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Abstract

We study the causal interpretation of instrumental variables (IV) estimands of nonlinear, mul-

tivariate structural models with respect to rich forms of model misspecification. We focus

on guaranteeing that the researcher’s estimator is sharp zero consistent, meaning that the re-

searcher concludes that the endogenous variable has no causal effect on the outcome whenever

this is actually the case. Sharp zero consistency generally requires the researcher’s estimator

to satisfy a condition that we call strong exclusion. When a researcher has access to excluded,

exogenous variables, strong exclusion can often be achieved by appropriate choice of estimator

and instruments. Failure of strong exclusion can lead to large bias in estimates of causal effects

in realistic situations. Our results cover many settings of interest including models of differ-

entiated goods demand with endogenous prices and models of production with endogenous

inputs.
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1 Introduction

Instrumental variables (IV) methods are used widely in empirical economics. A large literature

following Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) studies the causal

interpretation of IV estimators under potential model misspecification. Much of this literature fo-

cuses on estimation of linear models with a scalar outcome (e.g., Angrist, Graddy, and Imbens

2000). But IV methods are also commonly used in the estimation of nonlinear, multivariate struc-

tural models. We study the nonparametric interpretation of IV estimands in such contexts.

We consider a setting, described in Figure 1, in which a researcher is interested in the causal

effect of some variableD on some outcome Y , whereD may be endogenous to unobserved factors

affecting Y . The researcher specifies a model in which the outcome Y is causally affected by

both the endogenous variable D and some included exogenous covariates X . The researcher may

also have access to an excluded exogenous variable Z that causally affects D but not Y . The

researcher estimates the parameters of their model via IV methods, minimizing the product of a

model-implied structural residual and a set of researcher-chosen instruments that depend on the

exogenous variables X or Z (or both). Under correct specification, the researcher’s estimator

recovers the true causal effects of D on Y .

A wide range of applications of structural methods in economics fit our setting.1 A leading ex-

ample is demand for differentiated products (Berry and Haile 2021; Gandhi and Nevo 2021), where

Y might be a vector of market shares for different products, D a vector of prices, X a matrix of ex-

ogenous product characteristics, and Z a vector of cost shifters. Causal effects could include own-

and cross-price elasticities. Berry, Levinsohn, and Pakes (1995) and a large body of subsequent

work address price endogeneity using instruments constructed as a function of the characteristics

X of the products available in the market.2 Some studies (e.g., Berry, Levinsohn, and Pakes 1999;

Miller and Weinberg 2017; Backus, Conlon, and Sinkinson 2021) use both product characteristics

X and cost shifters Z as instruments.

We allow for the possibility that the researcher’s model may be misspecified. We capture this

possibility by studying the population value of the researcher’s estimator under a general potential

1Examples include models of production (Ackerberg, Caves, and Frazer 2015), residential choice (Diamond 2016),
human capital accumulation (Attanasio et al. 2020), banking (Egan, Lewellen, and Sunderam 2022), household
consumption (Li 2021), and trade (Adao, Costinot, and Donaldson 2017).

2Gandhi and Nevo (2021) write that “By far, the most popular IVs are ... the characteristics of all products in the
market” (p. 92). They explain that these instruments “are informative because they can be used to measure the
proximity of competition... and therefore should be correlated with price and other endogenous variables” (p. 92).
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outcomes model that nests the researcher’s model. We focus on guaranteeing sharp zero consis-

tency, which requires that if in the true model the endogenous variable D has no causal effect on

Y , the researcher’s estimand also implies that D has no effect on Y . Sharp zero consistency is a

minimal requirement since it allows that the researcher’s estimand may not correctly describe the

causal effect of D on Y when the effect is nonzero.

Figure 1: Causal graph of observed variables in the researcher’s model.
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We find that, in a wide class of settings, sharp zero consistency of the researcher’s estimand

depends on a condition we call strong exclusion. Strong exclusion requires that the researcher’s

estimator solves sufficiently many moment conditions relying on instruments that (i) are nontrivial

functions of the excluded exogenous variables Z and (ii) have been made mean-independent of

the included exogenous covariates X . When the researcher has access to sufficiently rich excluded

exogenous variables, strong exclusion can often be achieved by suitable choice of estimator. When

the researcher does not have access to excluded exogenous variables, or when the choice of esti-

mator does not satisfy strong exclusion, the researcher’s estimand will generally not be sharp zero

consistent, and in realistic situations can be substantially biased for causal effects of D.

Strong exclusion is a novel criterion that is distinct from the strength and exogeneity conditions

that have been central to discussions of instrument validity.3 To sharpen this distinction, we cast

our analysis in terms of population values (estimands) of estimators based on instruments that

may be arbitrarily powerful, and we assume throughout that (X,Z)—and, hence, any function

of these—is as good as randomly assigned. Our analysis shows that causal interpretation under

misspecification provides a basis for preferring some instruments and estimators over others even

when all candidate instruments are exogenous and equally powerful.

3Regarding instrument strength and exogeneity in the context of the demand for differentiated goods, see Gandhi and
Nevo (2021). Regarding instrument strength and efficiency, see, for example, Reynaert and Verboven (2014), Rossi
(2014), Armstrong (2016), and Gandhi and Houde (2020). Gandhi and Houde (2020) recommend using carefully
chosen functions of included variables as instruments in order to improve instrument strength. Regarding instrument
exogeneity, see, for example, Bresnahan (1996), Nevo (2004), Rossi (2014), and Petrin, Ponder, and Seo (2022).
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Section 2 formally defines our potential outcomes model, the researcher’s model that it nests,

and the class of IV estimators that we consider. Section 3 considers the sharp zero consistency of

the researcher’s estimand.

Our main result is that strong exclusion is sufficient and, in a particular sense, necessary for

sharp zero consistency. Say that an instrument is strongly excluded if it is mean-independent of

X . The necessity result shows that, under regularity conditions, if the researcher estimates a mis-

specified model via GMM and the estimator solves fewer moment conditions relying on strongly

excluded instruments than there are parameters governing the effect ofD in the researcher’s model,

then the researcher’s estimator is not sharp zero consistent. By contrast, the sufficiency result shows

that, in this and other settings, using sufficiently many strongly excluded instruments ensures sharp

zero consistency. An appendix shows that the sufficiency of strong exclusion for sharp zero con-

sistency is a special case of a more general result: whenever the researcher’s model is consistent

with the true causal effects of D on Y , strong exclusion of the estimator suffices to ensure that the

researcher estimates these correctly.

In Section 4, we consider whether the researcher can recover specific (non-zero) causal targets

under misspecification. Focusing on the case where the potential outcome functions are smooth,

we define a causal summary to be a nontrivial linear functional of the local causal effects of D

on Y . We show that some causal summary is nonparametrically identified under rich misspeci-

fication if and only if excluded variables Z are observed. We then show that strong exclusion is

sufficient for the researcher’s estimator to consistently recover a causal summary, whose structure

we characterize.

We discuss procedures that a researcher in possession of excluded exogenous variables Z can

use to construct an estimator that satisfies strong exclusion. The first step is to construct a set of

strongly excluded instruments. If Z is independent of X (for example, because Z was random-

ized in an experiment), these instruments can simply be functions of Z. Alternatively, they can be

functions of Z (or even of X and Z) that have been flexibly residualized with respect to X . The

second step is to define an estimator such that the parameters governing the causal effect ofD must

solve moment conditions that only involve the strongly excluded instruments. If the estimator is

exactly-identified (in the sense that the number of instruments is equal to the number of parame-

ters), this will be true so long as there are at least as many strongly excluded instruments as there

are parameters governing the causal effect of D. If the estimator is over-identified, we show that

this condition can be satisfied by using a novel constrained GMM procedure that we introduce.
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Section 5 illustrates the procedures we describe, and their importance for sharp zero consis-

tency, with simulations from a data generating process calibrated tightly to Miller and Weinberg’s

(2017) estimated model of the demand for beer. We focus on recovery of the average own-price

elasticity. We model a researcher who does not know the true data generating process and es-

timates a misspecified model under various choices of instruments. When prices do not affect

demand, the researcher’s estimator is approximately median-unbiased under strong exclusion, and

can be severely biased absent strong exclusion. The absolute median bias of an IV estimator that

does not satisfy strong exclusion can be larger than that of an estimator that ignores price endo-

geneity altogether. Even when prices do affect demand—in which case strong exclusion does not

generally guarantee consistency—we tend to find that strong exclusion lessens bias. We use our

results on recovery of causal summaries to illustrate situations in which strong exclusion delivers

good performance even under severe misspecification and when prices strongly affect demand.

While we motivate our analysis and simulations with applications to models of differentiated

goods demand, our results extend to many other settings in which IV methods are used to estimate

structural models. To illustrate, Section 6.3 studies the estimation of production function models

with input endogeneity. A form of strong exclusion modified to account for the dynamic setting

delivers guarantees analogous to those we find in the static setting.

Based on our theoretical and numerical findings, we recommend that researchers who have

access to excluded exogenous variables, and who are interested in causal effects of endogenous

variables, use estimators that satisfy strong exclusion. We view this recommendation as practi-

cally relevant because a large portion of the relevant applied research uses estimators that are not

likely to satisfy strong exclusion. Many estimators use instruments that only depend on included

variables X , and so cannot satisfy strong exclusion.4 Many other estimators use instruments based

on both excluded variables Z and included variables X , but use more instruments than parame-

ters and do not guarantee that the instruments depending on Z are used to pin down parameters

governing the causal effect of D, a situation in which our results imply that strong exclusion typi-

cally fails.5 Moreover, no applied economics research that we know of using instruments based on

non-randomized excluded variables Z to estimate a nonlinear, multivariate economic model resid-

ualizes these instruments to guarantee that they are mean-independent of the included variables

4See, for example, Berry, Levinsohn, and Pakes (1995), Bayer, Ferreira, and McMillan (2007), and Bourreau, Sun,
and Verboven (2021).

5See, for example, Berry, Levinsohn, and Pakes (1999), Villas-Boas (2007), Miller and Weinberg (2017), Decarolis,
Polyakova, and Ryan (2020), Fan and Yang (2020), Reynaert (2021), Backus, Conlon, and Sinkinson (2021), and
Hristakeva (2022). See also Gandhi and Houde (2020).
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X .

A large literature following Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)

studies the interpretation of instrumental variables estimators under potential model misspecifi-

cation. Within this literature our work is closest to that of Angrist, Graddy, and Imbens (2000),

who study the nonparametric interpretation of estimands in linear simultaneous equations models

when instruments are based on excluded exogenous variables. Our contributions are to consider

settings in which the outcome variable is potentially vector-valued, the researcher’s model is po-

tentially nonlinear, and the instruments may not be based on excluded exogenous variables. Our

results are applicable to important economic contexts in which nonlinear structural models are esti-

mated using instruments, for which (to our knowledge) a similar characterization of estimands and

their properties was not previously available. Section 6.1 discusses in more detail the connections

between our analysis and recent developments in this literature.

Recent work has studied issues of nonparametric identification in settings like those we con-

sider.6 Section 4.2 discusses some connections to this literature in the context of our finding that

data on excluded variables is necessary and sufficient for nonparametric identification of causal

summaries. As our theoretical and numerical findings show, the availability of an excluded vari-

able, or even its use in a set of instruments, is not sufficient to ensure sharp zero consistency of the

researcher’s estimand.

The notion of strong exclusion that we study is related to Ackerberg and Crawford’s (2009)

and Ackerberg, Crawford, and Hahn’s (2011) suggestion to learn the effect on an outcome of one

endogenous variable in the presence of a second endogenous variable by employing instruments

that are orthogonal to the second variable. It is also closely related to the suggestion in Borusyak

and Hull (forthcoming) to recenter instruments by subtracting their conditional mean given ob-

served covariates. Our work also relates to broader econometric literatures on efficient choice of

instruments under correct specification (e.g., Hansen 1982; Chamberlain 1987; Newey 1990) and

optimal estimation under certain forms of potential misspecification (e.g., Kitamura, Otsu, and

Evdokimov 2013; Armstrong and Kolesár 2021; Bonhomme and Weidner forthcoming).7

6See, for example, Berry and Haile (2014, 2016) regarding differentiated goods demand models and Gandhi, Navarro,
and Rivers (2020) regarding production models.

7Analytically, our approach differs from much of this latter literature in that we consider misspecification that is
nonlocal, in the sense that the degree of misspecification remains fixed as the sample grows large. Hall and Inoue
(2003) characterize the asymptotic distribution of GMM estimators under nonlocal misspecification.
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2 Setup

The data consist of n observations (Yi, Di,Xi,Zi) ∈ RJ × D × X × Z . We first lay out a nesting

model that we will assume to hold throughout. The nesting model is defined in a potential out-

comes framework, where the potential outcome and potential endogenous variable functions Yi (·)
and Di (·) , along with the exogenous variables (Xi, Zi), are assumed to be drawn i.i.d. from an

unknown distribution G in a class of possible distributions G. The observed endogenous variables

are Yi = Yi (Di, Xi, Zi) and Di = Di (Xi, Zi).

Assumption 1. (Nesting model) Under all G ∈ G, the following hold:

(a) (exclusion) For all Yi (·) , Yi (d, x, z) = Yi (d, x, z′) = Yi (d, x) for all d ∈ D, x ∈ X , and

z, z′ ∈ Z .

(b) (exogeneity) (Yi (·) , Di (·)) ⊥⊥ (Xi, Zi) .

Assumption 1(a) states that the excluded variables Zi do not causally affect the outcome Yi ex-

cept through the endogenous variable Di, as in Figure 1. Assumption 1(b) states that Xi and Zi

are independent of the unobservable determinants of the outcome and endogenous variable, Yi (·)
and Di (·) (see Appendix Figure 1 for a graphical version). Thus, we will interpret both Xi and

Zi as exogenous variables, where the two are distinguished by the assumption that only Xi may

have a direct causal impact on the outcome Yi. Section 6.2 notes that our results on the causal

interpretation of the researcher’s estimand extend when we weaken Assumption 1(b) to condi-

tional exogeneity of Zi given Xi, (Yi (·) , Di (·)) ⊥⊥ Zi|Xi, thus allowing that (Yi (·) , Di (·)) is not

independent of Xi.

Our analysis makes use of the following special case of Assumption 1(a).

Definition 1. We say that Di has sharp zero effects under G if

Yi (d, x) = Yi (d′, x) for all d, d′ ∈ D and x ∈ X almost surely under G.

Let G0 ⊆ G denote the subset of distributions under which Di has sharp zero effects.

Example. (Differentiated goods demand model) Here Yi ∈ RJ represents the market shares of

J products in market i, Di ∈ RJ their prices, Xi ∈ RA×J their characteristics, and Zi ∈ RJ

some cost shifters. Assumption 1(a) holds that the cost shifters do not causally affect market
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shares except through prices. Assumption 1(b) allows that prices are related to unobserved factors

(such as preference shocks) that influence market shares, but requires that product characteristics

and cost shifters are independent of such factors. We thus set aside threats to instrument validity

related to endogeneity of product characteristics—a focus of prior literature evaluating their use as

instruments8—and instead focus on concerns related to causal interpretation under misspecification

that apply even when all product characteristics are randomly assigned.

Sharp zero effects hold when prices do not causally affect market shares. Sharp zero effects are

primarily a modeling device but might approximate a situation where, for example, purchases are

heavily subsidized by the government, or where Di is instead a non-price endogenous marketing

variable that may or may not influence demand.

2.1 Researcher’s Model

The researcher’s model is a special case of the nesting model that need not coincide with the true

distribution. Specifically, the researcher assumes that Yi (d, x) = Y ∗ (d, x, ξi; θ0), for θ0 ∈ RP

an unknown parameter, Y ∗ (·) a function known up to θ0, and ξi ∈ RJ a mean-zero structural

residual with the same dimension as the outcome Yi. Under the researcher’s model, if θ0 were

known, the residual ξi could be recovered by taking an appropriate transformation of the data; that

is, ξi = R (Yi, Di, Xi; θ0) for R(·) a function known up to θ0.

Assumption 2. (Researcher’s model) Under the researcher’s model, the following hold:

(a) (outcome model) Yi (d, x) = Y ∗ (d, x, ξi; θ0) and ξi = R (Yi (d, x) , d, x; θ0) for all (d, x),
where Y ∗(·) and R(·) are RJ -valued functions known up to θ0 ∈ RP , and E [ξi] = 0.

(b) We can decompose θ = (α, β) where the researcher’s model implies that d has sharp zero

effects if and only if α = 0 ∈ Rdim(α).

Assumption 2(a) imposes the researcher’s outcome model and requires that the mean-zero struc-

tural residual ξi could be recovered if θ0 were known. Assumption 2(b) imposes that the parameter

θ can be decomposed into subvectors (α, β), where the researcher’s model implies sharp zero ef-

fects if and only if α = 0. We can therefore loosely interpret α as governing the causal effects of

Di under the researcher’s model.
8Nevo (2004) writes, “the main problem [with product characteristic instruments] is that in some cases the assumption
that observed characteristics are uncorrelated with the unobserved components is not valid” (p. 535). See also
discussions in Berry, Levinsohn, and Pakes (1995), Rossi (2014), Gandhi and Nevo (2021), Berry and Haile (2021),
and Petrin, Ponder, and Seo (2022).
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Definition 2. We say that the researcher’s model holds under G if potential outcomes take the

form specified in Assumption 2(a) almost surely. Let G∗ ⊆ G denote the set of distributions under

which the researcher’s model holds.

Example. (Differentiated goods demand model, continued) The researcher assumes that, in each

market i, a unit mass of consumers c each choose one product j to maximize utility uc,i,j given by

uc,i,j =
(
α1 + α2ψ

D
c,i

)
Di,j +X ′

i,j

(
β1 + diag (β2)ψX

c,i

)
+ ξi,j + ϵc,i,j, (1)

where ψc,i =
(
ψD

c,i, ψ
X
c,i

)
∈ R1+A is an i.i.d. mean-zero random coefficient with a known distri-

bution Ψ and ϵc,i,j is a consumer-specific utility shock that follows an i.i.d. type 1 extreme value

distribution independently of all other variables. It follows that

Y ∗
j (Di, Xi, ξi; θ) =

∫
sj (Di, Xi, ξi, ψc,i; θ) dΨ

for

sj (Di, Xi, ξi, ψc,i; θ) =
exp

((
α1 + α2ψ

D
c,i

)
Di,j +X ′

i,j

(
β1 + diag (β2)ψX

c,i

)
+ ξi,j

)
1 +∑J

j′=1 exp
((
α1 + α2ψD

c,i

)
Di,j′ +X ′

i,j′

(
β1 + diag (β2)ψX

c,i

)
+ ξi,j′

)
and θ = (α, β) = ((α1, α2) , (β1, β2)). In this model, the effect of price on utility is governed

by the parameter α = (α1, α2) ∈ R2 and the effect of other characteristics is governed by the

parameter β = (β1, β2) ∈ R2A where recall that A = dim (Xi,j). Under a mild condition on

the distribution of ψ, prices do not affect market shares under the researcher’s model if and only

if α = 0.9 Under conditions discussed in, for example, Berry (1994) and Berry, Levinsohn, and

Pakes (1995), the researcher can recover ξi as a function Rj (Yi, Di, Xi; θ0) of observable market

shares, prices, and characteristics, given knowledge of θ0. In the special case with α2 = β2 = 0,

the researcher’s model simplifies to a multinomial logit.

