? In addressing this question, we focus on 
what we refer to as complex feedbacks, in which species aff ect 
some of the other species positively and others negatively, 
with varying magnitudes, via environmental modifi cation. 
Such variation in the direction and strength of feedbacks 
has been observed in plant – soil feedbacks (Kulmatiski et   al. 
2008, van de Voorde et   al. 2011, van der Putten et   al. 2013). 
Second, how does the spatial scale of dispersal relative to the 
scale at which abiotic environmental conditions vary modu-
late the eff ect of complex feedbacks on diversity loss? We 
ask this question because previous work suggests that the 
eff ect of organism – environment feedbacks on species diver-
sity may depend on both dispersal range (Bever et   al. 1997, 
Eppstein and Molofsky 2007, Mack 2012) and environmen-
tal heterogeneity (Reynolds et   al. 1997, Brandt et   al. 2013). 
Th ird, how do the eff ects of complex feedbacks on diversity 
loss diff er in fragmented landscapes compared to landscapes 
with habitat loss, but no fragmentation? Th is question was 
motivated by the interest in quantifying the eff ects of habi-
tat fragmentation per se separate from those of habitat loss 
(Fahrig 2003, Ewers and Didham 2006).  

 Methods  

 Simulation model  

 Overview 
 We constructed a model following the methods developed 
by Mouquet et   al. (2002) and modifi ed by Fukami and 
Nakajima (2011, 2013) for simulating establishment, repro-
duction, and death of sessile organisms competing for local 
resources. In our model, individuals represented terrestrial 
plants, but the model should be applicable to other taxa char-
acterized by dispersing propagules (seeds or larvae) and sessile 
adults that modify local environmental conditions in ways 
that alter species competitiveness. In the model, seedlings 
competed for establishment at local sites, where competitive 
outcomes were determined by extrinsic environmental con-
ditions (e.g. light availability, soil nutrient availability, ambi-
ent temperature and moisture) and by species-specifi c eff ects 
of previously established plants on local environmental con-
ditions. Once established, all plants produced seeds at each 
time step. Seeds were dispersed across the landscape, but 
with a limited dispersal range (see Dispersal range below). 
Established individuals of all species each had a fecundity 
of 10 seeds each time step. Each time step, established indi-
viduals died with a fi xed probability of 0.4, vacating the site 
they occupied for establishment of a new individual during 
the following time step. If no seeds landed at a vacant site, it 
remained unoccupied until future establishment. Time steps 
in our model are equivalent to years, and our plant species 
approximate perennial life histories. All simulation runs were 
performed in MATLAB (Th e MathWorks 2012), and subse-
quently analyzed and visualized in R (R Core Team).   

