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1. ANDREWS, GENTZKOW, AND SHAPIRO’S �-MEASURE

IN THEIR EXCELLENT AND SIMULATING PAPER, Andrews, Gentzkow, and Shapiro (2020;
hereafter AGS20) propose a new measure of informativeness of descriptive statistics.
Suppose the researcher considers a structural model parameterized by η. The parame-
ter of interest c, which can be a counterfactual value, is a function of η. The researcher
estimates c by an estimator ĉ, and also reports a descriptive statistic γ̂. To be more precise,
for a value η0, consider a sequence ηn(h) := η0 + 1√

n
h, which yields an expansion

c
(
ηn(h)

) = c(η0)+ 1√
n
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n

)
� (1.1)

The same setting also applies to γ, leading to a similar expansion. The values c(ηn(h))
and γ(ηn(h)) are the “estimand” within the paper’s local asymptotic framework, that is,
the parameter values to be learned by ĉ and γ̂. Under AGS20’s Assumption 2, we have
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This means that the estimator ĉ is asymptotically unbiased for the parameter c(ηn(h)),
up to the order of 1/

√
n when the model is correctly specified. In view of (1.1), for all pur-

poses it is more convenient to consider c�(h) as the parameter of interest, as the authors
suggest.

Having set up the local asymptotic framework as above, the authors proceed to intro-
duce misspecification into it. This, of course, is the main theme of the paper. It considers
(sequences of) misspecified probability distributions such that ĉ tends to c(η0) + 1√

n
c̄ up

to the order of 1√
n
. The difference between c̄ and c� is then the misspecification bias.

The key elements of the paper are two sets of sequences of CDFs: for each fixed value
c� ∈ R it defines SRN(c�), which is the set of infinite sequences of probability distributions
such that its each element S̃ has another sequence S satisfying the following conditions
(see AGS20 for precise statements, in slightly different notation):

(i-a) S is consistent with the structural model (i.e., the model is correct under S),
(i-b) the value of c� corresponding to S is equal to c�,
(ii-a) S̃ and S are close to each other,
(ii-b) the limiting values of γ̂ under S and S̃ are equal (up to the order of 1/

√
n).
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Dropping the requirement (ii-b) defines SN(c�). The asymptotic bias of ĉ over⋃
c� SRN(c�) is naturally no greater than that with

⋃
c� SN(c�). AGS20 advocate the use of

� = ΣcγΣ
−1
γγΣγc

σ2
c

�

which is the ratio of these two maximal asymptotic biases of ĉ. The measure � gives the
degree to which the extra restriction (ii-b) limits the misspecification bias of ĉ. [An aside:
From the perspective of robust statistics, it seems natural to regard S as an “ideal” CDF,
or, more precisely, an ideal sequence of CDFs. The researcher does not have access to
data from S, however, and instead observes data generated from S̃, which is subject to
measurement error or other causes of data contamination. Such a stand is, for example,
taken by Kitamura, Otsu, and Evdokimov (2013). A possible advantage of this interpre-
tation is that it is easy to define what the true parameter value is.]

2. DEFINING INFORMATIVENESS: ROBUSTNESS, MISSPECIFICATION, AND EFFICIENCY

I find the measure � very neat, and it is practical. Even without referencing to the
theoretical derivation through misspecification analysis in AGS20, one can say that it
has an intuitive form. To begin, it holds that 1/(1 − �) = {Σ−1}11{Σ}11, where {·}ij de-
notes the (i� j) element of a matrix. Or, alternatively, if there exists a vector of esti-
mators (c̃� γ̃′)′ such that they are N(0�Σ) in finite samples, then � = [(variance of c̃) −
(variance of c̃ conditional on γ̃)]/(variance of c̃). The latter fact in particular seems to
suggest a potential connection between AGS20’s � and estimation efficiency. In what
follows, we explore such relationships.

As done in AGS20, the first step is to introduce a restriction on the set of permissi-
ble data distributions implied by the descriptive statistic γ̂. Instead of considering three
sequences of distributions S̃ ∈ SN(c�), S̃r ∈ SRN(c�), and S, we use the empirical distribu-
tion of data F̂n, its “restricted version” F̂ r

n (to be defined shortly), and the data generating
distribution F0 that is consistent with the structural model. The three distributions stay
together within a

√
n neighborhood by the functional CLT, effectively satisfying the re-

striction (ii-a). Misspecification plays no role here, however: the researcher observes i.i.d.
data drawn from F0.

Next, I reformulate ĉ as a statistical functional in von Mises’ sense, as in, for example,
Fernholz (2012). To this end, let us introduce a functional C : F → R, where the symbol
F denotes the set of distribution functions, so that it is equal to the estimator ĉ when eval-
uated at the empirical distribution F̂n, so that ĉ = C(F̂n). Moreover, evaluated at the true
DGP F0, it provides the true value of the parameter of interest, thus c0 = C(F0). Many
estimators can be interpreted as statistical functionals of the empirical distribution; see,
for example, Ichimura and Newey (2015). Assume that C(·) is Hadamard differentiable
at F0 with respect to ‖ · ‖∞:∣∣C(

Ft
) −C(F0)− Ċ

(
F0�F

t − F0

)∣∣
t

→ 0 for all
{
Ft

}
such that ∥∥t−1

(
Ft − F0

) −H
∥∥

∞ → 0 for some H�
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where Ċ(·� ·) is continuous and linear in the second argument. Letting φc(D) :=
Ċ(F0�1{D≤ ·}−F0) denote the influence function in accordance to the asymptotic linear
representation in Assumption 1 of AGS20, a simple application of the Functional Delta
Method yields