2.2 Researcher’s Instruments

The researcher selects K ≥ P = dim (θ) instruments that can be expressed as a matrix-valued

function f (Xi, Zi) ∈ RK×J of the observed exogenous variables Xi and Zi, with f (Xi, Zi) =
9For any distribution Ψ, prices do not affect market shares if α = 0. The con-
verse holds if for some x there are at least two values d, d′ ∈ D over which
Cov

(
ψD

c,i, sj (d, x, ξi, ψc,i; θ) (1 − sj (d, x, ξi, ψc,i; θ))
)
/E [sj (d, x, ξi, ψc,i; θ) (1 − sj (d, x, ξi, ψc,i; θ))] varies.

9



(f1 (Xi, Zi) · · · fJ (Xi, Zi)). This instrument function may depend on G (for instance because

the instruments are re-centered to have mean zero), but we suppress this dependence and write

f (Xi, Zi) rather than fG (Xi, Zi) for brevity.

Example. (Differentiated goods demand model, continued) Consider the special case where the

researcher assumes that there are no random coefficients (α2 = β2 = 0), so the researcher’s model

is a multinomial logit. Then dim (α) = 1, dim (β) = A, and P = 1 + A. An instrument function

with K = P using a product characteristic or “BLP” instrument in the spirit of Berry, Levinsohn,

and Pakes (1995) might take fj (Xi, Zi) =
(
X i,a,−j, X

′
ij

)′
where X i,a,−j ∈ R is the mean of the

a-th product characteristic in market i (i.e., the a-th row of the matrix Xi) across all products

(columns) other than the j-th. An instrument function with K > P might replace X i,a,−j with

a vector that includes (i) means of several different product characteristics (rows of Xi) across

products other than j; (ii) means of characteristics across products other than j that are owned

by the same firm as j and, separately, products owned by different firms; and/or (iii) additional

non-linear functions of the characteristics of products other than j. In the more general case with

α2, β2 ̸= 0, a researcher could create an instrument function with dimension K ≥ P by replacing

X i,a,−j with a vector including (i), (ii), and/or (iii) that has dimension at least 2 + A.

Again in the case where the researcher assumes no random coefficients, an instrument function

with K = P using a cost shifter to instrument for price might take fj (Xi, Zi) =
(
Zij, X

′
ij

)′
. An

instrument function withK > P might add the mean cost shifters Zi,−j ∈ R of products other than

j. In the more general case with α2, β2 ̸= 0, an example of an instrument function with K = P

using cost shifters to instrument for price would be fj (Xi, Zi) =
(
Zij, Zi,−j, X

′
ij, X

′
i,−j

)′
, where

X i,−j ∈ RA is the row-wise average of all but the jth column of Xi. The researcher might also

add interactions between a product’s own characteristics X ′
ij and the mean characteristics X i,−j of

other products in the market, as well as interactions between functions of Zi and functions of Xi.

2.3 Researcher’s Estimator

The researcher chooses an estimator θ̂ that exploits the independence of the implied residual and

chosen instruments at the true value θ0 of the unknown parameter. In particular, given a choice of

instruments f (Xi, Zi), the researcher defines a sample moment function

m̂ (θ) = 1
n

∑
i

mi (θ) = 1
n

∑
i

f (Xi, Zi)R (Yi, Di, Xi; θ) ,
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which has population analogue

mG (θ) = EG [f (Xi, Zi)R (Yi, Di, Xi; θ)]

under distribution G. If the researcher’s model is correctly specified, the population moment equa-

tion mG (θ) = 0 has a solution at θ = θ0.

Lemma 1. Under Assumptions 1 and 2(a), for any G ∈ G∗ and any RK×J -valued chosen instru-

ment function f (x, z), we have that

mG (θ0) = EG [f (Xi, Zi)R (Yi, Di, Xi; θ0)] = 0. (2)

Appendix A contains a proof of Lemma 1 and other results stated in the main text. Intuitively,

Assumptions 1 and 2(a) together imply that, under the researcher’s model, ξi has conditional mean

zero given (Xi, Zi), i.e., that E [ξi|Xi, Zi] = 0. It follows that the product of R (Yi, Di, Xi; θ0)
with any function of (Xi, Zi) has mean zero, an observation that motivates many common GMM

estimators for structural models.

If K is greater than P and the researcher’s model is misspecified, then the population moment

equation mG (θ) = 0 may have no solution. To accommodate many estimators including those

commonly used in practice, we make the high-level assumption that the researcher’s estimand

solves some data-dependent linear combination of the population moment equations.

Assumption 3. (Researcher’s estimator) Under each G ∈ G, the researcher’s estimator θ̂ con-

verges in probability to an estimand θ̃G that solves the effective moment equation

EG [WGf (Xi, Zi)R (Yi, Di, Xi; θ)] = WGmG (θ) = 0, (3)

for WG ∈ RP ×K a matrix that may depend on G, and WGf (Xi, Zi) the effective instruments.

Premultiplication of the instruments by the matrix WG ensures that the estimand θ̃G solves a P -

dimensional effective moment equation even when there are more chosen instruments than param-

eters, K > P .

Remark 1. (Sufficient conditions for Assumption 3) Sufficient conditions for Assumption 3 are

readily available for common estimators. As a leading example, suppose that the researcher
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chooses θ̂ to solve the GMM problem

min
θ
m̂ (θ)′ Ω̂m̂ (θ) (4)

for Ω̂ a weighting matrix with probability limit ΩG. Under standard regularity conditions (e.g.,

Newey and McFadden 1994), such an estimator satisfies Assumption 3 withWG = ∂
∂θ
mG

(
θ̃G

)′
ΩG.

In the special case in which the researcher selects just as many instruments as there are unknown

parameters, K = P , we have that WG is invertible and therefore irrelevant.

As another example, related to our proposal in Section 3.5, suppose that the researcher chooses

θ̂ to solve the constrained GMM problem

min
θ
m̂ (θ)′ Ω̂m̂ (θ) s.t. m̂1 (θ) = 0 (5)

where m̂ (θ) =
(
m̂1 (θ)

′
, m̂2 (θ)

′)′

so that the estimator must exactly solve a particular subset

m̂1 (θ) of the sample moment equations. Under regularity conditions similar to those for (4), such

an estimator satisfies Assumption 3 with WG block lower triangular. If K = P , then (5) and (4)

are asymptotically equivalent under standard regularity conditions, and WG is again irrelevant.

3 Sharp Zero Consistency of Researcher’s Estimator

We will now consider the impact of the researcher’s choice of instruments on their estimand.

3.1 Strong Exclusion

Our main results show that the relationship of the researcher’s estimand to causal effects of D

depends on whether the estimator satisfies a property that we call strong exclusion. To define this

property, we first define what it means for a function of (Xi, Zi) to be strongly excluded.

Definition 3. For a possibly G-dependent function q (Xi, Zi), we say that (i) q (Xi, Zi) is strongly

excluded if EG [q (Xi, Zi) |Xi] = 0 for all G ∈ G; (ii) q (Xi, Zi) is included if it is not strongly

excluded; and (iii) q (Xi, Zi) is strongly included if q (Xi, Zi) = q̃ (Xi) for some nonconstant

function q̃.

We say that a researcher’s estimator satisfies strong exclusion if it solves sufficiently many

effective moment conditions which use strongly excluded instruments.
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Definition 4. The researcher’s estimator satisfies strong exclusion if we can write

WGf (Xi, Zi) =

 WE
G f (Xi, Zi)

W I
Gf (Xi, Zi)

 (6)

where

(a) WE
G f (Xi, Zi) is strongly excluded,

(b) EG

[
WE

G f (Xi, Zi)
(
WE

G f (Xi, Zi)
)′
]

has rank at least dim (α).

Intuitively, strong exclusion requires that there are at least as many effective instruments unre-

lated to the included exogenous covariates Xi as there are parameters controlling the effect of Di

on Yi under the researcher’s model.

Remark 2. (Necessary conditions for strong exclusion) Strong exclusion fails for θ̂ if fewer than

dim (α) elements of WGf (Xi, Zi) are strongly excluded. It therefore fails whenever f (Xi, Zi)
depends only on Xi (i.e., whenever f (Xi, Zi) is strongly included). It also typically fails when Zi

is not independent ofXi, unless at least some elements of f (Xi, Zi) have been flexibly residualized

with respect to Xi.

Even when some elements of the chosen instruments f (Xi, Zi) are strongly excluded, strong

exclusion can still fail for the estimator θ̂ when too many elements of f (Xi, Zi) are included. For

ΞG = EG

[
EG [f (Xi, Zi) |Xi]EG

[
f (Xi, Zi)′ |Xi

]]
,

strong exclusion of the estimator holds only if

rank (WGΞGW
′
G) ≤ dim (β) for all G ∈ G. (7)

Note that EG [f (Xi, Zi) |Xi] can be interpreted as the included component of the researcher’s

instruments, and the rank of ΞG measures the dimension of the included instruments. If the re-

searcher selects fewer then dim (β) included instruments, in the sense that rank (ΞG) ≤ dim (β)
for all G ∈ G, then rank (WGΞGW

′
G) ≤ dim (β) for all G and all WG, and the necessary condi-

tion (7) for strong exclusion always holds. By contrast, if the researcher instead selects more than

dim (β) included instruments, in the sense that rank (ΞG) > dim (β) for some G ∈ G, then for

Lebesgue almost-every WG we have that rank (WGΞGW
′
G) > dim (β) as well, violating (7).
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Remark 3. (Sufficient conditions for strong exclusion) Sufficient conditions for strong exclu-

sion are readily available for common estimators. As a leading example, suppose that the re-

searcher chooses θ̂ to solve the GMM problem (4). Then under standard regularity conditions it

is sufficient that at most dim (β) rows of f (Xi, Zi) be included. To see why, let f (Xi, Zi) =(
fE (Xi, Zi)′ , f I (Xi, Zi)′

)′
partition the instruments into strongly excluded (E) and included (I)

components, where f I (Xi, Zi) ∈ Rdim(β)×J . Then under mild regularity conditions the first-

order conditions of the population analogue of (4) imply that we can take WE
G ∈ Rdim(α)×K and

W I
G ∈ Rdim(β)×K where the last dim (β) columns of WE

G are zero.

As another example, suppose that the researcher chooses θ̂ to solve the constrained GMM prob-

lem (5). Then under regularity conditions it is sufficient that the constraint m̂1 (θ) = 0 depends

only on a full-rank, strongly excluded subset fE (Xi, Zi) of at least dim (α) of the chosen instru-

ments, i.e., that m̂1 (θ) = 1
n

∑
i f

E (Xi, Zi)R (Yi, Di, Xi; θ) where EG

[
fE (Xi, Zi) fE (Xi, Zi)′

]
has full rank.

Example. (Differentiated goods demand model, continued) Consider, again, the special case where

there are no random coefficients (α2 = β2 = 0) and so the model is multinomial logit. Estima-

tors using the “BLP” instruments fj (Xi, Zi) =
(
X i,a,−j, X

′
ij

)′
fail to satisfy strong exclusion

because these instruments are all strongly included. Estimators using the “cost shifter” instru-

ments fj (Xi, Zi) =
(
Zij, X

′
ij

)′
also fail to satisfy strong exclusion if Zij is not mean-independent

of Xi. However, we can construct instruments fj (Xi, Zi) =
(
ZE

ij , X
′
ij

)′
such that the estimator

satisfies strong exclusion by taking ZE
i to be the residual Zi − EG [Zi|Xi] from a nonparametric

regression of Zi on Xi, because the residual is strongly excluded by construction provided that

EG

[(
ZE

ij

)2
]

is nonzero. Estimators using both residualized cost shifters and “BLP” instruments,

fj (Xi, Zi) =
(
ZE

ij , X i,a,−j, X
′
ij

)′
, will fail to satisfy strong exclusion in this example because,

even though there is a strongly excluded instrument, there are more than dim (β) included instru-

ments. If, however, there are random coefficients for some product characteristics, so that β2 ̸= 0,

then an estimator using an instrument vector containing a residualized cost shifter ZE
ij , the charac-

teristics Xij , and “BLP” instruments will satisfy strong exclusion provided that there are no more

than dim (β2) of the “BLP” instruments.

3.2 Sharp Zero Consistency

Our main results focus on a property that we call sharp zero consistency.
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Definition 5. The researcher’s estimator is sharp zero consistent if α̃G = 0 for all G ∈ G0.

Sharp zero consistency is weaker than consistency because it restricts the researcher’s estimand

only in the case of sharp zero effects (i.e., only for G ∈ G0). We view sharp zero consistency as

a minimal form of robustness to misspecification of the causal interpretation of the researcher’s

estimated model.

Example. (Differentiated goods demand model, continued) Failure of sharp zero consistency

means that the researcher may conclude that prices (or other endogenous non-price marketing

variables) affect market shares even when they do not and even when the researcher has access to

a large sample and exogenous, powerful instruments.

3.3 Sufficient Conditions for Sharp Zero Consistency

Our first main result establishes a sense in which strong exclusion is sufficient for sharp zero

consistency.

Proposition 1. Suppose Assumptions 1, 2, and 3 hold. If the researcher’s estimator satisfies strong

exclusion, and for each G ∈ G0, equation (3) has a unique solution and there exists βG such that

EG

[
W I

Gf (Xi, Zi)R (Yi, Di, Xi; (0, βG))
]

= 0, (8)

then the researcher’s estimator is sharp zero consistent.

Proposition 1 can be generalized in multiple directions. First, Assumption 1(b) is stronger

than necessary: it suffices that Zi be conditionally independent of potential outcomes and poten-

tial treatments given Xi, (Yi (·) , Di (·)) ⊥⊥ Zi|Xi, in which case Xi may not be independent of

the potential outcomes Yi (·). Section 6.2 discusses this extension. Second, the argument for con-

sistency hinges on correct specification of the causal effects of Di, rather than on those effects

necessarily being zero. Proposition 5 in Appendix B.1 generalizes Proposition 1 to cases where

the researcher’s model correctly describes the causal effects of Di on Yi but those effects may be

non-zero.

A key condition for Proposition 1 is that we can solve the subset of the effective moments

which depend on included instruments while holding α = 0. Equation (8) has dim (β) unknowns

and, under strong exclusion, no more than dim (β) equations, so we expect it to have a solution in

a range of situations.
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3.4 Necessary Conditions for Sharp Zero Consistency

Our next main result establishes a sense in which strong exclusion is necessary for sharp zero

consistency. This result uses additional conditions on the class of distributions and the researcher’s

estimator, local to a distribution that exhibits sharp zero effects.

Assumption 4. (Neighborhood of sharp zero effects) For some G0 in the Kullbeck-Leibler interior

of G0, (i)EG0

[
WG0

∂
∂θ
mi

(
θ̃G0

)]
has full rank, (ii)mG0

(
θ̃G0

)
= 0, (iii)EG0

[
supθ∈N(θ̃G0)

∥∥∥WG0
∂
∂θ
mi (θ)

∥∥∥]
is finite for N

(
θ̃G0

)
an open neighborhood of θ̃G0 , (iv) WG is Gateaux differentiable at G0, (v) θ̃G0

is the unique solution to (3) underG0, and (vi) rank
(
V ar

(
EG0

[
WG0mi

(
θ̃G0

)
|Xi

]))
> dim (β).

The condition that EG0

[
WG0

∂
∂θ
mi

(
θ̃G0

)]
has full rank is a standard rank condition for lo-

cal identification. The condition that mG0

(
θ̃0
)

= 0 at θ̃ requires that the researcher’s over-

identifying conditions (if any) hold at G0. Finiteness of EG0

[
supθ∈N(θ̃G0)

∥∥∥WG0
∂
∂θ
mi (θ)

∥∥∥] al-

lows us to exchange integration and differentiation. Differentiability of WG and uniqueness of θ̃G0

help ensure that θ̃G changes continuously in a neighborhood of G0. Finally, the rank condition on

V ar
(
EG0

[
WG0mi

(
θ̃G0

)
|Xi

])
rules out that the researcher’s model is correctly specified, because

under correct specification we would have EG0 [WG0mi (θ0) |Xi] = 0.

Proposition 2. Suppose Assumptions 1, 2, 3, and 4 hold. If the researcher’s estimator does not

satisfy strong exclusion, then the researcher’s estimator is not sharp zero consistent.

Intuitively, the proof of Proposition 2 shows that, local to the distribution G0 defined in As-

sumption 4, it is always possible to perturb the distribution—and, in particular, the marginal dis-

tribution of the included covariates Xi —to induce the researcher’s estimator to imply a nonzero

effect of Di on Yi. In order to be able to find such a perturbation it is of course necessary that

the researcher’s model be misspecified. Assumption 4(vi) ensures this by ensuring that the re-

searcher’s residual is not conditional mean independent of Xi. The rank condition in Assumption

4(vi) further guarantees that it is possible to find a perturbation of the distribution of Xi local to

G0 under which the population moment equation fails at α = 0 for all β. The existence of such a

perturbation implies that the researcher’s estimator is not sharp zero consistent.

3.5 Recipe for Strong Exclusion

Propositions 1 and 2 establish a sense in which strong exclusion is both sufficient and necessary

for sharp zero consistency. We therefore recommend that researchers choose estimators that satisfy
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strong exclusion. Following Remark 3, one way to accomplish this is to select K = P instruments

and ensure that at least dim (α) of these instruments are strongly excluded. Researchers not wish-

ing to limit attention to this case, for example because they are interested in selecting K > P

instruments, may enforce strong exclusion by flexibly residualizing the relevant instruments with

respect to Xi and using an estimator that requires the parameters governing the causal effect of D

to solve moment conditions that only involve strongly excluded instruments. A specific procedure

to achieve this is as follows.

Ingredients. (Strong exclusion)

• Instruments f I (Xi, Zi) ∈ RL×J , L ≥ P .

• Weight matrices Ω̂E, Ω̂I ∈ RL×L.