 Landscapes and species 
 Each replicate landscape contained 1024 sites (Fig. 1a) in 
one-dimensional, circular array. Each site could support only 
one adult individual at a time. Th e abiotic environmental 
condition of each site  k  was defi ned by a single value,  H  k , 
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  Figure 1.     Schematic description of the simulation model. (a) 
Simulated landscape, in which green areas represent where organ-
isms are viable, and white represents the uninhabitable matrix after 
habitat fragmentation. Time moves from top to bottom. Each frag-
ment is of equal size. Inset: diagram of how positive and negative  S  ij  
values can change the competitiveness of species at vacant sites, by 
altering the environmental conditions (i.e. the shape of vacant site). 
Column 1 shows negative feedback between the  ‘ square ’  species 
and the  ‘ star ’  species; column 2 shows a positive feedback between 
the  ‘ square ’  species and the  ‘ circle ’  species and column 3 shows a 
negative intraspecifi c feedback between two individuals of the 
 ‘ square ’  species. (b) Spatial distribution of abiotic environment 
assumed in the simulation. Each panel shows the abiotic condition 
values for the entire landscape with a specifi c  σ  E  value (shown in 
upper left of each panel). (c) Gaussian dispersal probabilities for 
local (solid, black), intermediate (dashed, red), and global (dotted, 
green) dispersal. All functions shown are for a focal individual at 
site 600. Th e x-axes of (a – c) all are shared, representing sites.  
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drawn randomly from a uniform distribution  U (0.45, 0.55). 
To generate landscapes with varying abiotic spatial struc-
ture, we used wavelet transformations to adjust the degree of 
spatial autocorrelation in  H  k  values among sites (Keitt 
2000). Th e spatial scale of environmental variation was deter-
mined by  σ  E , following the wavelet model, i.e. Var( w;  s   E )  μ  
exp( – 2   s   E  2   f   2 ), where  w  represented wavelet coeffi  cients and 
 f  was the inverse scale of analysis (Keitt 2009, Lasky and 
Keitt 2013), using the  ‘ waveslim ’  package in R (Whitcher 
2012). Th is approach allowed us to keep the same set of 
 H  k  values among replicated landscapes, while modifying the 
spatial scale at which environmental conditions varied in the 
landscape. We varied the spatial scale of abiotic environmen-
tal variation ( σ  E ) over the range  σ  E     �    {1, 10, 100, 1000}. 
Lower  σ  E  values translate to low amounts of abiotic autocor-
relation among sites, whereas high  σ  E  values indicate high 
autocorrelation (Fig. 1b). 

 We initiated simulation runs by randomly occupying all 
1024 sites in the landscape with approximately equal propor-
tions of 100 species, whose trait values were each defi ned by 
a single value,  Z  i , randomly drawn from a uniform distribu-
tion  U (0,1) for each species  i . From this initial community, 
we ran the simulation for 1000 time steps to allow the 
landscape to approach equilibrium. At  t    �     1000, we dis-
turbed the landscape. At the time of this disturbance, 50% 
of the habitat was lost, and the remaining habitat was divided 
into four habitat fragments of equal size (Fig. 1a). Th e frag-
ments were evenly distributed in space, and the interspersed 
portions of the landscape were immediately converted to an 
uninhabitable matrix. After fragmentation, the simulation 
continued following the same rules of individual establish-
ment, reproduction, and death for 1000 additional time 
steps. In total, each simulation run lasted a total of 2000 
time steps.   

 Individual establishments 
 When two or more seeds simultaneously landed at a vacant 
site, the individual with the highest value of competitive-
ness,  C  ijk , established, and all other individuals that landed 
at the site were removed from the landscape. As in Fukami 
and Nakajima (2013),  C  ijk  of species  i  at site  k  was defi ned 
as  C  ijk     �    (1  –  | H  k   –   Z  i |) S  ij , where  j  indicates the species of the 
individual that vacated the site during the preceding time 
step by dying. Th e parenthetical term measures the relative 
fi t of the species to the local environment, and the  S  ij  term 
modulates this fi t, as determined by the previous occupant 
of the site, as detailed in the next section. Once established, a 
plant persisted until its stochastic death, regardless of whether 
more competitive seeds arrived at its site. As all species had 
identical fecundities and mortality rates, when species had 
the same  C  ijk  values, they were ecologically neutral.   

 Organism – environment feedbacks 
 Organism – environment feedbacks occurred when a 
species that previously occupied a local site altered the 
abiotic environment for subsequent species. We incorpo-
rated organism – environment interactions into our model 
primarily with plant – soil feedbacks in mind, as in Fukami 
and Nakajima (2011, 2013). Th e strength and direction of 
feedbacks between a pair of species was measured by the 
value of  S  ij , which was assumed constant for a given pair of 

