

Media and Intraparty Ideological Movements: How Fox News Built the Tea Party

Online Appendix

Zhao Li Gregory J. Martin

October 31, 2025

Contents

A Data Construction Details	3
B Additional Figures for Content Analysis	7
B.1 Confidence Intervals For the Fraction of Words Spoken by Tea Party and Main-stream Republican Candidates	7
B.2 Estimated Topic Weights of Republican-Emphasized Topics	9
B.3 Confidence Intervals For Tea Party and Republican Language Scores By Channel . .	10
C FNC Channel Positions and Viewership	12
C.1 Intensive and Extensive Effects	12
C.2 Heterogeneity by Viewer Attributes	16
D Additional Table and Figures for Tea Party Rallies	20
D.1 Weekly Frequencies of Tea Party Mentions by Cable Outlet	20
D.2 Tea Party Rally Sizes and Pre-Rallies Average FNC Prime-time Rating Across Counties	21

D.3 Effects of Tea Party Rally Size on Subsequent FNC Ratings (2SLS)	22
E Strategic Entry of Tea Party Candidates	23
F Placebo Test of FNC Channel Positions on Rainfall on Tax Day, 2009	28
G Additional Tables and Figures for Campaign Contributions	29
G.1 Coefficient Stability of Table 5, Column 3	29
G.2 Residualized Scatter Plot For Table 5, Column 3	31
G.3 Number of Itemized Contributors as Alternative Outcome Variable for Table 5 . . .	32
G.4 Stacked Version of Table 5	33
G.5 Itemized Contributions to Democrats	35
G.6 Coefficient Stability of Table 6, Columns 3 and 6	36
G.7 Residualized Scatter Plots For Table 6, Columns 3 and 6	38
G.8 Number of Itemized Contributors as Alternative Outcome Variable for Table 6 . . .	40
G.9 Coefficient Stability of Table 7, Columns 3, 6 and 9	41
G.10 Residualized Scatter Plots For Table 7, Columns 3, 6, and 9	44
G.11 Coefficient Stability of Table 8, Columns 3, 6 and 9	47
G.12 Residualized Scatter Plots For Table 8, Columns 3, 6, and 9	50
G.13 Number of Itemized Contributors as Alternative Outcome Variable For Tables 7 and 8	53
H Additional Figure and Table for Primary Voting	56
H.1 Coefficient Stability of Table 9, Column 2	56
H.2 Residualized (Weighted) Scatter Plot Between Tea Party Candidates' Primary Vote Shares and FNC Cable Channel Positions	57
H.3 Effects of FNC Cable Channel Positions on (Weighted) Turnout in Primary Elections	58
I Mentions of the Occupy Wall Street Movement	59

A Data Construction Details

We use a variety of data sources in our empirical analysis. First, we draw on several data sets to construct variables related to media exposure or media programming. Through the Lexis-Nexis database, we obtain broadcast transcripts for the three major cable news outlets during our period of study—namely, CNN, FNC, and MSNBC—by downloading all transcripts for each identifiable cable news program for each of these channels in 2009 and 2010. Also, following Martin and Yurukoglu (2017), we rely on the Nielsen FOCUS database to measure channel lineups by zip code-year. For each cable system and year, the database records the availability and channel positions of CNN, FNC, and MSNBC as well as the zip codes served by said system. Cable system controls in our regression analyses, unless otherwise noted, include the total number of cable channels available, the number of broadcast channels available, and whether a given cable system provided FNC, MSNBC, or both. In addition, to acquire data on viewership by channel, we rely on Nielsen Local TV (NLTV) database for daily ratings for CNN, FNC, and MSNBC by county, which are constructed based on Nielsen’s survey of a rotating panel of households.

To shed light on how channel positions influence individual FNC viewership, we analyze MediaMark Research’s Survey of the American Consumer from 2001 and 2009, which provides rolling cross-sectional questionnaires on media consumption, demographics, and political activities. Specifically, we examine two sets of variables: 1) self-reported viewership (both binary and in binned hours) of FNC, CNN, and MSNBC within a week prior to a respondent’s interview date; and 2) self-reported race and ethnicity, gender, age group, household income category, educational attainment, and left-right ideology.

To identify Republican candidates with affiliation to the Tea Party movement, we follow Skocpol and Williamson (2012) and focus on House Republican candidates in 2010. Among these candidates, we identify 173 of them as Tea Party candidates based on their membership in the House Tea Party Caucus (48), or endorsements from Tea Party-affiliated activist organizations

such as FreedomWorks, Tea Party Express, Tea Party Nation, and the Independence Caucus during the 2010 midterm elections (138).¹

Among these Tea Party candidates, 40 of them were founding members of the House Tea Party Caucus in 2010. We can thus construct a measure of the extent to which cable news content resembled the congressional speeches given by these Tea Party-affiliated members of Congress during the same election cycle. To this end, we downloaded the 2009-2010 Congressional Record from the US Government Publishing Office's website (<http://gpo.gov>).