Recipe. (Strong exclusion)

• Residualize f I (Xi, Zi) with respect to Xi via nonparametric regression to obtain residu-

alized instruments fE (Xi, Zi).

• Form sample moment functions

m̂E (θ) = 1
n

∑
i

fE (Xi, Zi)R (Yi, Di, Xi; θ)

m̂I (θ) = 1
n

∑
i

f I (Xi, Zi)R (Yi, Di, Xi; θ)

• Solve

min
β
m̂I (α̂ (β) , β)′ Ω̂Im̂I (α̂ (β) , β) s.t.

α̂ (β) = arg min
α
m̂E (α, β)′ Ω̂Em̂E (α, β)

to obtain θ̂ =
(
α̂
(
β̂
)
, β̂
)
.

Provided the estimand θ̃G from this procedure falls in the interior of the parameter space, it

solves an effective moment equation in the sense of Assumption 3, with

f (Xi, Zi) =
(
fE (Xi, Zi)′ , f I (Xi, Zi)′

)′
∈ RK×J
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for K = 2L. Moreover, the effective instruments can be partitioned as in (6) so that WE
G has

zeros except in its upper-left L×L block, and so puts weight only on the residualized instruments

fE (Xi, Zi). If the nonparametric regression used to form fE (Xi, Zi) is consistent, then the es-

timator satisfies part (a) of the definition of strong exclusion. If further the excluded instruments

have sufficient variation, then the estimator satisfies part (b) of the definition of strong exclusion.

This latter condition rules out cases in which, for example, f (Xi, Zi) does not depend on Zi, or Zi

is functionally dependent on Xi.

For a researcher who has selected instruments and a weight matrix sufficient for estimation

via GMM, the researcher can take f I (Xi, Zi) to be the selected instruments and Ω̂I = Ω̂E to

be the selected weight matrix. From there, the recipe is fully automated up to the selection of a

nonparametric regression procedure, which can draw on the large literature on the topic (e.g., Chen

2007). For a researcher wishing to adapt their choice of weight matrix to the recipe, Appendix

B.2 characterizes the efficient choice of Ω̂I under correct specification, and the usual efficient

GMM weights taking β as given seem a natural choice for Ω̂E . For inference, given our interest in

misspecification, we recommend the bootstrap (Hall and Inoue 2003; Lee 2014). For completeness,

Appendix B.2 provides analytic standard errors for the case of correct specification.

4 Identification and Estimation of Causal Effects

In this section we examine whether the researcher can recover causal targets when Di may have a

nonzero effect on Yi.

4.1 Causal Effects

The researcher is interested in the causal effect of Di on Yi. To describe this effect in terms of

derivatives, we suppose the potential outcome and potential endogenous variables are differen-

tiable. This rules out cases with discrete endogenous variables Di, including the canonical case

of a binary endogenous variable studied by e.g. Imbens and Angrist (1994), though it nests other

canonical settings such as that of Angrist, Graddy, and Imbens (2000). In Appendix B.3 we char-

acterize the researcher’s estimand in a more general setting without differentiability.

Assumption 5. (Smoothness of nesting model) Yi (d, x) andDi (x, z) are everywhere continuously

differentiable in (d, z) almost surely under all G ∈ G.

18



Definition 6. The local effect of Di on Yi at (d, x) is ∂
∂d
Yi (d, x).

The researcher may be interested in summarizing the local effects, for example via an average or

other linear operator.

Definition 7. A causal summary on a class of distributions G is a G-dependent linear functional

LG

(
∂
∂d
Yi (·)

)
of the local causal effects of Di on Yi, with the property that LG (0) = 0 for all

G ∈ G and LG

(
∂
∂d
Yi (·)

)
̸= 0 for some G ∈ G.

Like the expectation operatorEG [·], the operator LG (·) is linear in the sense that LG (Ai (·) +Bi (·)) =
LG (Ai (·)) + LG (Bi (·)) and LG (c · Ai (·)) = c · LG (Ai (·)) for all c ∈ R. In that sense, causal

summaries can be thought of as generalized weighted averages of local causal effects, with weights

that (i) may be negative, (ii) need not sum to one, and (iii) can depend on the full distribution G of

(Yi (·) , Di (·) , Xi, Zi). Note also that LG

(
∂
∂d
Yi (·)

)
can be of different dimension than ∂

∂d
Yi (d, x).

Example. (Differentiated goods demand model, continued) The local causal effect of prices Di

on market shares Yi in a given market i is the J × J matrix ∂
∂d
Yi (Di, Xi) of cross-price deriva-

tives evaluated at the observed prices Di and characteristics Xi. The own-price derivative for

product j is then ∂
∂dj
Yij (Di, Xi) and the own-price elasticity is (Dij/Yij) ∂

∂dj
Yij (Di, Xi). An

example of a causal summary is the average own-price elasticity across products and markets,

EG

[
1
J

∑
j (Dij/Yij) ∂

∂dj
Yij (Di, Xi)

]
. The set of causal summaries also includes objects of less

direct economic interest, such as negatively-weighted averages of own-price derivatives or elastic-

ities.

4.2 Identification of Causal Effects

Our first result in this section establishes conditions for identification of a causal summary.

Proposition 3.

(a) If G is the class of all distributions such that Assumptions 1 and 5 hold, then there exists a

causal summary that is identified on G from the distribution GY DXZ of the observed vari-

ables, whereas no causal summary is identified on G from the distribution GY DX of the

observed non-excluded variables.

(b) If Assumption 5 holds and (2) has a unique solution under each G ∈ G∗, then there exists a

causal summary that is identified on G∗ from the distribution GY DX .
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Proposition 3(a) states that data on excluded variables is necessary for identification of a causal

summary if we cannot assume correct specification of the researcher’s model. The reason is famil-

iar: absent an excluded variable, there is no nonparametric information in the data about the effect

of ceteris paribus changes inDi. Because the set of causal summaries is large (including, for exam-

ple, any average elasticity or derivative of the outcome with respect to the endogenous regressor),

failure to nonparametrically identify any member of this set is a strong form of nonidentification.

Example. (Differentiated goods demand model, continued) Berry and Haile (2014) discuss the

need for excluded variables for nonparametric identification of differentiated goods demand mod-

els, writing, “We emphasize that we require both the excluded instruments... and the exogenous

demand shifters” (pp. 1761-2). See also Berry and Haile (2016).

Proposition 3(b) states that data on excluded variables is not necessary for identification of a

causal summary if the researcher’s model holds. Intuitively, knowledge of functional form means

that the observed effect of Xi on Yi can be apportioned between a component due to the direct

effect of Xi and a component due to the indirect effect of Xi through Di.

Example. (Differentiated goods demand model, continued) Berry, Levinsohn, and Pakes (1995)

discuss identification of a demand model using functions of the product characteristics as instru-

ments. Berry, Levinsohn, and Pakes (1995) note that assuming that a consumer’s utility depends

only on the characteristics of the chosen good, “combined with specific functional form and distri-

butional assumptions, is what allows us to identify the demand system even in the absence of cost

shifters that are excluded from the [Xij] vector” (p. 855).

4.3 Model-Implied Causal Effects

Assumption 6. (Smoothness of researcher’s model) Under the researcher’s model, Y ∗(d, x, ξ; θ)
is differentiable in d for all (x, ξ, θ), R (y, d, x; θ) is differentiable in (y, d) for all (x, θ), and
∂

∂y
R (y, d, x; θ) is everywhere full rank.

Given an estimate of θ, the researcher can readily compute the model-implied counterparts of local

effects of Di on Yi.

Definition 8. The model-implied local effect of Di on Yi at (d, x) under G is

∂

∂d
Y ∗

(
d, x,R

(
Yi (d, x) , d, x; θ̃G

)
; θ̃G

)
.
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Definition 9. For a given causal summary LG (·), the researcher’s estimator is consistent for LG (·)
over G if LG

(
∂
∂d
Y ∗

i

(
·; θ̃G

))
= LG

(
∂
∂d
Yi (·)

)
for all G ∈ G.

Consistency for a given causal summary means that the true value of the summary coincides with

its model-implied counterpart everywhere on G.

Example. (Differentiated goods demand model, continued) The model-implied local effect of

pricesDi on market shares Yi underG in a given market i is the J×J matrix ∂
∂d
Y ∗

(
Di, Xi, ξ̃i,G; θ̃G

)
of model-implied cross-price derivatives evaluated at the observed prices Di and characteristics

Xi, the estimand θ̃G, and the model-implied residual ξ̃i,G = R
(
Yi, Di, Xi; θ̃G

)
. For example, the

model-implied own-price derivative is

∂
∂dj
Y ∗

j

(
Di, Xi, ξ̃i,G; θ̃G

)
=∫ (

α̃G0 + α̃G1ψ
D
c,i

)
sj(Di, Xi,Yi, ψ

D
c,i, ψ

X
c,i; θ̃G)

(
1 − sj(Di, Xi,Yi, ψ

D
c,i, ψ

X
c,i; θ̃G)

)
dΨ,

where we use the shorthand sj(Di, Xi,Yi, ψ
D
c,i, ψ

X
c,i; θ̃G) = sj

(
Di, Xi, R

(
Yi, Di, Xi; θ̃G

)
, ψD

c,i, ψ
X
c,i; θ̃G

)
.

Consistency for a given causal summary means that the researcher’s estimate coincides with the

true value of the summary in population.

4.4 Estimation of Causal Effects

Proposition 4. Suppose Assumptions 1, 2, 3, 5, and 6 hold. If the researcher’s estimator satisfies

strong exclusion, then the researcher’s estimator is consistent for a causal summary LG that can

be written as

LG

(
∂

∂d
Yi (·)

)
= L∗

GXZ

(
EG

[
∂

∂y
Ri

(
·; θ̃G

) ∂

∂d
Yi (·) ∂

∂z
Di (·)

])
(9)

where L∗
GXZ

is an identifiable operator that, for given choice of instruments f (·), depends on G

only through the distribution GXZ of the observed covariates (Xi, Zi), and

EG

[
∂

∂y
Ri

(
·; θ̃G

) ∂

∂d
Yi (·) ∂

∂z
Di (·)

]
≡

EG

[
∂

∂y
R
(
Yi (Di (x, z) , x) , Di (x, z) , x; θ̃G

) ∂

∂d
Yi (Di (x, z) , x) ∂

∂z
Di (x, z)

]
.

Proposition 4 states that, under strong exclusion, the researcher can consistently estimate a par-

ticular causal summary. This causal summary, described in (9), can be thought of as a linear func-
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tional of the local effect of the excluded variable Zi on the researcher-defined residual R (·), oper-

ating (via the chain rule) through the effect of Zi on the endogenous variable Di, the effect of Di

on the outcome Yi, and the effect of Yi on the residual Ri. In the case where the outcome is scalar-

valued and the researcher’s residual is additively separable in Yi, as in the linear IV model that we

discuss in Section 6.1, ∂
∂y
Ri (·; θ) = I and (9) simplifies to L∗

GXZ

(
EG

[
∂
∂d
Yi (·) ∂

∂z
Di (·)

])
.10 This

causal summary has in common with the local average treatment effect that it is a linear transfor-

mation of the effects of Zi on Yi through Di, but differs in that it need not apply positive weights

to all local effects. In more general models (9) contains an additional term, reflecting that Yi can

enter the residual function nonlinearly.

The following example exhibits another situation in which (9) takes an economically intuitive

form.

Example. (Differentiated goods demand model, continued) Suppose that α2 = β2 = 0. The

researcher’s model then simplifies to

Y ∗
j (Di, Xi, ξi; θ) = exp (α1Di,j +Xi,jβ1 + ξi,j)

1 +∑J
j′=1 exp (α1Di,j′ +Xi,j′β1 + ξi,j′)

(10)

for θ = (α1, β1) andRj(Yi, Di, Xi; θ) = log(Yi,j)−log(Yi,0)−α1Di,j−Xi,jβ1 for Yi,0 = 1−∑j Yi,j

the market share of the outside good. In this case, we have that

∂

∂y
R
(
Yi (Di (x, z) , x) , Di (x, z) , x; θ̃G

) ∂

∂d
Yi (Di (x, z) , x) =

∆Si,j (x, z) ≡
∂
∂d
Yi,j (x, z)
Yi,j (x, z) −

∂
∂d
Yi,0 (x, z)
Yi,0 (x, z)

with ∆Si (x, z) =
(
∆Si,1 (x, z)′ , . . . ,∆Si,J (x, z)′

)′
the matrix of semi-elasticities of the inside

goods with respect to their prices, minus the semi-elasticity of the outside good. Consequently,

Proposition 4 implies that LG (∆Si (·)) = LG (∆S∗
i (·)) , for ∆S∗

i (·) the model-implied analogue

of ∆Si (·) and a linear operator LG that can be written as

LG (∆Si (·)) = L∗
GXZ

(
EG

[
∆Si (·) ∂

∂z
Di (·)

])
.

Hence, under strong exclusion, the researcher is guaranteed to correctly estimate a particular, first-

10Specifically, the causal summary takes this form when R (Yi, Di, Xi; θ) = Yi + R̃ (Di, Xi; θ).
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stage-weighted combination of semi-elasticies. By contrast, as the following claim shows, if the

researcher does not use any strongly excluded instruments then their estimator is not consistent for

any such first-stage-weighted combination of semi-elasticities.

Claim 1. Suppose the researcher’s model takes the multinomial logit form in (10) and the re-

searcher’s estimator takes the GMM form in (4). Let G be the set of all distributions such that

Assumptions 1 and 5 hold, and both EG

[
∂
∂θ
mi (θ)

]
and ΞG have full rank, so that the researcher

uses no strongly excluded instruments. The researcher’s estimator is not consistent for any causal

summary of the form

LG (∆Si (·)) = L∗
GXZ

(EG [∆Si (·)ωi (·)]) ,

for ∆Si (·) the matrix of semi-elasticities, ωi (·) a functional of Di (·), and L∗
GXZ

(·) a linear oper-

ator that depends on G only through GXZ .

5 Application to the Demand for Beer

Miller and Weinberg (2017, henceforth MW) estimate a differentiated goods demand model for

beer in the United States. MW estimate their model using data on the beer market from the IRI

Academic Database (Bronnenberg, Kruger, and Mela 2008) and data on income in each region-

year from the American Community Survey. We re-estimate MW’s model using their original code

and data, and use it as the basis for a set of simulations designed to evaluate the performance of

different estimators under misspecification of the estimated model. We focus on the mean own-

price elasticity, a causal summary of economic interest.11

5.1 Data Generating Process

We simulate data from a data generating process based on the specification that MW report in

column (ii) of their Tables IV and VI. In MW’s setting, an observation i ∈ N MW is a market

(region-month), the outcome Yi ∈ RJ is the vector of market shares of J different beer products,

and the endogenous variable Di ∈ RJ is the vector of prices of these products.

MW specify that market shares Yi follow a random-coefficients nested logit model where the

mean utility in each market i for each product j is additively separable in product fixed effects,

month fixed effects, and a preference shock ξMW
ij . We use the same specification, with limited

11Appendix Figure 2 presents results for the median own-price elasticity and the median market-price elasticity, esti-
mates of which MW report in their Table IV.
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modifications detailed in Appendix D.1 to simplify computation by (i) eliminating the random

coefficient on price and (ii) coarsening the set of included exogenous variables. This implies a

potential outcome model Yi = Yi (Xi, Di) = Y MW
(
Xi, Di, ξ

MW
i

)
, where Y MW (·) is a known

function and Xi encodes the set Ji of products available in market i, the seasonal month of market

i, and an indicator for high-income markets. For specifications with sharp zero effects we adopt

the modified potential outcome model Y MW
0

(
Xi, ξ

MW
i

)
= Y MW

(
Xi, D, ξ

MW
i

)
where D ∈ RJ

is a constant that does not depend on Di.

MW specify that prices Di follow a Bertrand-Nash pricing model where the marginal cost in

each market i for each product j is additively separable in product fixed effects, calendar month

fixed effects, region fixed effects, a cost shock ηMW
ij , an indicator for whether the product is part of a

merged entity (multiplied by a coefficient), and the product of the prevailing price of diesel fuel and

the distance of the market to the owner’s closest brewery (also multiplied by a coefficient). For our

simulations we again adopt our modification of MW’s model as the true data generating process,

which yields potential endogenous variable model Di = Di (Xi, Zi) = DMW
(
Xi, Zi, η

MW
i

)
,

where DMW (·) is a known function and Zi encodes the region of market i, the ownership network

of the products, the prevailing price of diesel fuel, and the distance of the market to the owner’s

closest brewery.

To create simulated datasets, we draw (Xi, Zi) at random from the values observed in the

MW data, and then draw
(
ξMW

i , ηMW
i

)
at random from the model-implied residuals in the MW

data. We then construct prices according to D = DMW
(
Xi, Zi, η

MW
i

)
and outcomes according

to Y = Y MW
(
Xi, Di, ξ

MW
i

)
, or, in the sharp zero case, Y = Y MW

0

(
Xi, ξ

MW
i

)
. Since (Xi, Zi)

and
(
ξMW

i , ηMW
i

)
are drawn independently this data generating process satisfies Assumption1(b)

while since Y MW (·) does not depend on Zi it also satisfies Assumption 1(a). To create a single

simulated dataset {(Yi, Di, Xi, Zi)}n
i=1, we repeat this procedure n times with replacement, letting

D be a vector of the mean prices across products in the simulated observations i ∈ {1, ..., n}.12 In

our main analysis, we use S = 500 simulated datasets of size n = 10000.13

5.2 Researcher’s Model

We envision a researcher who specifies a model Y ∗
i (·) of market shares that may, but need not,

coincide with the true potential outcome model. We consider alternative researcher’s models Y ∗
i (·)

12That is, Dj =
∑n

i=1

∑
j∈Ji

Dij∑n

i=1
|Ji|

for all j ∈ {1, ..., J}.
13Appendix Figure 3 presents results in which we increase and decrease the sample size n.
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that can be specified as special cases of MW’s model. To specify these alternatives, we vary (i)

whether the researcher allows for a nesting structure and (ii) the set of product characteristics

on which the researcher allows a random coefficient. By varying these elements, we are able to

consider researcher’s models that vary in richness from a random coefficients nested logit (as in

MW’s estimated model) to a multinomial logit (with no nesting or random coefficients). All of the

specifications that we consider include a full set of product and seasonal month fixed effects, and

so they may differ from the true potential outcomes model only in elements (i) and (ii).