species  i  and  j . When  S  ij     �    1, there was positive feedback, in 
which the previous occupation of a site by species  j  increased 
the competitiveness of species  i  at that site during the next 
time step. When  S  ij     �    1, there was negative feedback. When 
 S  ij     �    1, there was no feedback. We used what we refer to as 
the  ‘ complex feedback ’  regime, where  S  ij  values were drawn 
randomly from a uniform distribution  U (0.5,1.5) for inter-
specifi c (i.e.  i   ≠   j ) feedbacks, and from  U (0.5,1) for intraspe-
cifi c (i.e.  i     �     j ) feedbacks. Th is assignment of  S  ij  values results 
in complex (i.e. varying in both sign and magnitude among 
species pairs) heterospecifi c feedbacks ( i   ≠   j ) and negative 
conspecifi c feedbacks ( i     �     j ), consistent with some empirical 
observations (Kulmatiski et   al. 2008, van de Voorde et   al. 
2011, van der Putten et   al. 2013). For each pair of species, 
the two  S  ij  values were assigned independently. We compared 
results from simulations with this complex feedback regime 
to simulations with no feedbacks (i.e. all  S  ij     �    1, for both 
 i     �     j  and  i   ≠   j ) in order to assess the eff ect of complex feed-
backs on diversity loss (see Data analysis below). A schematic 
description of how positive and negative feedbacks alter 
species competitiveness is inset in Fig. 1a.   

 Dispersal range 
 Dispersal distances of seeds from each individual were drawn 
from a Gaussian distribution with a mean at the location of 
the focal individual and a variance,  σ  D , which determined 
how far seeds dispersed. Th e dispersal distance of each 
seed from an individual was drawn independently. We used 
 σ  D      �     {25, 100, 250}, which we refer to as  ‘ local ’ ,  ‘ interme-
diate ’ , and  ‘ global ’  dispersal (Fig. 1c). After fragmentation, 
seeds that landed in the uninhabitable matrix perished. 
Depending on the spatial scale of dispersal, habitat frag-
ments may act as local species pools for other fragments 
in the landscape following fragmentation, with global dis-
persal treatments having the highest likelihood for among-
fragment dispersal.   

 Treatments and replication 
 For all 24 parameter combinations (    �    4 abiotic spatial struc-
tures,  σ  E     �    3 dispersal ranges,  σ  D     �    2 feedback regimes, i.e. 
with or without complex feedbacks), we ran 50 replicates, 
totaling 1200 simulations. 

 To examine if the results of the above simulations are 
robust to assumptions regarding the distribution of  H  k  
and  Z  i  values, we also ran supplementary simulations 
using diff erent ranges of abiotic environmental conditions 
( H  k  values) and species trait values ( Z  i  values) that repre-
sented greater diff erences in competitiveness among spe-
cies or more competitively neutral conditions than were 
assumed in our primary simulation. Specifi cally, in addi-
tion to our primary simulation where  H  k     �    {0.45 – 0.55} 
and  Z  i     �    {0 – 1}, we analyzed the following fi ve parameter 
combinations: 1)  H  k     �    {0.45 – 0.55} and  Z  i     �    {0.45 – 0.55}, 
simulating reduced niche diff erentiation; 2)  H  k     �    {0.45 –
 0.55} and all  Z  i     �    0.5, simulating competitive neutral-
ity; 3)  H  k     �    {0 – 1} and  Z  i     �    {0 – 1}, simulating large niche 
diff erentiation on a highly heterogeneous landscape; 4) 
 H  k     �    {0 – 1} and  Z  i     �    {0.45 – 0.55}, simulating relatively 
small niche diff erentiation on a highly heterogeneous land-
scape; and 5)  H  k     �    {0 – 1} and all  Z  i     �    0.5, simulating com-
petitive neutrality on a highly heterogeneous landscape.     
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Kolmogorov – Smirnov test, which quantifi ed the diff er-
ence between the cumulative distribution functions of the 
number of conspecifi c and heterospecifi c pairs for given 
distances along the landscape (Fig. 3b). Larger D values 
correspond to more clustering of conspecifi cs, where spe-
cies occur in more local aggregates and are thus more 
prone to extinction by fragmentation (Fig. 3b). Smaller 
D values correspond to a greater chance of species being 
close to heterospecifi cs.   

