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A COMMENT ON:
“On the Informativeness of Descriptive Statistics for Structural Estimates”
by Isaiah Andrews, Matthew Gentzkow, and Jesse M. Shapiro

STEPHANE BONHOMME
Department of Economics, University of Chicago

THIS IS AN EXCELLENT PAPER on an important topic. In a first contribution (Andrews,
Gentzkow, and Shapiro (2017)), the authors developed measures of sensitivity of esti-
mated parameters to estimation moments. In this new paper, they propose a measure of
informativeness. These two papers provide new tools to facilitate the interpretation of
empirical research.

Suppose the researcher has estimated a structural model and produced an estimate ¢
of a target parameter c. In addition, suppose she has computed a vector y of descriptive
statistics, such as some moments of the data. The informativeness measure A that the
authors propose to report is equal to the share of the asymptotic variance of ¢ that is
explained by y. In large samples, this quantity can be estimated using least squares, by
regressing the influence function of ¢ on that of 7, and computing the R* coefficient
in the regression. The formula is a simple function of the elements of the asymptotic
variance matrix of (¢, 7). To provide a framework to interpret A, the authors allow for
the possibility that the researcher’s model is misspecified. They rely on a local asymptotic
approach where the degree of misspecification is proportional to sampling variability.
Their examples nicely illustrate how the values that A take relate to the empirical context.

In my discussion, I will focus on the interpretation of A. I will make two points, using
simple examples.

Misspecification. Let me start with a simple illustrative example, which will allow me
to discuss the role of misspecification in the analysis of informativeness. Suppose the re-
searcher is interested in estimating the cumulative distribution function Pr(Y < a) of a
scalar random variable Y at a point a. She wishes to measure the informativeness of two
descriptive statistics: the sample mean 7 of Y and its sample variance . To answer this
question using the approach of the paper, one needs to specify a base model, and an esti-
mator ¢ of the quantity of interest that is asymptotically unbiased under that model. Let
me choose a particular base model, Y ~ N (m, o?). In addition, let me choose a particular
estimator, ¢ = d)(%), for ® the standard normal c.d.f. All the calculations in this exam-
ple will rely on this base model and estimator. Let me consider as descriptive statistics
the vector y = (m, @*)". In this example, it is easy to see that A =1 at all points a, since
C is a non-stochastic function of y. I plot A as a function of @ in the upper-left graph in
Figure 1.

To understand why A = 1 in this case, it is useful to recall that /1 — A is the ratio of two
biases. The unrestricted bias is the supremum, in a local neighborhood of the normal base
model, of the difference |E(¢) — ¢|, where ¢ is the quantity of interest. Let me assume,
and this is an important assumption that I will discuss below, that the quantity of interest
is ¢c(m, 0?) = ®(“2), where m and o are the mean and variance of Y under the base

o

Stéphane Bonhomme: sbonhomme@uchicago.edu
I thank Martin Weidner and the authors for comments.

© 2020 The Econometric Society https://doi.org/10.3982/ECTA18789


https://www.econometricsociety.org/
mailto:sbonhomme@uchicago.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA18789

2260 STEPHANE BONHOMME

model. In a Kullback-Leibler (KL) neighborhood of radius u, the unrestricted bias can
then be approximated for small u by*

o/ Var[he(Y)], 1)

where h:(Y) denotes the influence function of ¢, and the variance is computed under the
base model. In turn, the restricted bias is equal to the worst-case bias of ¢ in a smaller
neighborhood that consists of distributions that are local to the base model, and in addi-
tion are such that ¥ is asymptotically unbiased for (m, o*)'. That is, under any distribution
in this neighborhood, the sample mean and variance are asymptotically unbiased for these
parameters. Hence, in the restricted neighborhood, we have ¢ = ® (<) and y = (m, o?),
similarly as under the base model. The restricted bias is

wy/ Var[res(ha(Y), h3(Y))], ()

where /5(Y) denotes the influence function of Y, and res(hz(Y), h5(Y)) is the least-
squares residual in the population regression of 4z(Y) on s5(Y) and a constant. In the
example, /:(Y) is a linear combination of the two components of /45(Y’). As a result, the
restricted bias is equal to zero,so /1 —A=0and A =1.

So far, I have defined the quantity of interest as c¢(m, %) = ®(=7). Yet, this may not
be the most natural target quantity if one worries that Y is not normally distributed.
Alternatively, consider the quantity c(7) = E,[1{Y < a}], where 7 denotes the density
of Y. This is a functional of the density of the data, and I am now going to assume that
the researcher and the reader are interested in this quantity. When Y is not normally
distributed, [c(7) — ® ()| will be non-zero in general. As a result, even when m and o?
are known, c(7r) is subject to model misspecification. Let me now describe a measure of
informativeness that is motivated by a framework where c(7r) is the quantity of interest.
To do so, I follow the approach of Bonhomme and Weidner (2019), and I detail the bias
calculations in the Supplemental Material (Bonhomme (2020)). In a KL neighborhood of
the normal base model of radius u, the worst-case bias of ¢ as an estimate of c(r) is

py/ Var[he(Y) — 1{Y < a)]. 3)