√
n(ĉ − c0)= √

n
[
C(F̂n)−C(F0)

] →d N
(
0�σ2

c

)
�

where σ2
c = ∫

φ2
c dF0. This is what Huber (2004, p. 37) called “a one line asymptotic nor-

mality proof.”
We now seek for a similar asymptotic normality result, but this time with an additional

constraint analogous to (ii-b) used in the bias analysis in AGS20. We will introduce a
constrained empirical CDF F̂ r

n and consider a plug-in estimator ĉr = C(F̂ r
n). To this end,

once again I use statistical functional notation and write

γ̂ = �(F̂n)� γ0 = �(F0)�

To develop a parallelism with AGS20, we use an appropriate analogue of (ii-b) to define
a set of restricted CDFs:

F r := {
F ∈F : �(F) = �(F0)

}
� (2.1)

To simplify our argument, assume further that � is a functional such that γ̂ = �(F̂n) =
γ0 +A(F̂n)

∫
φγ dF̂n, where φγ corresponds to the influence function in Assumption 1 of

AGS20 and A(·) is a square matrix. This does not seem too restrictive in our context, as
descriptive statistics such as sample means, OLS, and just identified linear IV estimators
belong to this category. We next obtain an appropriate “restricted version” of F̂n by intro-
ducing a divergence measure between CDFs. This is again consistent with the use of the
Cressie–Read family in Section 4.3 in AGS20. To use a concrete example, we work on the
Kullback–Leibler divergence K(F�G) = ∫

log f

g
dF for CDFs F and G with density func-

tions f and g. Other divergence measures, such as other members of the Cressie–Read
family, or even a larger class of divergence family, can be used; see Imbens, Spady, and
Johnson (1998), Kitamura (2007), and Newey and Smith (2004) for related discussions.
In any event, consider the minimizer of the following problem:

minimize K(F̂�F) subject to F ∈F r�

Assuming that A(F0) is nonsingular, under weak restrictions, the convexity of the set
{F ∈F : ∫ φγ dF = γ0} guarantees a unique solution given by

F̂ r
n(z) =

n∑
i=1

1{Di ≤ z}p̂i� p̂i = exp
(
θ′
nφγ(Di)

)
n∑

i=1

exp
(
θ′
nφγ(Di)

) �

θn = argmin
θ

n∑
i=1

exp
(
θ′φγ(Di)

)
�

for large n. This corresponds to exponential tilting (see, e.g., Kitamura and Stutzer
(1997)). Moreover, the empirical process

√
n(F̂ r − F0) converges to a Gaussian process:√

n(F̂ r −F0)�G, where G has the covariance kernel of the form F0(t ∧ s)−F0(t)F0(s)−
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Cov(1{D ≤ t}�φγ)Var(φγ)
−1 Cov(φγ�1{D ≤ s}). See Sheehy (1988). Let ĉr := C(F̂ r

n),
which incorporates the restriction implied by the descriptive statistic γ̂ on the CDF to
be plugged in for the statistical functional C(·). With the Hadamard differentiability as-
sumption on the functional C(·), we have, once again by the Functional Delta Method
(see, in particular, Van der Vaart (2000, Theorem 20.8)),

√
n
(
ĉr − c0

) = √
n
[
C
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n

) −C(F0)
]

= √
nĊ
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r
n − F0
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nĊ
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(
F0�1{Di ≤ ·} − F0

) + op(1)
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n
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p̂iφc(Di)+ op(1)

→d N
(
0�Var(φc)− Cov(φc�φγ)Var(φγ)

−1 Cov(φγ�φc)
)
�

Let s2
ĉr := Var(φc) − Cov(φc�φγ)Var(φγ)

−1 Cov(φγ�φc); then, denoting the asymptotic
variance of ĉ by s2

ĉ = σ2
c , we obtain

� = s2
ĉ − s2

ĉr

s2
ĉ

�

This provides an alternative expression of the measure � as the relative asymptotic ef-
ficiency gain for the differentiable statistical functional C from imposing the invariance
restriction with respect to � in (2.1). This is not a coincidence; local robustness and (lo-
cal) asymptotic efficiency are naturally intertwined concepts. See, for example, Rieder
(2014) for an insightful discussion. In the context of GMM, Honoré, Jørgensen, and
de Paula (2020) pointed out that a sensitivity statistic proposed by Andrews, Gentzkow,
and Shapiro (2017)—a companion paper of AGS20—is related to measuring how each
moment condition contributes to estimation precision in GMM. The latter, in turn, is
connected to an earlier literature on informativeness/redundancy of moment conditions
(see, e.g., Breusch, Qian, Schmidt, and Wyhowski (1999)). The approach here is some-
what different, as I make explicit use of the restricted space of CDFs F r to explore its
impact on the asymptotic variance of the statistical functional C, paralleling AGS20’s
analysis of asymptotic biases through restrictions on the space of CDFs.

Last, the result I outlined above that uses F̂ r
n in the possibly nonlinear statistical func-

tional C(·) is closely related to results concerning estimation of moments in the pres-
ence of other moment restrictions via “re-weighting”: see, for example, Back and Brown
(1993), Brown and Newey (2002), and Hellerstein and Imbens (1999). Note that for these
problems, the estimand can be viewed an exactly linear functional of the underlying dis-
tribution. Further developments in von Mises calculus with side constraints would be of
great interest, if one wishes to generalize the type of argument presented here in various
directions.
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With all that said, I strongly believe the issue of robustness should be a central concern
for modern econometricians, and I find AGS20’s local misspecification analysis illuminat-
ing, compelling, and useful. Their statistic � is a practical and valuable measure; it will be
a useful tool for applied economists for years to come.
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