 Probability of eventual extinction 
 Th e clustering of conspecifi c individuals along the landscape 
can explain the extent of the immediate loss of species from 
habitat fragmentation, but it may not fully explain patterns 
of subsequent species extinction. Th erefore, in our second 
additional analysis, we sought to determine whether com-
plex feedbacks increased the likelihood of species persistence 
after the landscape was fragmented. We hypothesized that 
species with low abundance after fragmentation would be 
generally more likely to go extinct due to demographic sto-
chasticity (Shaff er 1981, Lande et   al. 2003), but that com-
plex feedbacks would alleviate the eff ect of low abundance 
on the likelihood of species going extinct. To evaluate this 
hypothesis, for each parameter combination, we pooled 
abundance and extinction data from all 50 replicates of each 
treatment group. We then performed logistic regressions 
for each treatment combination predicting the probability 
of eventual extinction given post-fragmentation population 
size. For a given post-fragmentation population size, we used 
the diff erence between the two fi tted curves (i.e. the curve 
for replicates with complex feedbacks and the curve for 
those with no feedbacks) to quantify the eff ect of feedbacks 

 Data analysis  

 Extent of diversity loss 
 To quantify the extent of species diversity loss caused by 
habitat fragmentation, we calculated the diff erence between 
the number of species present in the landscape immediately 
before fragmentation and the total number of species present 
at the end of the simulation, in both the absolute number 
of species lost and the proportion of the pre-fragmentation 
diversity lost. Th e latter implicitly captures the number of 
species maintained in the community. To account for ran-
dom variation, the pre- and post-fragmentation numbers 
of species were computed as time-averaged species richness 
values over 50 time steps (i.e.  t     �    950 – 1000 and  t     �    1950 –
 2000), respectively. Over both of these time ranges, the com-
munities appeared to have reached an equilibrium number 
of species (Fig. 2).  

 Spatial clustering of conspecifi c individuals 
 In order to understand the mechanisms by which com-
plex feedbacks aff ected the extent of diversity loss, we 
performed four additional analyses. First, since whether 
or not species go extinct due to fragmentation depends in 
part on how broadly they are spatially distributed across 
the landscape prior to fragmentation, we quantifi ed the 
spatial scale over which conspecifi c individuals were clus-
tered. To this end, for each simulation, we randomly drew 
1000 pairs of individuals immediately before fragmenta-
tion occurred, and generated histograms of the number 
of conspecifi c and heterospecifi c pairs with respect to dis-
tance between the pair of individuals on the landscape 
(Fig. 3a). We then calculated the D statistic from the 
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  Figure 2.     Representative example of temporal changes in species abundances. Each line represents a species. Abundances are shown on a 
logarithmic scale for a replicate simulation run with complex feedbacks, intermediate dispersal range, and  σ  E     �    10. Th e large panel shows 
abundances before fragmentation, in which species composition changed little 1000 times steps after the simulation started, with fi ve spe-
cies eventually coexisting in this example. Th e four small panels show post-fragmentation abundances within the four fragments, with 
diff erent sets of species going extinct in diff erent fragments as a result of fragmentation. Colors indicating diff erent species are consistent 
with those in the large panel.  
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  Figure 3.     Complex organism – environment feedbacks reduce clustering of conspecifi c individuals. (a) Two contrasting examples, in the 
absence (upper panel) and presence (lower panel) of feedbacks, of the histograms summarizing 1000 randomly chosen pairs of individuals, 
separated as conspecifi c (blue) or heterospecifi c (red), as a function of physical distance on the landscape. In both panels, dispersal is local 
and  σ  E     �    1000. In the upper example, conspecifi c individuals are more spatially clustered. By contrast, in the lower example, conspecifi c 
individuals are distributed more evenly across the landscape. (b) Cumulative distribution functions of the number of random conspecifi c 
and heterospecifi c pairs ( ‘ pair-type ’ ) with physical distance for the two examples shown in (a). Th e distance between the two curves corre-
lates with, and can therefore be summarized by, the Kolmogorov – Smirnov statistic (D statistic), with larger D values indicating more 
clustering of conspecifi c individuals. (c) Mean D statistic values for diff erent dispersal ranges and  σ  E  values. Th e D statistic is smaller in the 
presence of feedbacks (bottom) than in their absence (top), indicating that complex feedbacks reduce clustering of conspecifi cs. Th is eff ect 
is particularly strong when  σ  E  is large. Error bars show standard errors.  