Note that, in contrast with (1), in (3) the bias formula depends on the indicator function
1{Y < a}, whose presence arises due to the change in the quantity of interest. For the
restricted bias, I compute the worst-case bias of ¢ as an estimate of c(7), subject to the
restriction that 7y is asymptotically unbiased for (m, o?)'. I obtain

M\/Var[res(hg(Y) —1{Y <a}, hz(Y))]. 4)
I then define the following modified measure of informativeness:

_ Var[res(he(Y) = 1{Y < a}, h5(Y))]

Amod =1
Var[h:(Y) — 1{Y < a}]

: ®)

n this discussion, I focus on (twice) KL, and I abstract from smaller-order terms in the bias expressions.
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FIGURE 1.—Informativeness of descriptive statistics for a probability estimate. Notes: Informativeness of
various descriptive statistics y for ¢ = ®( ";,'ﬁ) in the first example. Graph (a) shows the original measure A,
using mean and variance as 3. Graphs (b) to (d) show the modified measure A™¢ when taking 7 to be mean
and variance, the first four moments, and mean, variance, and three quantiles, respectively. The evaluation

point a is reported on the x-axis.

where +/1 — Amd quantifies the reduction in the bias of ¢ as an estimate of ¢(7), when
one imposes that y is asymptotically unbiased for (m, o).

To illustrate, I compute A™ for different values of a, using parameter values m = 0 and
o? = 1. For computation, I rely on simulations (see the Supplemental Material). In this
simple nonlinear example, I obtain very different results when comparing A™ to A. While
the latter is equal to 1, the former is equal to zero irrespective of a; see the upper-right
graph in Figure 1. It is intuitive that A™ is low in this case. Indeed, c(7) = E,[1{Y < a}]
does not directly depend on m or o2. In addition, m and o? are estimated under the
normal base model. As a result, in this example, knowing that 7 and & estimate those
parameters correctly has no effect on the bias of ¢ as an estimate of c(r). In the Supple-
mental Material, I provide a formal argument, which does not rely on normality, to show
that Am* = (. This contrasts with the previous setup, where knowing m and ¢ provided
all the information needed to know c¢(m, ¢?). I then compute A™¢ for other vectors of
descriptive statistics. In the lower-left graph in Figure 1, I show the results when adding
third- and fourth-order sample moments of Y to . The results show that A™9 is not zero
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in this case. This is intuitive since knowing that 7 has zero skewness, say, restricts the type
of deviations from the normal distribution that are taken into account in the bias calcula-
tion. In the lower-right graph in Figure 1, I show the results when using mean, variance,
and three quantiles of Y (25%, 50%, and 75%) in y. The results show that A™¢ =1 at
the three quantiles, and that A™? < 1 outside. By contrast, when including other descrip-
tive statistics in 7 in addition to mean and variance, the original informativeness measure
remains A = 1.

In this simple example, I have attempted to measure informativeness in a setting where
the researcher is interested in a particular quantity c(7r) that may be misspecified even
when (m, o?) are known. Of course, the fact that A = 1 in the example is an artefact
of the choice of base model and estimator, and different choices would give different A
values. Yet the example shows that, for the same base model and estimator, the modified
measure A™¢ may differ substantially from the one proposed in the paper.

Structure. 1 now want to focus on another example, which is still simple but is closer in
spirit to the structural applications that the authors use as motivation. This will allow me
to discuss the role of neighborhoods and model assumptions in the construction of the
informativeness measure. Consider the following binary choice model:

YZI{X,T]ZS}, XG{Xl,...,xK}.

This model is related to the regression example in the paper, with the difference that
here the outcome variable is binary. The researcher’s goal is to estimate the probability of
Y = 1 occurring if X were exogenously set to some value X. She postulates the base model
(] X) ~N(0, 1), and uses Probit for estimation.? As in the first example, the definition
of informativeness depends on what one considers to be the quantity of interest. For
example, one could focus on ¢(n) = ®(X'n): however, this would ignore that, even if 7
were known, the misspecification of the normal base model might still affect the quantity
of interest.

Consider instead the alternative quantity c¢(n, 7) = E,[1{X'n > &}], where 7 denotes
the density of unobservables ¢. This is a functional of the parameter and the density of
unobservables, and I will assume the researcher and the reader are interested in it. Note
that here c(m, ) depends on 7. It is natural to expect that when c(n, 7) is the quantity
of interest, 7 will be informative about ¢, albeit not perfectly. More generally, in a struc-
tural model, c(n, 7v) may depend on both structural parameters n and distributions 7 of
unobservables. In the present case, computing worst-case biases in neighborhoods of den-
sities 7r around the base density gives the following value for the modified informativeness
measure (see the Supplemental Material):

Var[res(ho(Y, X) — 1{¥'n = &}, h5(Y, X))]

Amod =1 -
Var[hg(Y, X)— l{x“q > s}]