5.3 Researcher’s Estimator

MW estimate their model of market shares using a procedure with an outer loop and an inner

loop. The outer loop solves a nonlinear GMM problem to determine the parameters governing

the nesting structure and the random coefficients. The inner loop solves a linear GMM problem

in which mean utility depends on price and fixed effects. The objective function for both loops

is constructed similarly to (4), with the chosen instrument function fMW (Xi, Zi).14 We suppress

discussion of the fixed effects and focus on estimation of the price coefficient α ∈ R and the

remaining parameters β ∈ Rdim(θ)−1.

We adapt MW’s procedure as follows. For the outer loop, we choose a weight matrix ac-

cording to the procedure in Appendix B.2, and we use the same instruments fMW (Xi, Zi) and

corresponding sample moment functions as MW.15

For the inner loop, we use the usual two-stage least squares weight matrix, and we use three

different instruments. The first instrument we use is Di. Using this instrument mimics a researcher

who ignores price endogeneity. To define the remaining two instruments, given a dataset, for any

x ∈ X let

f
MW (x) =

∑
i:Xi=x f

MW (Xi, Zi)
|{i : Xi = x}|

denote the average of the chosen instruments fMW (Xi, Zi) over the set of observations in the

14For a given product j, fMW
j (Xi, Zi) contains (i) the product of the distance to the owner’s closest brewery and

the prevailing price of diesel fuel (a function of Zi), (ii) an indicator for whether the product is part of a merged
entity (a function of Zi), (iii) the number |Ji| of products in the market (a function of Xi), (iv) the product of (ii)
and ownership indicators (a function of Xi and Zi), (v) the sum of distances to the owner’s closest brewery over
available products Ji (a function of Xi and Zi), (vi) the products of (v) and ownership indicators (a function of Xi

and Zi), and (vii) the products of mean income in market i with a constant and with the number of calories in the
product (a function of Xi).

15We use a tolerance of 10−12 in the contraction mapping that computes the mean utility that is used in the inner loop.
For the case of correct specification, switching to a tolerance of 10−13 changes the estimated median bias under
strong exclusion by less than 0.01.
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dataset with Xi = x. The second instrument we use is fMW (Xi). Using this instrument mim-

ics a researcher whose chosen instruments are functionally dependent on the included exogenous

covariates Xi. Lastly, let

fMW,E (Xi, Zi) = fMW (Xi, Zi) − f
MW (Xi)

denote the deviation of the chosen instruments from their average fMW (Xi). The third instrument

we use is fMW,E (Xi, Zi). Using this instrument corresponds to a researcher who follows the recipe

in Section 3.5, thus ensuring strong exclusion.16

5.4 Findings Under Sharp Zero Effects

For the case of sharp zero effects we set Y = Y MW
0

(
Xi, ξ

MW
i

)
in the data generating process.

For each model Y ∗ (·) we compute three estimators, each associated with a different inner loop

instrument. For the estimator using Di (“ignoring endogeneity”), we expect endogeneity bias even

under correct specification. For the estimator using fMW (Xi) (“strong inclusion”) we expect bias

under incorrect specification due to Proposition 2, but no bias under correct specification. For

the estimator using fMW,E (Xi, Zi) (“strong exclusion”) we expect no bias even under incorrect

specification due to Proposition 1.

Figure 2 presents our simulation-based estimates of the median bias of the three estimators for

the mean own-price elasticity. Ignoring endogeneity leads to economically significant median bias

under all models considered. Strong inclusion leads to approximately median-unbiased estimates

under correct specification but median-biased estimates under incorrect specification. The bias is

economically large and does not have a consistent sign. Strong exclusion leads to approximately

median-unbiased estimates under both correct and incorrect specification.

The protection against bias that strong exclusion affords may come at the cost of decreased pre-

cision due to the removal of potentially useful identifying variation from the instruments. Figure

3 presents estimates of the median absolute deviation of the estimate from the true value of each

target. Under correct specification, strong inclusion outperforms strong exclusion. Under incorrect

specification, strong exclusion performs at least as well, and in some specifications much better,

than strong inclusion. Appendix Figure 5 shows that strong exclusion ensures conservative cov-

erage of a standard (delta-method) confidence interval under correct and incorrect specification,

16Appendix Figure 4 presents results using fMW (Xi, Zi) in the inner loop.
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whereas strong inclusion leads to severe undercoverage under misspecification. Appendix Figure

6 shows that residualizing with respect to a coarsening of Xi achieves a more favorable median

absolute deviation than does strong exclusion.

5.5 Findings Away from Sharp Zero Effects

Even under strong exclusion, our theoretical results do not guarantee recovery of the mean own-

price elasticity away from the case of sharp zero effects. It is nevertheless interesting to examine

how the different estimators perform as we move away from the sharp zero case. Panel A of Fig-

ure 4 shows the median bias of the estimators with strong exclusion and strong inclusion, scaled

relative to the median bias of the estimator that ignores price endogeneity, when Y ∗ (·) is a multi-

nomial logit (the most extreme form of misspecification that we consider), and when we consider

a data generating process with an effect of price on market share.17 As we move away from the

case of sharp zero effects, both estimators become more biased relative to ignoring endogeneity.

Under price effects as strong as those implied by Y MW (·), the estimator under strong inclusion has

greater median bias than does the estimator that ignores price endogeneity, whereas the estimator

with strong exclusion has similar median bias to the estimator that ignores price endogeneity.

Proposition 4 implies that there is some causal summary that the estimator will recover con-

sistently under strong exclusion. Section 4.4 shows that this causal summary takes the form of a

(possibly negatively) weighted mean relative cross-price semi-elasticity. Appendix D.2 shows an

approach to simplifying the weights to ease computation. Panel B of Figure 4 parallels Panel A,

but focusing on median bias for the (simplified) weighted mean relative semi-elasticity derived in

Appendix D.2. Consistent with Proposition 4, median bias for the weighted mean relative semi-

elasticity is small under strong exclusion. Consistent with Claim 1, median bias remains large for

the weighted mean relative semi-elasticity under strong inclusion.

Proposition 4 also shows that the nature of the causal summary estimated consistently under

strong exclusion depends on the distribution of the exogenous variables. Panel C of Figure 4

illustrates by repeating the results in Panel A for a case (“randomized cost shifter”) in which we

replace the instruments fMW,E (Xi, Zi) with an excluded cost shifter drawn i.i.d. across products

17To vary the strength of price effects away from the sharp zero, we let Yi = Y MW
(
Xi, ϕDi + (1 − ϕ)D, ξMW

i

)
so that ϕ = 0 corresponds to the potential outcome model Y MW

0 (·) under which the sharp zero holds and ϕ = 1
corresponds to the potential outcome model Y MW (·) estimated on the original data. Appendix Figure 7 presents
results for the full set of researcher’s models that we consider.
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and markets.18 We may think of this specification as corresponding to a situation in which the

researcher has access to data from an experiment (or quasi-experiment) in which marginal costs are

randomly perturbed in an i.i.d. manner at the product-market level. In this case, the weighted mean

semi-elasticity derived in Appendix D.2 is more similar to the average own-price elasticity (see

Appendix Figure 8). Correspondingly, in this case median bias for the mean own-price elasticity

is small under strong exclusion regardless of the effect of price on the market share. Median bias

remains large under strong inclusion.

6 Connections and Extensions

In this section we discuss some connections and extensions. Appendix B.4 discusses the interpre-

tation of our results when the exogenous covariates Xi are mismeasured.

6.1 Connections to Linear IV Estimands

Although we focus on applications to nonlinear, multivariate structural models, it is useful to dis-

cuss how our findings connect with those in the large literature on the interpretation of linear

instrumental variables (IV) estimators under model misspecification. The constant-effects linear

IV model with a single endogenous regressor implies an outcome model of the form

Y ∗
i (d, x; ξi; θ) = αd+ x′β + ξi (11)

for θ = (α, β). Cast into the framework of Section 2, this corresponds to a case with J =
dim (Yi) = dim (Di) = 1, dim (α) = 1, dim (β) = dim (Xi), and R(Yi, Di, Xi; θ) = Yi −
αDi −X ′

iβ, where α describes the model-implied causal effect of Di on Yi at any (d, x).
Common estimators (such as two-stage least squares, two-step GMM, etc.) can be written as

GMM with the population moment equation

EG [(Yi − α0Di −X ′
iβ0) (X ′

i, Z
′
i) ′] = 0.

If the instrument Zi is randomly assigned, Zi ⊥⊥ (Yi (·) , Di (·) , Xi), and Xi includes a constant,

18Specifically, we draw the product of the distance to the owner’s closest brewery and the prevailing price of diesel
fuel randomly with replacement from the full set of values across all products and markets in the original data, and
recompute all endogenous variables according to the assumed data generating process.
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then strong exclusion holds automatically. If we instead replace Zi with a transformation of Xi

(as, for instance, in the approach of Escanciano, Jacho-Chávez, and Lewbel 2016 applied to the

linear model, or in the discretization-based approach of Gao and Wang 2023), or Zi is not mean-

independent of Xi, then strong exclusion will typically fail. As before, this can be addressed by

residualizing Zi with respect to Xi, in which case (under our other regularity conditions) the proof

of Proposition 4 implies that α̃ depends on only a linear transformation of the local effects of Zi

on Yi through Di with possibly negative weights.19

This implication of our analysis connects our work to recent articles by Blandhol et al. (2022)

and Słoczynski (2022). These articles focus on the case of a binary treatment Di ∈ {0, 1} together

with the two-stage least squares estimator, and maintain monotonicity assumptions on the potential

endogenous variable function Di (·). These articles analyze whether α̃ is a non-negative weighted

average of causal effects of Di on Yi under alternative ways of accounting for the covariates Xi.

In the setting of these articles, controlling flexibly for Xi, as the articles recommend, guarantees

strong exclusion of the estimator. In contrast to these papers, some of our results require a con-

tinuous endogenous variable Di, and our results apply to any estimator that can be expressed as

in Assumption 3. Our results establish that strong exclusion guarantees weak (but desirable) prop-

erties for the causal interpretation of the researcher’s estimator under arbitrary misspecification of

the researcher’s model, and that failure of strong exclusion means that even these weak properties

fail to hold under some forms of misspecification. The conclusion that eliminating dependence be-

tween excluded and included variables strengthens the causal interpretation of linear IV estimators

has other antecedents in the literature, including Ansel, Hong, and Li (2018) and Borusyak and

Hull (forthcoming). In particular, the “recentering” proposed by Borusyak and Hull (forthcoming)

for linear models suffices to ensure that strong exclusion holds.

When Yi ∈ R is a scalar and Di ∈ RJ is vector-valued, then the outcome model in (11)

directly nests the linear instrumental variables model with multiple, discrete treatments studied

in, for example, Angrist and Imbens (1995), Heckman, Urzua, and Vytlacil (2006), Kirkeboen,

Leuven, and Mogstad (2016), Kline and Walters (2016), and Bhuller and Sigstad (2023), among

many others. In a setting with multivalued treatments, Bhuller and Sigstad (2023) establish that a

causal interpretation of the usual 2SLS estimand as a convex weighted average of causal effects

of particular treatments requires a condition ensuring that each instrument is only related to one

19That is, α̃ = L̃GXZ

(
EG

[
∂

∂dYi (·) ∂
∂zDi (·)

])
for a linear operator L̃GXZ

(·) which again depends onG only through
GXZ .
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endogenous variable conditional on the other instruments.20 Conditions of this kind may apply in

some economic settings, but they are precluded by, for example, the assumption of Bertrand-Nash

pricing under complete information about costs that underlies a large number of applications of

differentiated goods demand estimation.21 This observation helps clarify why guarantees stronger

than the one in Proposition 4 may be difficult to obtain under realistic conditions in the applications

to multivariate, nonlinear structural models that are our focus.

As mentioned in the introduction, a large literature studies the interpretation of linear IV esti-

mators under potential model misspecification, emphasizing concerns that are distinct from those

we study. Angrist (2001) studies IV estimands in limited dependent variable settings, and char-

acterizes a nonlinear estimand in terms of causal effects. Kolesár (2013) and Andrews (2019)

compare the estimands of different IV estimators in linear models. Kolesár et al. (2015) discuss

instrumental variables estimation when the exclusion restriction fails but the exclusion violations

are orthogonal to the first stage. Mogstad, Santos, and Torgovitsky (2018) discuss the interpretation

of linear IV estimands in terms of marginal treatment effect functions. Kline and Walters (2019)

show that many nonlinear and linear models deliver numerically equivalent estimates for local

average treatment effects and average potential outcomes among certain subgroups. Mogstad, Tor-

govitsky, and Walters (2021) study the interpretation of 2SLS with a binary treatment and multiple

instrumental variables under alternative monotonicity conditions.

6.2 Conditional Exogeneity of Excluded Variables

Under Assumption 1, the only distinction between the excluded exogenous variables Zi and the in-

cluded exogenous variables Xi is that only the latter can have a direct causal effect on the outcome

Yi. In particular, Assumption 1(b) implies that both Zi and Xi are exogenous in the sense that

they are both independent of the potential outcome function Yi (·) and the potential endogenous

variable function Di (·). In some settings, we may be interested in weakening Assumption 1 to

allow that Xi may not be exogenous in this sense. Our findings regarding the causal interpretation

of the researcher’s estimand generalize directly if we weaken Assumption 1(b) to require only that
20Kirkeboen, Leuven, and Mogstad (2016) note that two-stage least squares applied to unordered discrete treatments

does not estimate a convex combination of causal effects in general, but show that this can be resolved when ad-
ditional data is available (in their setting, data on next-best choices). Kline and Walters (2016) decompose the
IV estimands into alternative sub-local average treatment effects across different treatment values. Chalak (2017)
studies the interpretation of IV estimands in settings with ordered discrete treatments under violations of mono-
tonicity. Heckman and Pinto (2018) and Lee and Salanié (2018) study conditions under which treatment effects of
multi-valued treatments are nonparametrically point identified.

21Gandhi and Nevo (2021, p. 105) refer to this model of pricing as “the workhorse model of horizontal competition.”
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Zi is exogenous conditional on Xi.

Assumption 7. (Nesting model with conditional exogeneity) Under all G ∈ G, Assumption 1(a)

holds, and we have that (Yi (·) , Di (·)) ⊥⊥ Zi|Xi.

Claim 2. The conclusions of Propositions 1, 2, and 4 hold replacing Assumption 1 with Assump-

tion 7.

The conclusions of Proposition 2 hold if we replace Assumption 1 with Assumption 7, because

doing so can only enlarge the set of distributions G ∈ G0. The rest of Claim 2 follows directly

from the proofs of Propositions 1 and 4. Intuitively, because strong exclusion ensures that there

are sufficiently many effective instruments that are strongly excluded, weakening to the conditional

exogeneity of the excluded variables Zi does not affect the conclusions of these propositions.

6.3 Dynamic Extension: Production Model with Input Endogeneity

We sketch how our analysis extends to cover dynamic settings, focusing for concreteness on dy-

namic panel approaches to production function estimation. Appendix B.5 provides a more general

development for dynamic settings that nests, as a special case, the setting we discuss here.

Here i indexes firms, j indexes time periods, Yi ∈ RJ is a vector of log outputs, Di ∈ RJ is a

vector of log quantities for a static input, and Zi ∈ RJ collects together a sequence of cost shifters.

The covariates Xi,j consist of state variables including past values Yi,1:j−1 = (Yi,1, ..., Yi,j−1) of the

outcome, past values Di,1:j−1 = (Di,1, ..., Di,j−1) of the static input, and past and current values

Ki,1:j = (Ki,1, ..., Ki,j) of a dynamic input. The researcher assumes that production is governed

by a Cobb-Douglas technology with

Yi,j = β0 + αDi,j + β1Ki,j + νi,j (12)

νi,j = β2νi,j−1 + ξi,j for j > 0,

where β0 is a constant, and νi,0 is drawn from some distribution. Here νi,j is productivity and

evolves as an AR(1) process with innovation ξi,j , where ξi,j is independent over time withE[ξi,j] =
0 for all j ≥ 1. The innovation ξi,j is realized after the dynamic input is chosen but before the

static input is chosen in period j ≥ 1, and it is therefore independent of Xi,j (but not necessarily

independent of Di,j nor Xi,j+1). As a result, E [ξi,j | Xi,j] = 0. As discussed in Ackerberg,
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Caves, and Frazer (2015, Section 4.3.3; see also Blundell and Bond 1998, 2000), under standard

assumptions this model implies that we may conduct GMM estimation based on the period-specific

residual function

R̃ (Yi,j, Di,j, Xi,j; θ) = (Yi,j − β2Yi,j−1)−β0 (1 − β2)−α (Di,j − β2Di,j−1)−β1 (Ki,j − β2Ki,j−1)
(13)

for θ = (α, β) and β = (β0, β1, β2). Such an approach may or may not make use of the excluded

cost shifters Zi. To analyze the performance of the researcher’s estimator under potential misspeci-

fication, we nest the researcher’s model in a potential outcomes framework that accommodates this

dynamic setting in Appendix B.5, where we establish analogues of the results in Sections 3 and

4. For the Cobb-Douglas production technology as an example, the results in Appendix B.5 imply

that, if the researcher’s effective instruments satisfy a dynamic generalization of strong exclusion,

then the researcher’s estimand is sharp zero consistent and α̃ recovers a particular linear functional

of the local effects of the cost shifters on output through the static input.

7 Conclusion

When a researcher has access to excluded, exogenous variables, it is often possible to ensure strong

exclusion. Strong exclusion in turn guarantees that the researcher will not mistakenly conclude that

the endogenous variable affects the outcome when it does not, and guarantees consistent recovery

of a causal summary. Failure of strong exclusion can lead to substantial bias in the estimation of

economically interesting targets in realistic settings.