on the probability of eventual extinction. In addition, to 
investigate the eff ect of the complex feedback regime (i.e. 
negative intraspecifi c feedback and both negative and posi-
tive interspecifi c feedbacks) further, we compared results 
for replicates with complex feedbacks to those for replicates 
with  ‘ mixed feedbacks ’ , where both intra- and interspecifi c 
feedbacks could vary in both negative and positive direc-
tions. Th is comparison allowed us to isolate the eff ects of the 
strictly negative intraspecifi c feedbacks on the probability of 
eventual extinction.   

 Feedback strength values for surviving and extinct species 
 In our third additional analysis, we measured how the distri-
butions of intraspecifi c ( S  ij  where  i     �     j ) and interspecifi c ( S  ij  
where  i   ≠   j ) feedback strength values diff ered among surviv-
ing species and those that went extinct. We pooled data from 
all replicates for each treatment and generated separate his-
tograms of intraspecifi c and interspecifi c feedback strength 
values separately for surviving and extinct species. Similar 
to the analysis of spatial clustering above, we calculated the 
D statistic from the Kolmogorov – Smirnov to quantify the 
diff erences between surviving and extinct species in the dis-
tribution of feedback strength values.   

 Effect of fragmentation per se vs effect of habitat loss 
 In this study, we were interested in the eff ect of habitat frag-
mentation on extinction, but the eff ect of habitat fragmen-
tation can be confounded with that of habitat loss (Fahrig 

2003, 2013, Ewers and Didham 2006, Didham et   al. 2012). 
Th us, in our fourth additional analysis, we sought to evalu-
ate the eff ect of habitat fragmentation per se by using results 
of additional simulation runs in which landscapes lost an 
equivalent amount of habitat (50%), but in a single, con-
tiguous area (i.e. without fragmentation). In these simula-
tion runs, 50% of the habitat was lost, but the remaining 
habitat was a single contiguous patch, rather than 4 separate 
fragments distributed across the landscape.     

 Results  

 Extent of diversity loss 

 In all simulation runs, most of the initial 100 species quickly 
went extinct, with a mean of 4.37 species (standard devia-
tion    �    1.75 species) coexisting before the fragmentation 
event. Following fragmentation, landscapes with complex 
organism – environment feedbacks tended to suff er less extinc-
tion than those without feedbacks, a pattern we refer to as the 
buff ering eff ect (p    �    0.002; Fig. 4a; see also Supplementary 
material Appendix 1, Fig. A1). Th e scale of dispersal ( σ  D ) 
and abiotic variation ( σ  E ) jointly aff ected the magnitude 
of the buff ering eff ect, particularly when measured by the 
absolute diff erence in diversity loss (Fig. 4b). Th e scale of 
abiotic variation ( σ  E ) had little eff ect on the strength of the 
buff ering eff ect when dispersal occurred globally ( σ  D     �    250, 
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  Figure 4.     Complex organism – environment feedbacks buff er 
species diversity against habitat fragmentation. (a) Averaged 
across all treatment combinations, more species went extinct 
due to fragmentation in the absence of feedbacks than in their 
presence (t-test, p    �    0.001). (b, c) Th e buff ering eff ect (as 
measured by the number of species lost due to fragmentation 
when feedbacks are present vs. when they are absent) was always 
signifi cant in both the absolute number of species (b) and the 
proportion of species (c), but the strength of the buff ering eff ect 
depended on dispersal distance and abiotic spatial structure. 
Absolute diff erence in diversity lost was calculated as diversity 
without feedbacks minus diversity with feedbacks. Proportional 
diff erence in diversity lost was measured as the proportion of 
diversity lost without feedbacks minus the proportion of 
diversity lost with feedbacks. Error bars show standard errors. 
Values on y-axis are on a linear (non-logarithmic) scale.  

