Behrooz Ghorbani

Contact Information	239 Packard Building Department of Electrical Engineering Stanford University	E-mail: ghorbani@stanford.edu	
	Stanford, CA 94303 USA	Webpage: https://web.stanford	.edu/~ghorbani/
Research Interests	Deep Learning Theory, High-Dimensional Statistics, Random Matrix Theory		
Education	Stanford University, Stanford, California USA2014-2020PhD in Electrical EngineeringDissertation title: "Topics in High-Dimensional Estimation."• Advisor: David L. Donoho		
	 University of British Columbia, British BA Double Major in Mathematics and Ecc Thesis Title: "Sparse Regression With I Advisor: Ozgur Yilmaz 	n Columbia, Canada onomics Highly Correlated Predictors."	2010-2014
Professional Experience	 Software Engineering Intern, Google Examination of the loss landscape of large Designed and implemented a scalable at in large neural networks. Our TensorFl of a ResNet with 0.46 million parameter Designed and tested second-order optim deep neural networks. 	Inc. Ju neural networks: lgorithm for estimating the full spee ow implementation computes the fu rs in under 30 minutes. nization algorithms for speeding up	ne - December, 2018 etrum of the Hessian ill Hessian spectrum the optimization of
	 Software Engineering Intern, Google Scalable and interpretable dimension reduce Built interpretable factor models that retime. Designed and implemented feature transitime-series in the factor model. Demonstrated the use of the factor model 	Inc. Jun tion algorithms for time-series data: educe the dimension of large time-se sformations allowing for incorporati lel in explaining anomalies in the da	ne - September, 2017 ries datasets in real- on of sparse discrete ata.
Academic Projects	 Large Scale Study of the Behavior of Wide Neural Networks 2019-present Developed TensorFlow code to effectively optimize extremely large (up to 2×10⁵ features) random feature regression models via second-order optimization. Designed and conducted thousands of GPU hours of experiments examining the function approximation capabilities of neural network, random feature regression, and kernel predictors. Derived precise mathematical characterization of the approximation error of the predictors under consideration in asymptotic setting. 		
	 Analysis of Variational Inference in T Designed and ran tens of thousands of behavior of variational inference in low Provided theory that characterizes the variational approximation are misleading 	Copic Modeling CPU hours of experiments to emp signal to noise ratio regime. regions in the parameter space whe g.	2017-2018 birically examine the ere the results of the
	 Optimal Estimation of Large Covarian Derived optimal non-linear shrinkage ematrix when the estimated covariance matrix 	nce Matrices for Preconditionir stimators for estimating a high-dir natrix is to be used for precondition	ng 2015-2017 nensional covariance ing unseen data.

Publications & Submissions	Ghorbani, B., Mei, S., Misiakiewicz, T., Montanari, A. "Linearized Two-Layers Neural Networks in High Dimension" Submitted to Annals of Statistics (2019).			
	Ghorbani, B., Mei, S., Misiakiewicz, T., Montanari, A. "Limitations of Lazy Training of Two-layers Neural Networks" NeurIPS (2019) (Accepted for Spotlight- Representing Top 3% of Submissions).			
	Ghorbani, B., Xiao, Y., Krishnan, S. "An Investigation into Neural Net Optimization Via Hessian Eigenvalue Density" ICML (2019).			
	Ghorbani, B., Xiao, Y., Krishnan, S. "The Effect of Network Depth on the Optimization Landscape" ICML Workshop on Deep Phenomena (2019).			
	Ghorbani, B., Javadi, H., Montanari, A. "An Instability in Variational Inference for Topic Models" ICML (2019).			
	Donoho, D., Ghorbani, B. "Optimal Covariance Estimation for Condition Number Loss in the Spiked Model" submitted to the Annals of Statistics (2018).			
Software Development	Spectral Density Estimation for Hessian of Deep Networks: https://github.com/google/spectral-density			
	Lazy Training of Wide Neural Networks: https://github.com/bGhorbani/Lazy-Training-Neural-Nets			
	Variational Inference for Topic Models in High-Dimensions: https://github.com/bGhorbani/Variational-Inference-Instability			
Invited Talks	UC Berkeley Statistics An Investigation into Neural Net Optimization via Hessian Eigenvalue Density	April 2019		
	NYU Center for Data Science Understanding the Loss Hessian in Deep Neural Networks	April 2019		
	Google Brain Understanding the Loss Hessian in Deep Neural Networks	April 2019		
	International Conference on Machine Learning (ICML) An Instability in Variational Inference for Topic Models	June 2019		
	International Conference on Machine Learning (ICML) An Investigation into Neural Net Optimization via Hessian Eigenvalue Density	June 2019		
Fellowships and Awards	Stanford Graduate Fellowship (2014) Three years of funding awarded to the top entering graduate students.			
	Governor General Silver Medal in Arts (2014) Medal from Governor General of Canada awarded to the top graduating student of the UBC Faculty of Arts.			
	Reginald Palliser-Wilson Scholarship in Mathematics (2014) Awarded by the UBC Mathematics Department to the top students majoring or honori ematics.	ng in math-		

	Wesbrook Scholar (2013) The University of British Columbia's most prestigious designation awarded to 20 senior students university-wide for outstanding achievements in research, leadership, academic performance, and community activity.
	Trek Excellence Scholarship (2012 & 2013) Awarded for ranking in the top 5% of the Faculty of Arts at UBC.
Peer Review	Journals: Journal of Machine Learning Research (JMLR), Journal of Multivariate Analysis
	Conferences: Advances in Neural Information Processing Systems (NeurIPS), International Conference on Machine Learning (ICML), The Association for the Advancement of Artificial Intelligence (AAAI)
Teaching Experience	Teaching Assistant, Stanford University
	STATS 325: Multivariate Analysis and Random Matrices in Statistics Spring 2019 Advanced Graduate course in statistics. Held office hours and was responsible for grading homework assignments.
Languages and Technologies	C++, Python, TensorFlow, R, ${\rm IAT}_{\rm E} {\rm X}$