When a researcher has access to excluded, exogenous variables, we recommend that the re-

searcher choose their instruments and estimator to ensure strong exclusion. When a researcher

does not have access to such variables, we recommend that the researcher make explicit that their

estimator fails to satisfy strong exclusion, so that readers can better gauge the causal interpretation

of the researcher’s estimand.
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Figure 2: Estimated median bias for estimators of the mean own-price elasticity, sharp zero effects

Logit
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Strongly excluded
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Ignoring endogeneity

Note: The plot reports the estimated median bias for estimators of the mean own-price elasticity based on 500 simu-
lations described in detail in Section 5, with the share of simulations returning invalid estimates reported in Appendix
Table 1. Each marker shape corresponds to a different choice of estimator and each row corresponds to a different
specification of the researcher’s demand model. The demand models are distinguished by whether they include random
coefficients and a nesting structure (RCNL), random coefficients only (RCL), or neither (Logit), and by the product
characteristic on which random coefficients are allowed (calories, indicator for inside goods). The plot depicts the
median bias across the simulation replicates, along with its 95 percent confidence interval.
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Figure 3: Estimated median absolute deviation for estimators of the mean own-price elasticity, sharp zero
effects

Logit
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Note: The plot reports the estimated median absolute deviations for estimators of the mean own-price elasticity based
on 500 simulations described in detail in Section 5. Each marker shape corresponds to a different choice of esti-
mator and each row corresponds to a different specification of the researcher’s demand model. The demand models
are distinguished by whether they include random coefficients and a nesting structure (RCNL), random coefficients
only (RCL), or neither (Logit), and by the product characteristic on which random coefficients are allowed (calories,
indicator for inside goods). The plot depicts the median absolute deviation across the simulation replicates, along with
its 95 percent confidence interval.
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Figure 4: Estimated median bias of the multinomial logit for different targets, varying the strength of price
effects

(A) Mean own-price elasticity
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(B) Weighted mean relative semi-elasticity
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(C) Mean own-price elasticity (alternative instrument)
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Note: The plot reports the estimated median bias for estimators of different targets based on 500 simulations de-
scribed in detail in Section 5. To vary the strength of price effects away from the sharp zero, we let Yi =
Y MW

(
Xi, ϕDi + (1 − ϕ)D, ξMW

i

)
. The plot depicts the median bias across the simulation replicates, along with its

95 percent confidence interval, for several values of the strength of price effects ϕ. For comparability, we normalize
the median bias of each estimator by the median bias when ignoring endogeneity. In Panels A and C, the target is the
mean own-price elasticity. In Panel B, the target is the simplified weighted mean semi-elasticity derived in Appendix
D.2.
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A Proofs for Results in Main Text

Throughout the proofs, we let (A)+ denote the (elementwise) maximum ofA and zero, and (A)− =
(−A)+ . For any natural number L, we further define [L] = {1, ..., L} . In the appendix only,
we write fE (Xi, Zi) = WE

G f (Xi, Zi) and f I (Xi, Zi) = W I
Gf (Xi, Zi) for WE

G ∈ RLE×K and
W I

G ∈ RLI×K . We write ej for the jth standard basis vector, and f(l,j) (Xi, Zi) = e′
lf (Xi, Zi) ej

for the (l, j)-th element of f (Xi, Zi).

A.1 Proof of Lemma 1

Note that Assumption 2(a) writes ξi as a function of the potential outcomes Yi (d, x). Hence, by
Assumption 1, ξi ⊥⊥ (Xi, Zi) . We can therefore rewrite the left hand side of (2) as

E [f (Xi, Zi) ξi] = E [f (Xi, Zi)]E [ξi] = 0,

where the last equality follows since E[ξi] = 0 under Assumption 2(a). □

A.2 Proof of Proposition 1

To prove Proposition 1, we first prove the following lemma.

Lemma 2. Under Assumption 2,

R (y, d, x; (0, β)) = R (y, d′, x; (0, β)) for all y, d, d′, x, and β.

Proof of Lemma 2 For β and any y, d, and x, let ξ = R (y, d, x; (0, β)) . By Assumption 2(b),
Y ∗ (d, x, ξ; (0, β)) = Y ∗ (d′, x, ξ; (0, β)) = y for any d′. By Assumption 2(a) we thus have ξ =
R (y, d′, x; (0, β)) . It follows that R (y, d, x; (0, β)) = R (y, d′, x; (0, β)) , as we aimed to show. □

Returning to Proposition 1, consider any G ∈ G satisfying the stated conditions. Lemma 2
implies that we can write

R (y, d, x; (0, β)) = R̃ (y, x; (0, β))

for some function R̃. Fixing α = 0 the effective moment condition becomes

E

 fE (Xi, Zi)
f I (Xi, Zi)

 R̃ (Yi, Xi; (0, β))
 = 0.

Under Assumption 1 and sharp zero effects, however, Yi ⊥⊥ Zi|Xi under G, so

E
[
fE (Xi, Zi) R̃ (Yi, Xi; (0, β))

]
= E

[
E
[
fE (Xi, Zi) R̃ (Yi, Xi; (0, β)) |Xi

]]
=
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E
[
E
[
fE (Xi, Zi) |Xi

]
E
[
R̃ (Yi, Xi; (0, β)) |Xi

]]
= 0,

where the last equality follows from Definition 4(a). Hence,E
[
fE (Xi, Zi)R (Yi, Di, Xi; (0, β))

]
=

0 for all β. Next, we have assumed that there exists some βG such that

E
[
f I (Xi, Zi)R (Yi, Di, Xi; (0, βG))

]
= 0

as well, from which the result is immediate. □

A.3 Proof of Proposition 2

For G0 as defined in Assumption 4 and t ∈ R, consider a family of distributions Gt which per-
turb G0 by changing the marginal distribution of Xi while holding the conditional distribution of
(Yi (·) , Di (·) , Zi) |Xi constant, and where limt→0 Gt = G0. Since we change only the distribu-
tion of Xi, Yi (·) continues to satisfy sharp zero effects and fE (Xi, Zi) continues to be strongly
excluded. For g (Xi) = d

dt
log

(
dGt

dG0
(Yi (·) , Di (·) , Zi, Xi)

)∣∣∣
t=0

the score at t = 0 (where the
definition of the score implies that EG0 [g (Xi)] = 0), we have

∂

∂t
EGt [B (Yi, Di, Xi)]

∣∣∣∣∣
t=0

= EG0 [B (Yi, Di, Xi) g (Xi)] (14)

for any function B(Yi, Di, Xi). Moreover, we can write the KL divergence as

KL (G0, Gt) = −EG0

[
log

(
dGt

dG0
(Yi (·) , Di (·) , Zi, Xi)

)]
,

so ∂
∂t
KL (G0, Gt)|t=0 = −EG0 [g (Xi)] = 0 and these perturbations have no first-order effect on

the KL divergence for t small.
We next derive the form of the derivative ∂

∂t
θ̃t

∣∣∣
t=0

for θ̃t the solution to (3) under Gt. If we let
q (G, θ) = WGmG (θ) , note that θ̃G solves q (G, θ) = 0 by Assumption 3. Hence, by the implicit
function theorem,

∂

∂t
θ̃t

∣∣∣
t=0

= −
(
∂

∂θ
q
(
G0, θ̃0

))−1
∂

∂t
q
(
Gt, θ̃0

)∣∣∣
t=0

.

Further note that ∂
∂θ
q
(
G0, θ̃0

)
= WG0

∂
∂θ
mG0

(
θ̃0
)
, and ∂

∂t
q
(
Gt, θ̃0

)∣∣∣
t=0

= WG0
∂
∂t
mGt

(
θ̃0
)∣∣∣

t=0
since mG0

(
θ̃0
)

= 0 by Assumption 4(ii) and the product rule. Hence we obtain that

∂

∂t
θ̃t

∣∣∣
t=0

= −
(
WG0

∂

∂θ
mG0

(
θ̃0
))−1

WG0

∂

∂t
mGt

(
θ̃0
)∣∣∣

t=0
.
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Assumption 4(iii) implies that we can take the derivative with respect to θ inside the expectation.
This yields

∂
∂t
θ̃t

∣∣∣
t=0

=

−EG0

 fE (Xi, Zi)
f I (Xi, Zi)

 ∂
∂θ
R
(
Yi, Di, Xi; θ̃0

)−1

EG0

 fE (Xi, Zi)
f I (Xi, Zi)

R (Yi, Di, Xi; θ̃0
)
g (Xi)


applying (14).

Note that

M−1 = EG0

 fE (Xi, Zi)
f I (Xi, Zi)

 ∂

∂θ
R
(
Yi, Di, Xi; θ̃0

)−1

is a full-rank matrix by Assumption 4(i). By Assumption 4(vi) that V ar
(
E
[
f I (Xi, Zi)R

(
Yi, Di, Xi; θ̃0

)
|Xi

])
has full rank, however, we can define

g (Xi) =
(
EG0

[
f I (Xi, Zi)R

(
Yi, Di, Xi; θ̃0

)
|Xi

]
− EG0

[
f I (Xi, Zi)R

(
Yi, Di, Xi; θ̃0

)])′
×

V arG0

(
EG0

[
f I (Xi, Zi)R

(
Yi, Di, Xi; θ̃0

)
|Xi

])−1
v

for any vector v ∈ RLI
. By construction, EG0 [g (Xi)] = 0 and

EG0

 fE (Xi, Zi)
f I (Xi, Zi)

R (Yi, Di, Xi; θ̃0
)
g (Xi)

 =
 0
v

 .
Since we may construct such a g for any v ∈ RLI where LI > dim (β), and M−1 has full rank, it
follows that we can pick v such that one of the first dim (α) entries of

M−1

 0
v


is non-zero, and consequently ∂

∂t
α̃t|t=0 ̸= 0. The result follows immediately. □

A.4 Proof of Proposition 3

To show that a causal summary is identified from GY DXZ , consider a differentiable function B(·)
and a distribution G such that EG [B (Yi) |Xi, Zi] differs from EG [B (Yi) |Xi] with positive proba-
bility. Define fE (Zi, Xi) = EG [B (Yi) |Xi, Zi]−EG [B (Yi) |Xi] , noting thatEG

[
fE (Zi, Xi) |Xi

]
=

0. Note, however, that

EG

[
fE (Zi, Xi)B (Yi)

]
= EG [(EG [B (Yi) |Xi, Zi] − EG [B (Yi) |Xi])B (Yi)] =
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EG

[
EG [B (Yi) |Xi, Zi]2 − EG [B (Yi) |Xi]2

]
= E [V ar (EG [B (Yi) |Xi, Zi] |Xi)] > 0.

By Lemma 4 below, we can write

EG

[
fE (Zi, Xi)B (Yi)

]
= L̃G

(
T D→B(Y )

i (·)
)
,

for L̃G a linear operator defined in that lemma, where L̃G (0) = 0. However, T D→B(Y )
i (d, x) =

∂
∂y
B (Yi (d, x)) ∂

∂d
Yi (d, x) , so if we define a new operator LG (·) with LG (Ai (·)) = L̃G

(
∂

∂y
Bi (·)Ai (·)

)
for ∂

∂y
Bi (d, x) = ∂

∂y
B (Yi (d, x)) , we have LG

(
∂
∂d
Yi (·)

)
is trivially identified.

To prove that no causal summary is identified from GY DX , consider any joint distribution
G for (Yi (·) , Di (·) , Xi, Zi) . Note that this implies a distribution GY DX for the non-excluded
observables. Next, define an alternative distributionG∗ such that the distribution of (Di (·) , Xi, Zi)
is the same as under G, but Yi (d, x) = Yi (d′, x) for all (d, d′, x) for all i. We are free to choose the
conditional distribution of Yi (d, x) given Di (·) for each x. To generate this distribution, for each
x let us draw from Zi|Xi = x and consider the implied distribution for Di (Zi, Xi) |Xi = x. Under
G, this then implies a joint distribution for (Yi (Di (Zi, Xi) , Xi) , Di (Zi, Xi)) |Xi = x. To generate
the distribution of Yi (d, x) under G∗, let us draw from the distribution of Di (Zi, Xi) |Xi = x, and
then draw Yi (d, x) from the conditional of Yi (Di (Zi, Xi) , Xi) |Di (Zi, Xi) , Xi = x under G. By
construction, the conditional distribution of Yi (Di, Xi) |Di, Xi under G∗ matches that under G, so
G and G∗ both imply the same distribution GY DX for (Yi, Di, Xi) . By definition T D→B(Y )

i (·) = 0
under G∗ for all i, however, so any causal summary that is identified from GY DX must have

LG

(
T D→B(Y )

i (·)
)

= LG∗

(
T D→B(Y )

i (·)
)

= 0.

Since this argument applies for any marginal distributionGY DX , any linear functional LG

(
T D→B(Y )

i (·)
)

identified from GY DX must have LG

(
T D→B(Y )

i (·)
)

= 0 for all G ∈ G, and so is not a causal sum-
mary.

It remains to show that a causal summary is identified from the distribution of GY DX under
the researcher’s model provided (2) has a unique solution. This is immediate: Lemma 1 shows
that (2) is solved at θ0, so if this solution is unique then θ0 is identified. Note, however, that for θ0

known we can recover ξi as ξi = R (Yi, Di, Xi; θ0) , and thus know the potential outcome function
Yi (d, x) = Y ∗ (d, x, ξi; θ0) for each unit. Hence, we can immediately identify, e.g., the average
local effect of changing Di at a given value d, LG

(
∂
∂d
Yi (·)

)
= EG

[
∂
∂d
Yi (d,Xi)

]
. □

A.5 Proof of Proposition 4

We next state several technical lemmas which will be helpful in proving Proposition 4.
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Lemma 3. For each (l, j) ∈
[
LE
]

× [J ] and any R-valued function B∗ (x, z) that is differentiable

in z for all x, provided EG

[
fE

(l,j) (Xi, Zi) |Xi

]
= 0 under G, we can write

EG

[
fE

(l,j) (Xi, Zi)B∗ (Xi, Zi)
]

=

∫∫∫ ∫ 1

0

∂

∂z
B∗

(
x, zt

±

)
(z+ − z−) dtdH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x)

where zt
± = tz+ + (1 − t) z− and

(
H(l,j),+ (·|x) , H(l,j),− (·|x)

)
are the measures defined by

(∫
A
dH(l,j),+ (z|x) ,

∫
A
dH(l,j),− (z|x)

)
=

(∫
A

(
fE

(l,j) (x, z)
)

+
dGZ|X (z|x) ,

∫
A

(
fE

(l,j) (x, z)
)

−
dGZ|X (z|x)

)
for all measurable A ⊆ Z, and ω(l,j) (x) = 1∫

A

(
fE

(l.j)(x,z)
)

+
dGZ|X(z|x)

.22

Proof of Lemma 3 Note that

EG

[
fE

(l,j) (Xi, Zi)B∗ (Xi, Zi)
]

=
∫∫ (

fE
(l,j),+ (x, z) − fE

(l,j),− (x, z)
)
B∗ (x, z) dGZ|X (z|x) dGX (x) =

∫∫
B∗ (x, z) dH(l,j),+ (z|x) dGX (x) −

∫∫
B∗ (x, z) dH(l,j),− (z|x) dGX (x) .

Since EG

[
fE

(l,j) (Xi, Zi) |Xi

]
= 0, however, we have

∫
dH(l,j),+ (z|x) =

∫
dH(l,j),− (z|x) for all x

so we can re-write this difference as

∫∫∫
(B∗ (x, z+) −B∗ (x, z−)) dH(l,j),+ (z|x) dH(l,j),− (z|x)ω(l,j) (x) dGX (x)

for B∗ (x, z+) − B∗ (x, z−) the change in B∗ from changing Zi from z− to z+ while holding Xi

fixed at x. The fundamental theorem of calculus then implies that

B∗ (x, z+) −B∗ (x, z−) =
∫ 1

0

∂

∂z
B∗

(
x, zt

±

)
(z+ − z−) dt

from which the result is immediate. □

Lemma 4. Suppose Assumptions 1 and 5 hold and that EG

[
fE (Xi, Zi) |Xi

]
= 0. Then, for any

22If
∫

A

(
fE

(l.j) (x, z)
)

+
dGZ|X (z|x) = 0 then we define ω(l,j) (x) = 0.
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differentiable function B (Yi, Di, Xi) ∈ RJ ,

EG

[
fE (Xi, Zi)B (Yi, Di, Xi)

]
= L̃G

(
T D→B

i (·)
)

where

T D→B
i (d, x) = ∂

∂y
B (Yi (d, x) , d, x) ∂

∂d
Yi (d, x) + ∂

∂d
B (Yi (d, x) , d, x)

is the total derivative of B with respect to Di, and for a RJ×dim(D)-valued random element Ai (·, ·)
with index set D × X and H(l,j),+ (·|x) , H(l,j),− (·|x) and zt

± as defined in Lemma 3,

e′
lL̃G (Ai (·, ·)) =∑

j

∫∫∫ ∫ 1
0 e

′
jEG

[
Ai
(
Di
(
x, zt

±
)
, x
)

∂
∂zDi

(
x, zt

±
)]

(z+ − z−) dtdH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x) .

Proof of Lemma 4 Note that e′
lEG

[
fE (Xi, Zi)B (Yi, Di, Xi)

]
= ∑

j EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
.

By Assumption 1, we can write

EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
=
∫
fE

(l,j) (x, z) e′
jEG [B (Yi (Di (x, z) , x) , Di (x, z) , x)] dGXZ (x, z) .

By EG

[
fE (Xi, Zi) |Xi = 0

]
and Lemma 3 this implies that

EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
=

∫∫∫ ∫ 1

0

∂

∂z
B∗

(
x, zt

±

)
(z+ − z−) dtdH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x)

for B∗ (x, z) = e′
jEG [B (Yi (Di (x, z) , x) , Di (x, z) , x)]. By the chain rule, however

∂

∂z
B∗ (x, z) = e′

j

d

dz
EG [B (Yi (Di (x, z) , x) , Di (x, z) , x)] = e′

jEG

[
T D→B

i (Di (x, z) , x) ∂

∂z
Di (x, z)

]
.

Hence,

EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
=∫∫∫ ∫ 1

0 e
′
jEG

[
T D→B

i

(
Di
(
x, zt

±
)
, x
)

∂
∂zDi

(
x, zt

±
)]

(z+ − z−) dtdH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x) .

The result is then immediate from the definition of L̃G (·). □

Lemma 5. If Assumptions 1, 3, and 5 hold and the researcher’s estimator satisfies strong exclusion,

then for the linear operator L̃G(·) defined in Lemma 4,

L̃G

(
T D→R(·;θ̃G)

i (·)
)

= 0.

46



Proof of Lemma 5 The result is immediate from Lemma 4 withB (Yi, Di, Xi) = R
(
Yi, Di, Xi; θ̃G

)
.

□

Returning to Proposition 4, recall that

T D→R(·;θ̃)
i (d, x) ≡ ∂

∂y
R
(
Yi (d, x) , d, x; θ̃G

) ∂

∂d
Yi (d, x) + ∂

∂d
R
(
Yi (d, x) , d, x; θ̃G

)
.

Under the researcher’s model, however, R (Y ∗ (d, x, ξ; θ) , d, x; θ) ≡ ξ for all (d, x, ξ, θ) . Hence,
by the implicit function theorem,

∂

∂d
Y ∗ (d, x, ξ; θ) = −

(
∂

∂y
R (Y ∗

i (d, x, ξ) , d, x; θ)
)−1

∂

∂d
R (Yi, d, x; θ) ,

or rearranging, ∂
∂d
R (Yi, d,Xi; θ) = − ∂

∂y
R (Y ∗

i (d, x, ξ) , d, x; θ) ∂
∂d
Y ∗ (d, x, ξ; θ) . Hence,

T D→R∗(·;θ̃)
i (d, x) = ∂

∂y
R
(
Yi (d, x) , d, x; θ̃G

)( ∂

∂d
Yi (d, x) − ∂

∂d
Y ∗

(
d, x,R∗

(
Yi (d, x) , d, x; θ̃G

)
; θ̃G

))
.