mean    �    0.95 species, green triangles in Fig. 4b). By contrast, 
the buff ering eff ect was strongest under higher values of  σ  E  
and when dispersal was more local ( σ  D     �    100, mean    �    2.39 
species, red squares;  σ  D     �    25, mean    �    4.25 species, black 
circles, respectively in Fig. 4b). 

 Th e additional simulations suggested that our qualita-
tive result of complex feedbacks buff ering communities 
against species loss following habitat fragmentation was 
robust (Supplementary material Appendix 1). However, a 
few diff erences were observed. For example, in simulations 
where competitive diff erences among species were widened, 
the magnitude of the buff ering eff ect was relatively high 
(Supplementary material Appendix 1, Fig. A2 – A3) because 
a greater number of species were able to coexist prior to 
fragmentation in these scenarios (Supplementary material 
Appendix 1, Fig. A4). In simulations representing ecological 
neutrality, the buff ering eff ect was strongest when dispersal 
was local. In neutral simulations, there was little eff ect of the 
scale of abiotic heterogeneity on the strength of the buff ering 
eff ect (Supplementary material Appendix 1, Fig. A5 – A6). 
(In Supplementary material Appendix 2, Fig. A7 – A9, we 
discuss results from the parameter combination that did not 
qualitatively match our main fi ndings.)   

 Spatial clustering of conspecifi c individuals 

 In the absence of feedbacks, the likelihood that a random 
pair of individuals were conspecifi cs was higher when they 
located closer to each other on the landscape, particularly 
under large  σ  E  values (Fig. 3c, upper panel). By contrast, 
in simulations with complex feedbacks, the probability 
that a pair of individuals were conspecifi cs depended only 
modestly on their physical proximity (Fig. 3c, lower panel). 
Across dispersal treatments, the mean D value was higher 
for simulations without feedbacks (mean D    �    0.07) than 
for those with complex feedbacks (mean D    �    0.04; t-test, 
p    �    0.02), indicating that complex feedbacks reduced clus-
tering of species across the landscape, eff ectively making it 
more likely that any species would be neighboring a het-
erospecifi c individual. In other words, for a given species, 
conspecifi c individuals tended to be distributed more evenly 
across the landscape in the presence of complex feedbacks 
than in their absence.   

 Probability of eventual extinction 

 Although extinction rate approached to zero over time in all 
treatments, it was consistently higher in communities with-
out complex feedbacks (Supplementary material Appendix 
1, Fig. A12, black curves). Complex feedbacks tended to 
decrease the probability of eventual extinction, particu-
larly under local ( σ  D     �    25; mean probability of extinction 
decreased by 17%, across all scales of abiotic variation) and 
intermediate dispersal range ( σ  D     �    100; mean probability of 
extinction decreased by 9%, across all scales of abiotic varia-
tion) and under larger-scale abiotic variation ( σ  E     �    100 and 
1000) (Fig. 5; also see Supplementary material Appendix 1, 
Fig. A11 for representative examples of individual logistic 
regressions). 
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  Figure 5.     Probability of extinction as a function of abundance immediately after fragmentation. (a, b) Logistic fi ts of the probability of 
eventual extinction (checked 1000 time steps after fragmentation) as a function of species abundance immediately after fragmentation 
without feedbacks (a) and with feedbacks (b). (c) Feedbacks generally decrease the probability of extinction for a given abundance. Positive 
values indicate that incorporating feedbacks into the model reduced the probability of eventual extinction for a given abundance. Diff erent 
line dashings and colors represent varying dispersal ranges ( σ  E     �    {25, 100, 250}). Columns of panels show diff erent values abiotic spatial 
structure ( σ  E     �    {1, 10, 100, 1000}).  