I compute A and A™¢ in a numerical experiment where X = 4, X takes values 1,2, 3
with equal probability, and n = (—1, ;)" where the first coefficient corresponds to the
intercept and the second one to the coefficient of X. I contrast two descriptive statistics:
the sample mean p of Y when X = 1, and the Probit maximum likelihood estimate 7).
I again resort to simulations to compute A™¢ and I report the results in Table 1. For

’That is, ¢ = ®(¥'"), where 7 = argmax, Yoo, Yilog[®(X[m)]+ (1 — Y;)log[l — ®(X!n)].
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TABLE I

INFORMATIVENESS OF DESCRIPTIVE
STATISTICS IN THE BINARY CHOICE EXAMPLE®

Desc. Stat. A Amod Aind ind
2 0.196 0286  0.028 -
n 1 0.839  0.385 -
None - - - 0.795

2Informativeness of various descriptive statistics y for
¢=®(¥'7) in the second example. A is the original mea-
sure of informativeness, Amod s the modified measure,
Aind s the modified measure under independence be-
tween ¢ and X, and rind measures the informativeness
of the independence assumption for €.

the first descriptive statistic, I find A = 0.19 and A™ = (.28. Both measures suggest that
the mean outcome at X = 1 provides limited information about the potential value of
the outcome if X was exogenously set to 4. For the second descriptive statistic, I find
A =1, which reflects the fact that ¢ is a non-stochastic function of 7. In addition, I find
Amd = (0.83. In this case, and in contrast with the first example, A and A™¢ do not behave
very differently.

I want to use this example to discuss the role of neighborhoods. Indeed, in the spirit
of the paper, until now I have considered all possible conditional distributions of (& | X)
local to the base model when computing worst-case biases. In particular, this allows for
unrestricted (local) endogeneity of X. However, in many cases, the researcher may be
willing to make certain assumptions about the distributions of unobservables and observ-
ables, even though she thinks the base model is probably wrong. To illustrate, suppose
the researcher is willing to assume that X has been assigned exogenously, independently
of &. How does this assumption modify her analysis of informativeness? This example is
relevant to situations where the researcher uses experimental data, or empirical designs
such as difference-in-differences or instrumental variable methods that rely on substan-
tive assumptions on the data generating process. A case in point is Attanasio, Meghir,
and Santiago (2012), which the authors use as an example. Under independence be-
tween ¢ and X, computing worst-case biases of ¢ as an estimate of ¢(n, ) in neigh-
borhoods of densities 7 around the base density, I obtain the following informativeness
measure:

_ Var[res(E(he(Y, X) | ) — H{¥n > e}, E(h5(Y, X) | &))]

Aind — 1
Var[E(hg(Y, X)| 8) — l{f/n > s}]

Numerically, I find A" = 0.02 for the first statistic (the frequency p of Y at X =1), and
A" = 0.38 for the second one (the estimate 7). Informativeness measures are thus quite
different, and lower, when one restricts the analysis to an environment where ¢ and X
are independent.

Interestingly, in this example one can also compute 1 minus the ratio of the two unre-
stricted squared biases, dividing the bias under independence by the bias computed in the
larger neighborhood where independence is not imposed. This gives

Var[IE(hg(Y, X) | 8) — l{f'n > s}]

rind =1
Var[hg(Y, X)— I{Y’n > s}]
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I'd can be interpreted as a measure of the “informativeness of the independence as-
sumption” (or “informativeness of the random assignment of X ). It does not depend
on a vector of descriptive statistics and only reflects the impact of the independence as-
sumption on the worst-case bias of ¢. I compute this measure in the example and find
I'nd = (0.79. This suggests that here imposing independence between & and X reduces
bias substantially.

Final Remarks. This paper contributes to the development of econometric methods
for misspecified models and sensitivity analysis, which I believe is highly relevant for eco-
nomic applications. Motivated by local bias calculations, the authors have proposed a
measure of informativeness that provides a useful addition to the applied researcher’s
toolkit. In this discussion, my goal has been to suggest using local asymptotic approxima-
tions to construct other measures which complement the one the authors have proposed,
emphasizing two features: model misspecification, and economic and design assumptions.

The local asymptotic approach has considerable appeal in terms of tractability. Of
course, this simplification is not without cost. Peter Huber lucidly expressed the main
concern with local asymptotics: “The crucial point is that in any practical application we
have a fixed, finite sample size, and we need to know whether we are inside the range of n
and [u] for which asymptotic theory yields a decent approximation” (Huber (1997)). De-
veloping methods allowing for non-local misspecification is important; see Christensen
and Connault (2019) for a recent example. Local approaches can also be used to com-
pute estimators which are optimal according to some risk measure, as well as confidence
intervals, as in Bonhomme and Weidner (2019) and Armstrong and Kolesar (2019). How-
ever, unlike the authors’ informativeness measure and the ones I have discussed here, all
of which involve ratios of local biases that do not depend on w to first order, optimal
estimation and inference require one to take a stand on the (worst-case) degree of mis-
specification .
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