Hence, Lemma 5 implies that for L̃G as defined in Lemma 4,

L̃G

(
∂

∂y
R
(
·; θ̃G

)( ∂

∂d
Yi (·) − ∂

∂d
Y ∗

(
·; θ̃G

)))
= 0

or equivalently, using linearity of L̃G,

L̃G

(
∂

∂y
R
(
·; θ̃G

) ∂

∂d
Yi (·)

)
= L̃G

(
∂

∂y
R
(
·; θ̃G

) ∂

∂d
Y ∗

(
·; θ̃G

))
.

Hence, if we define a new linear operator LG such that LG (Ai (·)) = L̃G

(
∂

∂y
R
(
·; θ̃G

)
Ai (·)

)
, we

have that LG

(
∂
∂d
Yi (·)

)
= LG

(
∂
∂d
Y ∗

(
·; θ̃G

))
, as we aimed to show. The structure of the operator

discussed in the proposition statement then follows from Lemma 4. □

A.6 Proof of Claim 1

Consider any causal summary LG of the specified form. By the definition of a causal summary,
there exists G̃ ∈ G such that LG̃ (∆S (·)) ̸= 0. For any function q : X → RJ , define Gq as the
distribution obtained by drawing (Y ∗

i (·) , Di (·) , Xi, Zi) from G̃ and then setting

Yi (d, x) = s−1 (s (Y ∗
i (d, x) + q(x)))
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for s−1 (·) and s (·) the multivariate logit transformation and inverse multivariate logit transforma-
tion, respectively (i.e. sj (y) = log (yj) − log

(
1 −∑J

j=1 yj

)
), and note that Gq ∈ G. Intuitively,

the distribution Gq matches G̃, except that it adds q (x) to s (Yi (d, x)). Since the choice of q af-
fects only the distribution of Yi (·) and has no effect on ∆Si (·) , the form for LG (·) implies that
LGq (∆Si (·)) = LG̃ (∆Si (·)) for all q(·).

Note that by construction,

EGq [mi (θ)] = EG̃ [mi (θ)] + EG̃ [E [f (Xi, Zi) |Xi] q (Xi)] .

For any vector v ∈ RK we can choose q (Xi) = EG̃

[
f (Xi, Zi)′ |Xi

]
v, so the range ofEG̃ [f (Xi, Zi) q (Xi)]

contains the range of EG̃

[
EG̃ [f (Xi, Zi) |Xi]EG̃ [f (Xi, Zi) |Xi]′

]
v, which is equal to RK by our

assumption that EG̃

[
EG̃ [f (Xi, Zi) |Xi]EG̃ [f (Xi, Zi) |Xi]′

]
has full rank. Hence, by choosing q

appropriately, we can additively shift the mean of EG̃ [mi (θ)], and in particular can select q such
that EGq

[
mi

(
0, β̃

)]
= 0 for some β̃.

Our assumption that EG

[
∂
∂θ
mi (θ)

]
has full rank implies that the moment conditions have

a unique zero. Hence, θ̃G =
(
0, β̃

)
, which by the structure of the logit model implies that

∆S∗
i

(
d, x; θ̃G

)
= 0 for all d, x. Thus by linearity of LG (·) we know that LGq

(
∆S∗

i

(
·; θ̃G

))
=

0 ̸= LGq (∆Si (·)). □

B Additional Theoretical Results and Discussion

In this section, we provide additional theoretical results that are referenced in the main text. Proofs
for results stated in this section and not proved in this section may be found in Appendix C.

B.1 Generalization to Correct Counterfactuals

The result that strong exclusion guarantees sharp zero consistency extends to a broader notion of
consistency for parameter values at which the researcher’s model correctly describes counterfactual
outcomes.

Assumption 8. (Correct counterfactuals) Suppose that for each G ∈ G there exists a value α∗
G

such that for ξi (d, x; θ) = R (Yi (d, x) , d, x; θ) ,

Yi (d′, x) = Y ∗ (d′, x, ξi (d, x; (α∗
G, β)) ; (α∗

G, β)) for all d, d′, x, β almost surely.

Definition 10. If Assumption 8 is satisfied, we say the researcher’s model satisfies correct coun-
terfactuals on G.
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Correct counterfactuals on G implies that ∂
∂d
Yi (·) = Y ∗

i (·;αG, β) for all d, x, β almost surely
under all G ∈ G. Correct counterfactuals is a joint restriction on the model and on the potential
outcomes, since it requires that the two match in a particular sense. Correct counterfactuals is a
restrictive condition, but holds in some potentially useful special cases.

Special Case: Sharp Zero Effects Assumption 8 generalizes our previous assumption for the
case of sharp zero effects. Specifically, suppose that

Yi (d, x) = Yi (d′, x) for all d, d′, x,

that the researcher’s model is as described in Assumption 2(a), and that there exists a value α∗
G

such that
Y ∗ (d, x, ξ; (α∗

G, β)) = Y ∗ (d′, x, ξ; (α∗
G, β)) for all d, d′, x, ξ, β.

The same argument used to prove Lemma 2 in Appendix A shows that in this case

ξi (d, x; (α∗
G, β)) = ξi (d′, x; (α∗

G, β)) for all d′, d, x, β

from which it follows immediately that Assumption 8 holds.

Special Case: Additively Separable Residuals Assumption 8 can also hold in cases with resid-
uals which are additively separable in y, d, and x. Specifically, suppose the residual function takes
the form

R (y, d, x; θ) = ry (y;α) − rd (d;α) − rx (x; (α, β)) .

It follows that the model-implied potential outcome functions are of the form

Y ∗ (d, x, ξ; θ) = r−1
y (rd (d;α) + rx (x; (α, β)) + ξ;α) .

Hence, Assumption 8 will hold if (and only if) the true potential outcomes satisfy

ry (Yi (d′, x) ;α∗
G) − ry (Yi (d, x) ;α∗

G) = rd (d, α∗
G) − rd (d′, α∗

G) for all d, d′, x.

For instance, this condition will hold in the multinomial logit model if and only if there exists α∗
G

such that for s−1 (·) the inverse logit transformation,

s−1 (Yi (d′, x)) − s−1 (Yi (d, x)) = (d′ − d)α∗
G for all d, d′, x.

Proposition 5. Suppose Assumptions 1, 2(a), 3, and 8 hold. If the researcher’s estimator satisfies
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strong exclusion, and at each G ∈ G, equation (3) has a unique solution and there exists βG such

that

EG

[
W I

Gf (Xi, Zi)R∗ (Yi, Di, Xi; (α∗
G, βG))

]
= 0,

then θ̃G =
(
α∗

G, β̃G

)
for each G ∈ G.

Proof of Proposition 5 Note that under Assumption 2(a),

R (Y ∗ (d, x, ξ; θ) , d, x; θ) = ξ for all d, x, ξ, θ,

so Assumption 8 implies that

R (Yi (d, x) , d, x; (α∗
G, β)) = R (Yi (d′, x) , d′, x; (α∗

G, β)) for all d, d′, x, β.

As a consequence

R (Yi, Di, Xi; (α∗
G, β)) = R (Yi (d,Xi) , d,Xi; (α∗

G, β))

for a fixed value of d. This implies that R (Yi, Di, Xi; (α∗
G, β)) is a function of (Yi (·) , Xi) but not

of Di, and hence that
R (Yi, Di, Xi; (α∗

G, β)) ⊥⊥ Zi|Xi.

Hence
E
[
WE

G f (Xi, Zi)R (Yi, Di, Xi; (α∗
G, β))

]
= 0 for all β,

while we have also assumed that the effective moments based on W I
Gf (Xi, Zi) are solved at

(α∗
G, βG) for some βG. The result is then immediate. □

B.2 Standard Errors and Efficient Weighting Under Strong Exclusion

This appendix provides standard errors for the estimator θ̂ described in Section 3.5 that enforces
strong exclusion. As discussed in the main text, this is a standard GMM estimator in the just-
identified case (LE∗ + LI∗ = P ). We therefore confine our attention to the over-identified case
(LE∗+LI∗ > P ). As also discussed in the main text, conventional GMM standard errors are invalid
in over-identified and misspecified settings and the same holds for the standard errors derived
here. Consequently, to ensure valid inference on θ̃ under misspecification we recommend that
researchers use the bootstrap when computationally feasible.
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Recall that we define the estimator θ̂ to solve

min
β
m̂I (α̂ (β) , β)′ Ω̂Im̂I (α̂ (β) , β) s.t.

α̂ (β) = arg min
α
m̂E (α, β)′ Ω̂Em̂E (α, β) ,

where this formulation nests the case with dim (α) = LE∗ provided we can solve the excluded
moments. Considering first the “inner-loop” estimator α̂ (β) , note that the first-order conditions
for this estimator are

M̂E
α (α̂ (β) , β)′ Ω̂Em̂E (α̂ (β) , β) = 0,

for M̂E
α (α, β) = ∂

∂α
m̂E (α, β) , and hence under standard regularity conditions we have that for n

large and β close to β0,

α̂ (β) ≈ −
(
M̂E

α (α0, β)′ Ω̂EM̂E
α (α0, β)

)−1
M̂E

α (α0, β)′ Ω̂Em̂E (α0, β) .

Note further that the first-order conditions for β̂ are

(
M̂ I

β

(
α̂
(
β̂
)
, β̂
)

+ M̂ I
α

(
α̂
(
β̂
)
, β̂
) ∂

∂β
α̂
(
β̂
))′

Ω̂Im̂I
(
α̂
(
β̂
)
, β̂
)

= 0,

for M̂ I
β (α, β) = ∂

∂β
m̂I (α, β) and M̂ I

α (α, β) = ∂
∂α
m̂I (α, β) . Consequently, under standard reg-

ularity conditions we will have that for n large, θ̂ =
(
α̂, β̂

)
approximately solves the system of

equations Ŝ
(
α̂, β̂

)
m̂
(
α̂, β̂

)
≈ 0 for m̂ (α, β) =

(
m̂E (α, β)′ , m̂I (α, β)′

)′
and Ŝ (α, β) is equal

to M̂E
α (α, β)′ Ω̂E 0dim(α)×LI∗

0dim(β)×LE∗

(
M̂ I

β (α, β) − M̂ I
α (α, β)

(
M̂E

α (α, β)′ Ω̂EM̂E
α (α, β)

)−1
M̂E

α (α, β)′ Ω̂EM̂E
β (α, β)

)
Ω̂I

 .
Hence, provided M̂

(
α̂, β̂

)
= ∂

∂θ
m̂
(
α̂, β̂

)
→p M0 and Ŝ

(
α̂, β̂

)
→p S0, as will again hold under

standard regularity conditions, we obtain

θ̂ − θ0 ≈ − (S0M0)−1 S0m̂ (θ0) ,

so if
√
nm̂ (θ0) →d N (0,Σ0) , one can show that

√
n
(
θ̂ − θ0

)
→d (S0M0)−1 S0Σ0S

′
0 (M0S

′
0)

−1
,

and we can estimate this asymptotic variance by plugging in Ŝ
(
α̂, β̂

)
for S0, M̂

(
α̂, β̂

)
forM0, and
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estimating Σ0 as appropriate for a given application (e.g. using a cluster-robust variance estimator
if desired).

Finally, to consider the efficient weighting matrix, note that estimation based on the “concen-
trated” moment function m̂I (α̂ (β) , β) is a special case of generalized minimum distance estima-
tion as considered in e.g. Newey and McFadden (1994). Hence, the efficient weighting matrix for
the outer loop estimator is the inverse of the asymptotic variance of

√
nm̂I (α̂ (β0) , β0) for β0 the

true parameter value. To derive this weighting matrix, note that, building on the results derived
above,

m̂I (α̂ (β0) , β0) ≈ m̂I (α0, β0)−M̂ I
α (α0, β0)

(
M̂E

α (α0, β0)′ Ω̂EM̂E
α (α0, β0)

)−1
M̂E

α (α0, β0)′ Ω̂Em̂E (α0, β0)

=
(

− M̂ I
α (α0, β0)

(
M̂E

α (α0, β0)′ Ω̂EM̂E
α (α0, β0)

)−1
M̂E

α (α0, β0)′ Ω̂E ILI∗

) m̂E (α0, β)
m̂I (α0, β)

 ,
which says that for

S̃ΩE =
(

− M I
α (α0, β0)

(
ME

α (α0, β0)′ ΩEME
α (α0, β0)

)−1
ME

α (α0, β0)′ ΩE ILI∗

)
,

the efficient outer-loop weighting matrix is
(
S̃ΩE Σ0S̃

′
ΩE

)−1
provided this matrix is non-singular.

Hence, a feasible (and efficient under correct specification) outer-loop weighting matrix plugs in
estimates for these components.

B.3 Characterization of Researcher’s Estimand

We now generalize our characterization of the researcher’s estimand in Section 4 to settings without
differentiability and without strongly excluded instruments.

B.3.1 Causal Effects Without Smoothness

Our results for causal effects developed in Section 4 of the main text extend to cases where
Yi (·) and Di (·) may be non-differentiable (e.g. because they are discrete) and our Assumption
5 does not apply. The key observation driving our constructive results in Section 4 is that if
we have a set of instruments fE (Xi, Zi) ∈ RLE×J that are strongly excluded in the sense that
EG

[
fE (Xi, Zi) |Xi

]
= 0, then for any B (Yi, Di, Zi) ∈ RJ we can represent moments of the form

E
[
fE (Xi, Zi)B (Yi, Di, Xi)

]
in terms of causal effects of Zi on B (Yi, Di, Zi). Here we use this

observation to show an analogue of Proposition 4 that does not rely on smoothness of Y (·) and
D (·) in the sense of Assumption 5.

To state this formally, let τB
i (z+, z−, x) denote the causal effect onB (Yi, Di, Xi) of changing
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(Zi, Xi) from (z−, x) to (z+, x), that is,

τB
i (z+, z−, x) = B (Yi (Di (x, z+) , x) , Di (x, z+) , x) −B (Yi (Di (x, z−) , x) , Di (x, z−) , x) .

Lemma 6. If Assumption 1 holds and EG

[
fE (Xi, Zi) |Xi

]
= 0, then

EG

[
fE (Xi, Zi)B (Yi, Di, Xi)

]
= L̄GXZ

(
EG

[
τB

i (·)
])

for a linear operator L̄GXZ
(·) with

e′
lL̄GXZ

(a (·)) =
∑

j

∫∫∫
e′

ja (z+, z−, x) dH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x)

where
(
H(l,j),+ (·|x) , H(l,j),− (·|x)

)
are the measures defined by

(∫
A
dH(l,j),+ (z|x) ,

∫
A
dH(l,j),− (z|x)

)
=

(∫
A

(
fE

(l,j) (x, z)
)

+
dGZ|X (z|x) ,

∫
A

(
fE

(l,j) (x, z)
)

−
dGZ|X (z|x)

)
for all measurable A ⊆ Z, and ω(l,j) (x) = 1∫

A

(
fE

(l.j)(x,z)
)

+
dGZ|X(z|x)

.

Lemma 6 shows that we can represent moments based on strongly excluded instruments in
terms of the causal effect of changing the distribution of Zi. If the researcher’s estimator satisfies
strong exclusion, Assumption 3 then implies that

L̄GXZ

(
EG

[
τ

R(·;θ̃G)
i (·)

])
= 0, (15)

so the researcher’s estimand sets a particular combination of causal effects of Zi on the residual
equal to zero.

Whether (15) is interpretable, or can be translated into an interpretable form, depends on the
structure of the model. Our results in the main text use the fundamental theorem of calculus and
the chain rule to express τ

R(·;θ̃G)
i (z+, z−, x) in terms of effects of Zi on Di, effects of Di on Yi,and

effects of Yi on the residual, but this of course relies on differentiability. Absent differentiability,
other restrictions, such as linearity of the residual in the instrumental variables model, can play a
similar role in easing interpretation.
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B.3.2 Causal Effects Without Strong Exclusion

In this section, we clarify the role of the strong exclusion restriction EG

[
fE (Xi, Zi) |Xi

]
= 0 in

our results. Building on Appendix B.3.1 we continue to consider the case where Yi (·) and Di (·)
may not be differentiable, and show how our results change when we use instruments f I (Xi, Zi)
with E

[
f I (Xi, Zi) |Xi

]
̸= 0, but where the unconditional mean is still zero E

[
f I (Xi, Zi)

]
= 0.

In this case, we show that moments of the form E
[
f I (Xi, Zi)B (Yi, Di, Xi)

]
reflect causal effects

of both Xi and Zi on B (Yi, Di, Xi).
To state this formally, let τB

i (x+, z+, x−, z−) denote the causal effect of changing (Zi, Xi)
from (z−, x−) to (z+, x+) on B (Yi, Di, Xi), that is,

τB
i (x+, z+, x−, z−) =

B (Yi (Di (x+, z+) , x+) , Di (x+, z+) , x+) −B (Yi (Di (x−, z−) , x−) , Di (x−, z−) , x−) .

Lemma 7. If Assumption 1 holds and E
[
f I (Xi, Zi)

]
= 0 then

EG

[
f I (Xi, Zi)B (Yi, Di, Xi)

]
= LZ

GXZ

(
EG

[
τB

i (·)
])

+ LX
GXZ

(
EG

[
τB

i (·)
])

for linear operators LZ
GXZ

(·) and LX
GXZ

(·) with

e′
lLZ

GXZ
(a (·)) =

∑
j

∫∫
e′

ja (x+, z+, x+, z−) dH(l,j),+ (z+, x+) dH(l,j),− (z−, x−)ω(l,j)

e′
lLX

GXZ
(a (·)) =

∑
j

∫∫
e′

ja (x+, z−, x−, z−) dH(l,j),+ (z+, x+) dH(l,j),− (z−, x−)ω(l,j)

where
(
H(l,j),+ (·) , H(l,j),− (·)

)
are the measures defined by

(∫
A
dH(l,j),+ (z, x) ,

∫
A
dH(l,j),− (z, x)

)
=

(∫
A

(
f(l,j) (x, z)

)
+
dGXZ (x, z) ,

∫
A

(
f(l,j) (x, z)

)
−
dGXZ (x, z)

)
for all measurable A ⊆ X × Z, and ω(l,j) = 1∫

A

(
fI

(l.j)(x,z)
)

+
dGXZ(x,z)

.