 Th e infl uence of feedbacks reducing the probability of 
extinction was greater when intraspecifi c feedbacks were 
strictly negative (Supplementary material Appendix 1, 
Fig. A13). Across all treatments, the complex feedback 
regime resulted in a 9.3% decrease in the probability of 
extinction, compared to a 2.3% decrease with the mixed 
feedback regime.   

 Feedback values for surviving and extinct species 

 Across all parameter combinations, interspecifi c feed-
backs became more positive for surviving species (mean 
change    �    0.186, standard deviation    �    0.003), while intraspe-
cifi c feedbacks were not signifi cantly diff erent between sur-
viving and extinct species (mean change    �    0.004, standard 
deviation    �    0.01) (Supplementary material Appendix 1, 
Fig. A10a – b). Th e mean value was always higher for surviv-
ing species than for extinct species (Kolmogorov – Smirnov 
tests, p    �    0.001; Supplementary material Appendix 1, 
Fig. A10c – d). By contrast, for intraspecifi c feedback values, 
these tests did not yield signifi cant results (Kolmogorov –

 Smirnov tests, p    �    0.05). Under the complex feedback 
regime, the species that remained at the time of habitat 
fragmentation had interspecifi c feedback ( S  ij ,  i  ≠    j ) values 
greater than 1, indicating that the species surviving prior to 
fragmentation were often mutually benefi ting one another.   

 Effect of fragmentation per se vs effect of 
habitat loss 

 Overall, fragmented habitats lost slightly more species than 
non-fragmented landscapes, but feedbacks reduced the extent 
of diversity loss in both cases (Fig. 6a; also see Supplementary 
material Appendix 1, Fig. A14). In the absence of complex 
feedbacks, the diff erence in diversity loss between frag-
mented and non-fragmented landscapes was largest in simu-
lations with local dispersal ( σ  D      �     25), and increased in more 
highly structured abiotic environments (mean    �    2.56 spe-
cies when  σ  E      �     100 and mean 3.84 species when  σ  E      �     1000) 
(Fig. 6b). For each scale of abiotic variation, as dispersal range 
was increased, the diff erence in diversity loss was reduced 
( σ  D      �     25, mean diff erence    �    2.07 species;  σ  D      �     100, mean 
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 Discussion 

 Taken together, our results indicate that complex feed-
backs between organisms and their abiotic environment can 
buff er species against extinction following habitat loss and 
fragmentation (Fig. 4). Our results also suggest that the 
spatial scale of dispersal relative to the scale over which 
abiotic environmental conditions vary can aff ect the mag-
nitude of this buff ering eff ect, and that the buff ering eff ect 
is particularly strong when dispersal occurs locally and abi-
otic environmental conditions vary over a large spatial scale. 
Qualitatively similar results were obtained across a range of 
parameter values, representing ecological neutrality or large 
competitive diff erences among species (Supplementary mate-
rial Appendix 1, Fig. A2 – A3, A4 – A5; also see Supplementary 
material Appendix 2). Th e buff ering eff ect was observed even 
when the loss of habitat was not in a fragmented pattern (i.e. 
the area of habitat loss was contiguous). However, our results 
also indicated that complex feedbacks allowed some addi-
tional species to persist that would be lost if the landscape 
was fragmented, particularly when species could disperse 
only locally (Fig. 6b, c). 