Hence, when the researcher uses instruments that are not strongly excluded (but which still
have mean zero), we can again represent E

[
f I (Xi, Zi)B (Yi, Di, Xi)

]
in terms of causal effects,

but the expressions generally involve both causal effects of Z and causal effects of X . If the
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researcher uses included instruments with E
[
f I (Xi, Zi)

]
= 0, Assumption 3 implies that

LZ
GXZ

(
EG

[
τ

R(·;θ̃G)
i (·)

])
+ LX

GXZ

(
EG

[
τ

R(·;θ̃G)
i (·)

])
= 0, (16)

so the researcher’s estimand sets a particular combination of causal effects of X and Z on the
residual to zero.

If we further assume differentiability, we can again express (16) in terms of local causal
effects, but the resulting expressions will depend not only on the causal effects ofDi on Yi, ∂

∂d
Yi (·) ,

but also the causal effects of Xi on Yi, ∂
∂x
Yi (·) . Hence, if we repeat our analysis in Proposition 4,

we obtain that the researcher’s model is consistent for a causal summary that involves both causal
effects of Di and causal effects of Xi, rather than causal effects of Di alone.

Importantly, in the special case where strong exclusion in fact holds, E
[
f I (Xi, Zi) |Zi

]
= 0,

the marginal distributions for X implied by H(l,j),+ and H(l,j),− are the same for all (l, j), which in

turn implies that LX
GXZ

(
EG

[
τ

R(·;θ̃G)
i (·)

])
= 0, consistent with our result in Lemma 6.

B.4 Measurement Error in X

We can also consider the implications of our results for cases where the included exogenous vari-
ables Xi are mismeasured. In particular, suppose that potential outcomes take the form specified
in the researcher’s model for some exogenous variable Xi,1, so

Yi (d, x) = Y ∗ (d, x1, ξi; θ0) .

Rather than observing Xi,1, however, the researcher instead observes Xo
i = Xi,1 + Xi,2, where

for Xi = (Xi,1, Xi,2), (Yi (·) , Di (·) , Xi, Zi) satisfy Assumption 1. If the researcher conducts their
analysis while acting as ifXo

i = Xi,1, this is a particular form of misspecification in the researcher’s
outcome model and is nested by the general potential outcomes framework we consider. Hence,
our results continue to apply.

One obstacle to applying our results in this context is that the condition for strongly excluded
instruments EG

[
fE (Xi, Zi) |Xi

]
= 0 may be difficult to satisfy if the researcher observes only

Xo
i rather than Xi. A sufficient condition is that fE (Xi, Zi) = fE (Zi) depends only on Zi,

EG

[
fE (Zi)

]
= 0, and Zi ⊥⊥ Xi, for instance because Zi is randomly assigned. More generally,

to derive strongly excluded instrument functions it would suffice that Zi ⊥⊥ Xi,1|Xo
i , for instance

because the instrument was randomly assigned based on the mismeasured covariate Xo
i , since in

this case
EG [f (Xo

i , Zi) |Xo
i ] = 0 ⇒ EG [f (Xo

i , Zi) |Xi] = 0,
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and the strongly excluded instrument condition with respect to Xo
i implies the more general con-

dition with respect to Xi.

B.5 Generalization to Dynamic Settings

In this section, we generalize our analysis to cover dynamic settings, focusing on dynamic panel
approaches to production function estimation as a concrete example throughout.

B.5.1 Dynamic Nesting Model

The data again consist of n observations (Yi,Di, Xi, Zi) ∈ RJ × D × X × Z drawn i.i.d. from
an unknown distribution G in a class of possible distributions G. We now lay out a dynamic
nesting model defined in a potential outcomes framework, with potential outcome and potential
endogenous variable functions Yi (·) and Di (·) and observed values Yi = Yi(Xi, Di, Zi) ∈ RJ and
Di = Di(Xi, Zi) ∈ RJ . We assume throughout that Xi ∈ RA×J and Zi ∈ RJ . To accommodate
the dynamic structure of this setting, we modify Assumption 1.

Assumption 9. (Dynamic nesting model) Under all G ∈ G, the following hold for all j ≥ 1:

(a) (non-anticipation) Yi,j (d, x, z) = Yi,j (d′, x′, z) for all z ∈ Z and all d, d′ ∈ D, x, x′ ∈ X
such that dj = d′

j , xj = x′
j .

(b) (dynamic instrument exclusion) Assumption 1(a) holds and, further, Di,j (x, z) = Di,j (x, z′)
for all x ∈ X and all z, z′ ∈ Z such that zj = z

′
j.

(c) (random assignment) (Yi,j(·), Di,j (·)) ⊥⊥ Zi,j | Xi,j .

Assumption 9(c) weakens Assumption 1(b) in the main text in two ways. First, it is only
a contemporaneous independence restriction within a time period j. Second, it only requires
the excluded instrument Zi,j to be independent of the potential outcomes and potential treatment
conditional on the included instruments Xi,j .23 Finally, as notation throughout this section, let
Vi,1:j = (Vi,1, ..., Vi,j) denote the first j elements of any vector Vi ∈ RJ .

B.5.2 Researcher’s Dynamic Model and Estimator

As in the main text, the researcher’s dynamic model is a special case of the dynamic nesting model
that need not coincide with the true distribution. Specifically, for each j ≥ 1, the researcher

23Note that Assumption 9(c) would be implied by assuming (Yi,j(·), Di,j(·)) ⊥⊥ (Xi,j , Zi,j). This stronger indepen-
dence assumption would imply, for example, that past realized output Yi,j′ is independent of Yi,j(·), which rules out
persistence in an underlying productivity process. We therefore work with the weaker independence assumption to
avoid such restrictions.
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assumes that Yi,j(dj, xi) = Y ∗(dj,xj, ξi,j; θ0) for some unknown parameter θ0 ∈ Rp and ξi,j ∈ R a
structural residual that is mean-zero conditional on Xi,j.

24 If θ0 were known, the structural residual
ξi,j could be recovered period-by-period using a known transformation of the data; that is, ξi,j =
R̃ (Yi,j, Di,j, Xi,j; θ0).

Assumption 10. (Researcher’s dynamic model) Under the researcher’s model, the following hold:

(a) (dynamic outcome model) For all j, Yi,j (dj, xj) = Y ∗ (dj, xj, ξi,j; θ0) and ξi,j = R̃ (Yi,j (dj, xj) , dj, xj; θ0)
for all (dj, xj), where Y ∗

i,j(·) and R̃(·) are R-valued functions known up to θ0 ∈ RP , and

E [ξi,j | Xi,j] = 0.

(b) We can decompose θ = (α, β) where the researcher’s model implies that d has sharp zero

effects if and only if α = 0 ∈ Rdim(α).

We write Rj (Yi, Di, Xi; θ) = R̃ (Yi,j, Di,j, Xi,j; θ) and

R (Yi, Di, Xi; θ) = (R1 (Yi, Di, Xi; θ) , ..., RJ (Yi, Di, Xi; θ))′ .

We again define G∗ ⊆ G to be the set of distributions under which the researcher’s model holds.
We next observe that Assumption 9 and Assumption 10 together imply E [ξi,j | Xi,j, Zi,j] = 0, so
the product of R̃ (Yi,j, Di,j, Xi,j; θ0) with any function of (Xi,j, Zi,j) has mean zero.

Lemma 8. Under Assumptions 9 and 10, for any G ∈ G∗ and any RK-valued instrument functions

f1 (x1, z1) , ..., fJ (xJ , zJ),

E [f (Xi, Zi)R (Yi, Di, Xi; θ0)] = 0 where f (Xi, Zi) =
(
f1 (x1, z1) ... fJ (xJ , zJ)

)
∈ RK×J .

We continue to work with the high-level assumption that the limiting value of the researcher’s
estimator solves an effective moment condition for some matrix WG ∈ RP ×K , as stated in As-
sumption 3. We let θ̃G denote the researcher’s estimand.

B.5.3 Dynamic strongly excluded instruments

Provided the researcher uses dynamic strongly excluded instruments, the researcher’s estimator is
sharp zero consistent, and we show that the researcher’s estimator is consistent for a particular
causal summary. We again define G0 ⊆ G to be the class of distributions under which Di has sharp
zero effects.

24Compared to the main text, we now explicitly assume ξi,j has mean zero conditional on Xi,j . This is implied by the
stated assumptions in Section 2 of the main text. In particular, Assumption 2(a) implies that ξi can be written as a
function of the potential outcomes, and is mean-zero. Assumption 1(b) therefore implies E[ξi | Xi] = E[ξi] = 0.
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Definition 11. The researcher’s estimator satisfies dynamic strong exclusion if, for all G ∈ G,
we can write

WGf(Xi, Zi) =
 WE

G f(Xi, Zi)
W I

Gf(Xi, Zi)


for WE

G ∈ RLE×K ,W I
G ∈ RLI×K with LE + LI = P , where (a) WE

G fj(Xi,j, Zi,j) has conditional

mean zero givenXi,j ,EG[WE
G fj(Xi,j, ZI,j) | XI,j] = 0; and (b) the matrixEG

[
WE

G f(Xi, ZI)
(
WE

G f(Xi, ZI)
)′
]

has rank at least dim(α).

Proposition 6. Suppose Assumptions 3, 9, and 10 hold. If the researcher’s estimator satisfies

dynamic strong exclusion, for each G ∈ G0 equation (3) has a unique solution, and there exists βG

such that E[f I
G(Xi, Zi)R∗(Yi, Di, Xi; (0, βG)] = 0, then the researcher’s estimator is sharp zero

consistent.

Proposition 7. Suppose Assumptions 3, 5, 6, 9, and 10 hold. If the researcher’s estimator satis-

fies dynamic strong exclusion, then the researcher’s estimator is consistent for a causal summary

LG(·).

C Proofs for Results in Appendix

C.1 Proof of Lemma 6

Assumption 1 implies that

EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
=

∫∫
EfE

(l,j) (x, z) [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGZ|X (z|x) dGX (x) =∫∫ (
fE

(l,j),+ (x, z) − fE
(l,j),− (x, z)

)
E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGZ|X (z|x) dGX (x) =∫∫

fE
(l,j),+ (x, z)E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGZ|X (z|x) dGX (x) −∫∫
fE

(l,j),− (x, z)E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGZ|X (z|x) dGX (x) .

However, since EG

[
fE

G (Xi, Zi) |Xi

]
= 0,

∫
dH(l,j),+ (z+|x) =

∫
dH(l,j),− (z−|x) for all x, and we

can re-write this difference as

∫∫∫
EG

[
e′

jτ
B
i (z+, z−, x)

]
dH(l,j),+ (z+|x) dH(l,j),− (z−|x)ω(l,j) (x) dGX (x) .
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The result then follows from the fact that

e′
lEG

[
fE

G (Xi, Zi)B (Yi, Di, Xi)
]

=
∑

j

EG

[
fE

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
.

□

C.2 Proof of Lemma 7

By the same argument as in the proof of Lemma 6, we can write

EG

[
f I

(l,j) (Xi, Zi) e′
jB (Yi, Di, Xi)

]
=
∫
f I

(l,j) (x, z)E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGXZ (x, z) =

∫ (
f I

(l,j),+ (x, z) − f I
(l,j),− (x, z)

)
E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGXZ (x, z) =∫ (

f I
(l,j),+ (x, z)

)
E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGXZ (x, z) −∫ (

f I
(l,j),− (x, z)

)
E [Bj (Yi (Di (x, z) , x) , Di (x, z) , x)] dGXZ (x, z) .

Since EG

[
f I

(l,j) (Xi, Zi)
]

has mean zero, however, we know that
∫ (
f I

(l,j),+ (x, z)
)
dGXZ (x, z) =∫ (

f I
(l,j),− (x, z)

)
dGXZ (x, z) . Hence, we can re-write the above as

∫∫
EG

[
e′

jτ
B
i (x+, z+, x−, z−)

]
dH(l,j),+ (x+, z+) dH(l,j),− (x−, z−)ω(l,j),

and further note that

τB
i (x+, z+, x−, z−) = τB

i (x+, z+, x+, z−) + τB
i (x+, z−, x−, z−) ,

from which the result is immediate. □

C.3 Proof of Lemma 8

The proof follows the same argument as the proof of Lemma 1. For completeness, recall that As-
sumption 10(a) writes ξi,j as a function of the potential outcomes Yi,j (d, x) .Hence, by Assumption
10, ξi,j ⊥⊥ Zi | Xi. Under Assumption 2(a) we can write

E
[
f(k,j) (Xi,j, Zi,j) R̃(Yi,j, Di,j, Xi,j; θ0)

]
= E

[
f(k,j) (Xi,j, Zi,j) ξi,j

]
=

E
[
E
[
f(k,j) (Xi,j, Zi,j) ξi,j | Xi,j

]]
= E

[
E
[
f(k,j) (Xi,j, Zi,j) | Xi,j

]
E [ξi,j | Xi,j]

]
= 0
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for any (k, j). Finally, we observe that

E[f(Xi, Zi)R(Yi, Di, Xi; θ0)] = E


∑

j f(1,j)(Xi,j, Zi,j)R̃(Yi,j, Di,j, Xi,j; θ0)
...∑

j f(K,j)(Xi,j, Zi,j)R̃(Yi,j, Di,j, Xi,j; θ0)

 ,

and the result follows. □

C.4 Proof of Proposition 6

For simplicity, we introduce the short-hand notation fG(Xi,Zi) = WGf(Xi, Zi) ∈ RP ×J for the ef-
fective instruments and write fG(Xi, Zi) = (fG,1(Xi, Zi), ..., fG,J(Xi, Zi)). We write fE

G (Xi, Zi) =(
fE

G,1(Xi,1, Zi,1), ..., fE
G,J(Xi,J , Zi,J)

)
∈ RLE×J and f I

G(Xi, Zi) =
(
f I

G,1(Xi,1, Zi,1), ..., f I
G,J(Xi,J , Zi,J)

)
∈

RLI×J .

We follow the same argument as in the proof of Proposition 1. First, for β and any yj,dj, and
xj , let ξj = R̃ (yj, dj, xj; (0, β)) .Note that by Assumption 10(b), for any d′, we have Y ∗ (dj, xj, ξj; (0, β)) =
Y ∗

(
d′

j, xj, ξj; (0, β)
)

= yj . By Assumption 10(a) we thus have

ξj = R̃
(
yj, d

′
j, xj; (0, β)

)
.

It therefore follows that

R̃ (yj, dj, xj; (0, β)) = R̃
(
yj, d

′
j, xj; (0, β)

)
for all d′

j ∈ D.

We therefore have that for any β and any j ≥ 1,

R̃ (yj, dj, xj; (0, β)) = R̃
(
yj, d

′
j, xj; (0, β)

)
for all yj, dj, d

′
j, xj.

Fixing α = 0, the effective moment equation therefore becomes

EG


 fE

G (Xi, Zi)
f I

G (Xi, Zi)




R̃(Yi,1, Xi,1; (0, β))
...

R̃ (Yi,J , Xi,J ; (0, β))


 = 0.

Further observe that for WE
G,(j,·) the jth row of WE

G ,

EG

fE
G (Xi, Zi)


R̃(Yi,1, Xi,1; (0, β))

...
R̃ (Yi,J , Xi,J ; (0, β))


 =
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EG




WE
G,(1,·)f1(X1, Z1) ... WE

G,(1,·)fJ(XJ , ZJ)
...

...
WE

G,(LE ,·)f1(X1, Z1) ... WE
G,(LE ,·)fJ(XJ , ZJ)




R̃(Yi,1, Xi,1; (0, β))
...

R̃ (Yi,J , Xi,J ; (0, β))




EG




∑
j W

E
G,(1,·)fj(Xi,j, Zi,j)R̃(Yi,j, Xi,j; (0, β))

...∑
k WG,(LE ,·)fj(Xi,j, Zi,j)R̃ (Yi,J , Xi,J ; (0, β))


 .

For any l, we have that

EG

∑
j

WE
G,(l,·)fj(Xi,j, Zi,j)R̃(Yi,j, Xi,j; (0, β))

 =

∑
j

EG

[
EG

[
WE

G,(l,·)fj(Xi,j, Zi,j)R̃(Yi,j, Xi,j; (0, β)) | Xi,j

]]
∑

j

EG

[
EG

[
WE

G,(l,·)fj(Xi,j, Zi,j) | Xi,j

]
EG[R̃(Yi,j, Xi,j; (0, β)) | Xi,j]

]
= 0,

where we used the fact that Yi,j ⊥⊥ Zi,j | Xi,j under Assumption 9(a)-(c) and sharp zero effects, and
Assumption 11 is satisfied. Hence, EG

[
fE

G (Xi, Zi) R̃ (Yi, Xi; (0, β))
]

= 0 for all β. The result
then follows immediately under the stated conditions. □

C.5 Proof of Proposition 7

To prove this result, we first state two technical lemmas.

Lemma 9. Suppose Assumption 9 holds under G. For each (l, j) ∈ [L] × [J ] and any R-valued

function Bj (xj, zj) that is differentiable in zj for all xj , provided EG

[
f(l,j) (Xi,j, Zi,j) |Xi,j

]
= 0

we can write

EG

[
f(l,j) (Xi,j, Zi,j)Bj (Xi,j, Zi,j)

]
=∫∫∫ ∫ 1

0
T Zj→Bj

(
xj, z

t
j,±

)
(zj,+ − zj,−) dtdH(l,j),+ (zj,+|xj) dH(l,j),− (zj,−|xj)ω(l,j) (xj) dGXj

(xj)

where T Zj→Bj (xj, zj) = ∂
∂zj
Bj (xj, zj), zt

j,± = tzj,+ +(1 − t) zj,−,
(
H(l,j),+ (·|xj) , H(l,j),− (·|xj)

)
are the measures defined by(∫

A
dH(l,j),+ (zj|xj) ,

∫
A
dH(l,j),− (zj|xj)

)
=

(∫
A

(
f(l,j) (xj, zj)

)
+
dGZj |Xj

(zj|xj) ,
∫

A

(
f(l,j) (xj, zj)

)
−
dGZj |Xj

(zj|xj)
)

for all measurable A ⊆ Zj, and ω(l,j) (xj) = 1∫
dH(l,j),+(zj |xj) . □
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Proof of Lemma 9 Note that

EG

[
f(l,j) (Xi,j, Zi,j)Bj (Xi,j, Zi,j)

]
=

∫∫ (
f(l,j),+ (xj, zj) − f(l,j)− (xj, zj)

)
Bj (xj, zj) dGZj |Xj

(zj|xj) dGXj
(xj) =∫∫

Bj (xj, zj) dH(l,j),+ (zj|xj) dGXj
(xj) −

∫∫
Bj (xj, zj) dH(l,j),− (zj) dGXj

(xj) .

Since EG

[
f(l,j) (Xi,j, Zi,j) |Xi,j

]
= 0, however, we have

∫
dH(l,j),+ (zj|xj) =

∫
dH(l,j),− (zj|xj),

so we can re-write this difference as

∫∫∫
τBj (zj,+, zj,−;xj) dH(l,j),+ (zj,+) dH(l,j),− (zj,−)ω(l,j) (xj) dGXj

(xj)

for
τBj (zj,+, zj,−;xj) = Bj (xj, zj,+) −Bj (xj, zj,−)

the change in Bj from changing Zi,j from zj,− to zj,+ while holding Xi,j fixed at xj . The funda-
mental theorem of calculus then implies that

τBj (zj,+, zj,−;xj) =
∫ 1

0
T Zj→Bj

(
xj, z

t
j,±

)
(zj,+ − zj,−) dt

from which the result is immediate. □

Lemma 10. Suppose Assumptions 5 and 9 hold, and f(Xi, Zi) = (f1(Xi,1, Zi,1), ..., fJ(Xi,J , Zi,J))
satisfies EG [fj(Xi,j, Zi,j) | Xi,j] = 0 for all j under G. Then, for any differentiable function

B(Yi,Di, Xi) =
(
B̃(Yi,1, Di,1, Xi,1), ..., B̃(Yi,J , Di,J , Xi,J)

)
∈ RJ ,

EG[f(Xi, Zi)B(Yi, Di, Xi)] = L̃G(T D→B(·)
i (·)),

where for x ∈ X , z ∈ Z

T D→B
i (x, z) =


T D1→B̃

i (x1, z1) 0
. . .

0 T DJ →B̃
i (xJ , zJ)

 .

For random-valued Ai(·, ·) = (Ai,1(·, ·)′, ..., Ai,J(·, ·)′) ∈ RJ×Jwith Ai,j(·, ·) ∈ RJ×1 indexed by

Dj × Xj and H(l,j),+ (·) , H(l,j),− (·) and zt
j,± as defined in Lemma 9, the linear operator L̃G(·) is
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given by

e′
lL̃G (Ai (·, ·)) =∑

j

∫∫∫ ∫ 1
0 Q

(
xj, z

t
j,±

)
dtdH(l,j),+ (zj,+|xj) dH(l,j),− (zj,−|xj)ω(l,j) (xj) dGXj

(xj)

for

Q
(
xj, z

t
j,±

)
= EG

[
Ai,j

(
Di,j

(
xj, z

t
j,±

)
, xj

) ∂

∂zj

Di,j

(
xj, z

t
j,±

)
| Xi,j = xj

]
(zj,+ − zj,−) .

Proof of Lemma 10 Observe that e′
lEG[f(Xi, Zi)B(Yi, Di, Xi)] = ∑

j EG[f(l,j)(Xi,j, Zi,j)B̃(Yi,j,Di,j, Xi.j)]
by construction. Then, using Assumption 9, we can write

EG

[
f(l,j) (Xi,j, Zi,j) B̃ (Yi,j, Di,j, Xi,j)

]
=
∫
f(l,j)(xj, zj)Bj(xj, zj)dGZj

(zj|xj)ω(l,j) (xj) dGXj
(xj)

forBj(xj, zj) = EG

[
B̃ (Yi,j(Di,j(xj, zj), xj), Di,j(xj, zj), xj) | Xi,j = xj

]
. SinceEG[f(l,j)(Xi,j, Zi,j) |

Xi,j] = 0, this implies that

EG

[
f(l,j) (Xi,j, Zi,j) B̃ (Yi,j, Di,j, Xi,j)

]
=

∫∫∫ ∫ 1

0
T Zj→Bj

(
xj, z

t
j,±

)
(zj,+ − zj,−) dtdH(l,j),+ (zj,+|xj) dH(l,j),− (zj,−|xj)ω(l,j) (xj) dGXj

(xj)

by Lemma 9. By the chain rule,

T Zj→Bj (xj, zj) = ∂

∂zj

EG

[
B̃ (Yi,j(Di,j(xj, zj), xj), Di,j(xj, zj), xj) | Xi,j = xj

]
=

EG

[
∂

∂zj

B̃ (Yi,j(Di,j(xj, zj), xj), Di,j(xj, zj), xj) | Xi,j = xj

]
=

EG

[
T Dj→B̃

i,j (xj, zj)
∂

∂zj

Di,j(xj, zj) | Xi,j = xj

]
,

where T Dj→B̃
i,j (xj, zj) = ∂

∂dj
B̃ (Yi,j(Di,j(xj, zj), xj), Di,j(xj, zj), xj). Hence,

EG

[
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]
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)
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t
j,±

)
= EG
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∂
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]
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Finally, defining

T D→B
i (x, z) =


T D1→B̃

i (x1, z1) 0
. . .

0 T DJ →B̃
i (xJ , zJ)′

 ,

the result is then immediate from the definition of L̃G(·). □
Returning to Proposition 7, we apply Lemma 10 to

R∗(Yi, Di, Xi; θ̃G) =
(
R̃(Yi,1, Di,1, Xi,1; θ̃G), ..., R̃(Yi,J , Di,J , Xi,J ; θ̃G)

)
.

Following the same argument as the proof of Proposition 4, first observe that

T D→R̃(·;θ̃)
i,j (dj, xj) = ∂

∂yj

R̃
(
Yi,j(dj, xj), dj, xj; θ̃G

) ∂

∂dj

Yi,j(dj, xj)+
∂

∂dj

R̃
(
Yi,j(dj, xj), dj, xj; θ̃G

)
.

Under the researcher’s model, however,

R̃(Yi,j(dj, xj), dj, xj; θ) = ξj

for all (dj, xj, ξj, θ) . Hence, by the implicit function theorem

∂

∂dj

R̃ (Yi,j, dj, Xi,j; θ) = − ∂

∂y
R∗ (Y ∗ (dj, xj, ξj) , dj, xj; θ)

∂

∂dj

Y ∗ (dj, xj, ξj; θ) .

Plugging in, we then have

T D→R̃(·;θ̃)
i,j (dj, xj) =

∂
∂yj
R̃
(
Yi,j(dj, xj), dj, xj; θ̃G

) (
∂

∂dj
Yi,j(dj, xj) − ∂

∂dj
Y ∗

(
dj, xj, R̃(Yi,j(dj, xj), dj, xj; θ̃G); θ̃G

))
=

T Y →R̃(·;θ̃)
i,j (dj, xj)

(
T D→Y

i,j (dj, xj) − T ∗,D→Y
i,j (dj, xj; θ̃)

)
.

Defining

∂

∂d
Yi(d, x) =


∂

∂d1
Yi,1(d1, x1) 0

. . .

0 ∂
∂dJ

Yi,J(dJ , xJ)

 ,

∂

∂d
Y ∗(d, x; θ̃G) =


∂

∂d1
Y ∗

i,1(d1, x1; θ̃G) 0
. . .

0 ∂
∂dJ

Y ∗
i,J(dJ , xJ ; θ̃G)

 , and
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∂

∂yj

R̃
(
d, x, ; θ̃G

)
= ∂

∂y
R̃
(
Yi(d, x), d, x; θ̃G

)
=


∂

∂y1
R̃
(
Yi,1(d1, x1), d1, x1; θ̃G

)
0

. . .

0 ∂
∂yJ

R̃
(
Yi,J(dJ , xJ), dJ , xJ ; θ̃G

)
 ,

it immediately follows that

EG[fG(Xi, Zi)R∗(Yi, Di, Xi)] = L̃G

(
∂

∂yj

R̃
(
·, ·, ; θ̃G

)( ∂

∂d
Yi(·, ·) − ∂

∂d
Y ∗(·, ·; θ̃G)

))
= 0.

Equivalently, using the linearity of L̃G(·),

L̃G

(
∂

∂yj

R̃
(
·, ·, ; θ̃G

) ∂

∂d
Yi(·, ·)

)
= L̃G

(
∂

∂yj

R̃
(
·, ·, ; θ̃G

) ∂

∂d
Y ∗(·, ·; θ̃G)

)
.

Therefore, we can define a new linear operator LG(·) such that LG(Ai(·)) = L̃G( ∂
∂yj
R̃
(
·, ·, ; θ̃G

)
∂
∂d
Ai(·, ·))

and the result follows. □

D Additional Details and Results for the Application to the Demand for
Beer

D.1 Additional Simulation Details

As discussed in the main text, we modify the data generating process relative to MW’s model.
First, for computational ease given the large number of estimations we run, we assume that each
consumer’s price coefficient is equal to the mean price coefficient. Second, to simplify the set of
included covariates while still retaining much of the richness of the original setting, we replace
month fixed effects in both the demand and pricing models with their seasonal month (i.e., month-
of-year) average,25 and we assume that the distribution of consumer income in each market depends
only on whether the market’s average income is above or below the median.26 When sampling(
ξMW , ηMW

)
, if a given product j is not present in the market we sample, we draw the value of

its preference and cost shock at random from the set of all preference and cost shocks across all

25At MW’s estimated parameters, 61.7 percent of the variance in the estimated calendar month fixed effect is accounted
for by the seasonal month.

26Specifically, we assume that the distribution of the ratio of a given consumer’s income to the mean income in the
market is identical across markets, and that each market’s mean income is given either by the mean income of
above-median markets (for markets in the top half) or the mean income of below-median markets (for markets in
the bottom half). The resulting distribution for consumer income has 99.1 percent of the variance of MW’s original
specification at the consumer level, and 58.8 percent of the variance of mean income at the market level.
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markets, i.e., from
{{
ξMW

ij , ηMW
ij

}
j∈Ji

}
i∈N MW

.

D.2 Approximating the Weights for the Theoretical Target

Proposition 4 defines a target that a given estimator is guaranteed to estimate consistently under
strong exclusion. The proof of Proposition 4 shows that this target can be written as

LG

(
∂

∂d
Yi (·)

)
= L̃G

(
∂

∂y
R
(
·; θ̃G

) ∂

∂d
Yi

(
·; θ̃G

))

where

L̃G (Ai (·, ·)) =∑
j

∫∫∫ ∫ 1
0 e

′
jEG

[
Ai

(
Di

(
x, zt

±

)
, x
)

∂
∂z
Di

(
x, zt

±

)]
(z+ − z−) dtdH(j),+ (z+|x) dH(j),− (z−|x)ω(j) (x) dGX (x) .

To provide an interpretable and computationally tractable approximation to the operator L̃G (·) ,
consider replacing ∂

∂y
R
(
·; θ̃G

)
∂
∂d
Yi

(
·; θ̃G

)
with a matrix Ai which does not depend on z. For

Ãijk = eje
′
jAieke

′
k = MjAiMk, one can show that for Aijk = e′

jAiek we have that

L̃G

(
Ãijk

)
= EG

[
AijkDi,k (WGf (Xi, Zi))j

]
,

and therefore, using linearity, that

L̃G (Ai) ∝
∑
j,k

EG [Aijkωijk]

for the (possibly negative) weights ωijk = Dik(WGf(Xi,Zi))j∑
j,k

E[Dik(WGf(Xi,Zi))j] , which satisfy EG

[∑
j,k ωijk

]
=

1 by construction. In the case where the researcher estimates a logit model, recall from Section 4.4
that

∂

∂y
R
(
·; θ̃G

) ∂

∂d
Y ∗

(
·; θ̃G

)
= ∆Si

(
·; θ̃G

)
.

Hence, we can build intuition for the properties of LG

(
∂
∂d
Yi (·)

)
= L̃G

(
∆Si

(
·; θ̃G

))
by examin-

ing the weighted average
∑

j,k EG

[
∆Sijk

(
Xi, Zi; θ̃G

)
ωijk

]
.

Appendix Figure 8 visualizes the mean weights ωjk = 1
N

∑N
i=1 ωijk across markets i for the

mean relative own-price semi-elasticity (Panel A), the target for which the baseline strongly ex-
cluded estimator is consistent (Panel B), and the target for which the estimator based on instruments
constructed by drawing an excluded cost shifter i.i.d. across products and markets is consistent
(Panel C).
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Appendix Figure 1: Causal graph of observed and unobserved variables in the researcher’s model

X Z

D

Y

U2

U1

Note: The figure depicts a causal graph for the setting described by Assumption 1. The observed variables
are (Y,D,X,Z), where X may affect (Y,D), Z may affect D, and D may affect Y . The unobserved
variables are (U1, U2), where U1 may affect (Y,D) and U2 may affect (X,Z).
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Appendix Figure 2: Estimated median bias for estimators of the median own- and market-price elasticities,
sharp zero effects

(A) Median own-price elasticity

Logit
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(B) Median market-price elasticity
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Strongly excluded

Strongly included

Ignoring endogeneity

Note: The plot reports the estimated median bias for estimators of the median own-price elasticity and the median
market-price elasticity based on 500 simulations described in detail in Section 5. Each marker shape corresponds to a
different choice of estimator and each row corresponds to a different specification of the researcher’s demand model.
The demand models are distinguished by whether they include random coefficients and a nesting structure (RCNL),
random coefficients only (RCL), or neither (Logit), and by the product characteristic on which random coefficients are
allowed (calories, indicator for inside goods). The plot depicts the median bias across the simulation replicates, along
with its 95 percent confidence interval.
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Appendix Figure 3: Estimated median bias for estimators of the mean own-price elasticity, sharp zero effects
and alternative sample sizes

(A) Larger sample size

Logit
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(B) Smaller sample size
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Ignoring endogeneity

Note: The plot reports the estimated median bias for estimators of the mean own-price elasticity based on 500 simu-
lations described in detail in Section 5, run for n = 12500 markets (Panel A) and n = 7500 markets (Panel B). Each
marker shape corresponds to a different choice of estimator and each row corresponds to a different specification of the
researcher’s demand model. The demand models are distinguished by whether they include random coefficients and
a nesting structure (RCNL), random coefficients only (RCL), or neither (Logit), and by the product characteristic on
which random coefficients are allowed (calories, indicator for inside goods). The plot depicts the median bias across
the simulation replicates, along with its 95 percent confidence interval.
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Appendix Figure 4: Estimated median bias for alternative estimator of the mean own-price elasticity, sharp
zero effects

Logit
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Median bias of estimated mean own−price elasticity

Estimator

Miller and Weinberg

Note: The plot reports the estimated median bias for estimators of the mean own-price elasticity based on 500 sim-
ulations described in detail in Section 5. The estimator uses the instruments fMW (Xi, Zi). Each row corresponds
to a different specification of the researcher’s demand model. The demand models are distinguished by whether they
include random coefficients and a nesting structure (RCNL), random coefficients only (RCL), or neither (Logit), and
by the product characteristic on which random coefficients are allowed (calories, indicator for inside goods). The plot
depicts the median bias across the simulation replicates, along with its 95 percent confidence interval.
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Appendix Figure 5: Coverage for the mean own-price elasticity, sharp zero effects
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Note: The plot reports the coverage of 95% delta-method confidence intervals for the mean own-price elasticity
based on 500 simulations described in detail in Section 5. Each marker shape corresponds to a different choice of
estimator and each row corresponds to a different specification of the researcher’s demand model. The demand models
are distinguished by whether they include random coefficients and a nesting structure (RCNL), random coefficients
only (RCL), or neither (Logit), and by the product characteristic on which random coefficients are allowed (calories,
indicator for inside goods). The plot depicts the coverage of the confidence interval. The vertical dashed line denotes
the nominal coverage of 0.95.
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Appendix Figure 6: Estimated median absolute deviation for estimators of the mean own-price elasticity,
sharp zero effects and partially excluded instruments

Logit
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Note: The plot reports the estimated median absolute deviation for estimators of the mean own-price elasticity based
on 500 simulations described in detail in Section 5. Each marker shape corresponds to a different choice of estimator
and each row corresponds to a different specification of the researcher’s demand model. We define partially excluded
instruments as fMW,P (Xi, Zi), where

fMW,P
j (Xi, Zi) = fMW

j (Xi, Zi) −
∑

i:X̃i=x f
MW
j (Xi, Zi)∣∣{i : X̃i = x

}∣∣ ,

and where X̃i encodes the seasonal month of market i and whether market i has above- or below-median average
consumer income. The demand models are distinguished by whether they include random coefficients and a nesting
structure (RCNL), random coefficients only (RCL), or neither (Logit), and by the product characteristic on which
random coefficients are allowed (calories, indicator for inside goods). The plot depicts the median absolute deviation
across the simulation replicates, along with its 95 percent confidence interval.
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Appendix Figure 7: Estimated median bias for different targets, strong price effects

(A) Mean own-price elasticity
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(B) Weighted mean relative semi-elasticity
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(C) Mean own-price elasticity (alternative instrument)
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Note: The plot reports the estimated median bias for estimators of different targets based on 500 simulations described
in detail in Section 5. In Panels A and C, the target is the mean own-price elasticity. In Panel B, the target is the
simplified weighted mean semi-elasticity derived in Appendix D.2. Each marker shape corresponds to a different
choice of estimator and each row corresponds to a different specification of the researcher’s demand model. The
demand models are distinguished by whether they include random coefficients and a nesting structure (RCNL), random
coefficients only (RCL), or neither (Logit), and by the product characteristic on which random coefficients are allowed
(calories, indicator for inside goods). Each plot depicts the median bias across the simulation replicates, along with its
95 percent confidence interval.
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Appendix Figure 8: Average weights across markets by target

(A) Average weights for mean relative own-price semi-elasticity
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(B) Average weights for consistent target of strongly excluded instru-
ments
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(C) Average weights for consistent target of alternative instruments
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Note: The plot reports the estimated mean simplified weights ωjk = 1
N

∑N
i=1 ωijk defined in Appendix D.2, based on

500 simulations described in detail in Section 5, with product identifiers assigned randomly. In Panel A, the target is
the mean relative own-price semi-elasticity. In Panel B, the target is the causal summary for which the estimator using
our baseline strongly excluded instruments is consistent. In Panel C, the target is the causal summary for which the
estimator using instruments constructed by drawing an excluded cost shifter i.i.d. across products and markets (as in
Panel C of Figure 4) is consistent.
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Appendix Table 1: Share of simulations with an invalid solution, sharp zero effects

Model / Instrument: Strongly excluded Strongly included Ignoring endogeneity
(1) (2) (3)

RCNL (RC on calories, inside goods) 0.020 0.024 0.046
RCNL (RC on calories only) 0.000 0.000 0.006
RCL (RC on calories, inside goods) 0.000 0.000 0.000
RCL (RC on calories) 0.000 0.000 0.000
Logit 0.000 0.000 0.000

Notes: For each of the specifications reported in Figure 2, the table reports the share out of the 500 simulations for
which the estimates are outside the boundaries of the parameter space.
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