 In the absence of complex feedbacks, our results are 
broadly consistent with the large body of previous research 
on the eff ects of dispersal, disturbance, and spatial environ-
mental heterogeneity on community assembly (Drake et   al. 
1993, Mouquet and Loreau 2003, Jiang and Patel 2008, 
Fukami 2010, Gravel et   al. 2010, Lasky and Keitt 2013). 
What is novel about this work is the focus on the role of 
organism – environment feedbacks in directly modifying 
spatial environmental heterogeneity and, in turn, indirectly 
altering niche diff erentiation and regional species coex-
istence. Some previous work on community assembly has 
considered biotically modifi ed environmental heterogene-
ity (Mouquet and Loreau 2002, Shurin et   al. 2004), but to 
our knowledge, our work is the fi rst to consider it explicitly 
within the context of habitat loss and fragmentation, which 
led to the discovery of the buff ering eff ect. Below, we fi rst 
discuss likely mechanisms underlying the buff ering eff ect 
and then identify limitations of this work to suggest future 
research directions.  

 Mechanisms of the buffering effect 

 Our analyses of the patterns of clustering of conspecifi c 
individuals and probabilities of eventual extinction after 
fragmentation suggest that the buff ering eff ect operates via 
two mechanisms. First, complex feedbacks decreased the 
likelihood of immediate species extinction at the time of 
the fragmentation event by reducing the spatial clustering 
of conspecifi c individuals across the landscape, thus making 
species less prone to extinction when the landscape is frag-
mented (Fig. 3c). Th is eff ect was particularly strong when 
species dispersed locally because conspecifi cs then tended 
to be locally clustered unless there were complex feedbacks. 
Inclusion of complex feedbacks caused species to be distrib-
uted more evenly across the landscape even when dispersal 
was limited. Similarly, the buff ering eff ect was particularly 
strong when local abiotic conditions varied over a large 
spatial scale. Th is is because species distributions closely 
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  Figure 6.     Diff erence in diversity loss between fragmented and 
non-fragmented landscapes. (a) Averaged across all treatment 
combinations, simulations on fragmented landscapes lost slightly 
more species than non-fragmented landscapes. Complex organ-
ism – environment feedbacks reduced diversity loss in both land-
scape types. (b, c) Th e diff erence in the number of species lost 
between fragmented and non-fragmented landscapes, without 
feedbacks (b) and with feedbacks (c). Th e diff erence depended on 
the range of dispersal and the scale of abiotic heterogeneity. Positive 
values indicate that the fragmented landscapes lost more species. 
All error bars represent standard errors.  

diff erence    �    0.62 species), and even reversed with global 
dispersal ( σ  D      �     250, mean diff erence    �     – 0.22 species). 
With complex feedbacks, this change in sign occurred at 
the intermediate dispersal range ( σ  D      �     100) (Fig. 6c). Th ese 
reversals imply that fragmented landscapes retained slightly 
more species than contiguous landscapes when species were 
dispersed globally.    
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mirrored abiotic conditions across the landscape in the 
absence of complex feedbacks, resulting in immediate extinc-
tion of species whose local niche range was entirely removed 
when the landscape was fragmented. 

 Th e second mechanism underlying the buff ering eff ect 
is that the complex feedbacks increase the probability of 
species persistence following fragmentation. Without com-
plex feedbacks, species that survived the fragmentation event 
with relatively low abundances were at a high risk of eventual 
extinction (Fig. 5a), perhaps due to demographic stochasticity 
(Shaff er 1981, Lande et   al. 2003). Complex feedbacks seem 
to have mitigated some of these instances of eventual extinc-
tion (Fig. 5b). Th e positive shift in interspecifi c feedback 
values and the lack of change in intraspecifi c feedback values 
in surviving species (Supplementary material Appendix 1, 
Fig. A10) underlies the negative density dependence mecha-
nism of the buff ering eff ect, reducing the extinction risk for 
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might be plausible in real landscapes. For example, many 
real landscapes contain more individuals than we assumed, 
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