For our analysis of the impact of Fox News on attendance at Tea Party rallies, we thank Madestam et al. (2013) for generously sharing their replication data set, which includes county-level attendance estimates for Tea Party rallies on Tax Day of 2009. In addition, Madestam et al. (2013) show that rainfall on Tax Day was a strong predictor of smaller turnout at Tea Party rallies, which served as an instrument for rally size to the study the effect of these rallies on subsequent electoral support for the Republican party. Based on Madestam et al. (2013)'s findings, we include data on whether it rained in a given county on Tax Day in 2009 as well as the prior probabilities of rain by county as control variables in our analysis of Tea Party rallies. In this analysis, besides county-aggregated cable system controls (i.e., MSNBC channel position, channel configuration, the total number of channels on the cable system, and the number of broadcast channels on the system by zip code), we also incorporate other control variables used in Madestam et al. (2013), specifically county population deciles, region fixed effects, county demographics (i.e., income distribution, unemployment levels and changes, population density, urbanity, racial and ethnic

¹Endorsement data originate from Zernike et al. (2010). We include endorsements despite their strategic nature (Bailey et al. 2012) not only for comparability with Skocpol and Williamson (2012), but also because of their cue effects for Republican-leaning voters and donors (Gervais and Taylor 2016). Also, we do not use candidates' Tea Party salience in media to measure movement strength (Gervais and Morris 2018) because it would bias both our descriptive analysis of FNC candidate coverage and causal analysis of FNC exposure on support for Tea Party candidates.

composition, foreign population), and voting outcomes from the 2006 House of Representatives elections and the 2008 presidential elections by county.

We collect campaign contribution records from the Database on Ideology, Money in Politics, and Elections (DIME) (Bonica 2019). Importantly, DIME reports not only all itemized contributions (including the self-disclosed addresses of contributors), but also time-invariant identifiers of unique contributors. DIME thus allows us to calculate both the total dollar amount of itemized contributions and the number of unique itemized contributors, by zip code, to Tea Party-affiliated Republican candidates versus Republican candidates without such affiliations in the 2010 election cycle.

We gather precinct-level voting data for House primary elections in 2010 that featured Tea Party candidates, which is feasible for Arizona, California, Florida, Georgia, Hawaii, Louisiana, Massachusetts, North Carolina, New Mexico, Ohio, South Carolina, Tennessee, Virginia, Vermont, Washington, and Wisconsin. We are able to retain 74 Tea Party candidates in our analysis of primary elections. In addition, in order to spatially link precincts to the nearest zip codes (since Nielsen data are recorded by zip codes), we use shape files provided by the Harvard Election Data Archive (Ansolabehere et al. 2014) to aggregate precinct-level vote shares up to the zip code level. Specifically, we compute the spatial coordinates of each precinct's centroid and overlay these coordinates onto the U.S. Census' zip code shape files to identify the best matched zip code for a given precinct.

Finally, unless noted otherwise, we collect demographic data at the zip code, county, and congressional district level from the 2000 and 2010 U.S. Censuses. These include population size, gender composition, age distribution, racial and ethnic makeup, household income by deciles, education attainment levels, and urbanity status.

Table A.1 reports, for each Census demographic variable, its mean and standard deviation (the latter in parentheses) for zip codes in our sample with matched precinct vote returns, respectively. This table also includes standardized mean differences across these two types of zip codes as well as the corresponding *p*-value.

Table A.1: Balance Test: Demographic Differences by Matched Precinct-Level Election Data Availability

Variable	With voting data	Without voting data	Standardized Mean Difference	p-value
Percent Black	0.118 (0.190)	0.081 (0.157)	0.21	0.00
Percent Asian	0.034 (0.074)	0.022 (0.051)	0.19	0.00
Percent Other	0.086 (0.108)	0.063 (0.082)	0.24	0.00
Percent Hispanic	0.110 (0.162)	0.088 (0.150)	0.14	0.00
Percent Male	0.495 (0.028)	0.498 (0.031)	-0.09	0.00
Percent Age 10s	0.144 (0.033)	0.145 (0.033)	-0.04	0.03
Percent Age 20s	0.124 (0.053)	0.119 (0.055)	0.09	0.00
Percent Age 30s	0.121 (0.029)	0.119 (0.028)	0.08	0.00
Percent Age 40s	0.141 (0.022)	0.143 (0.024)	-0.05	0.01
Percent Age 50s	0.146 (0.028)	0.148 (0.029)	-0.07	0.00
Percent Age 60s	0.111 (0.037)	0.108 (0.033)	0.07	0.00
Percent Age 70s	0.062 (0.029)	0.063 (0.025)	-0.02	0.26
Percent Age 80s	0.038 (0.022)	0.041 (0.023)	-0.12	0.00
Percent High School Graduates	0.317 (0.111)	0.336 (0.113)	-0.17	0.00
Percent Some College	0.284 (0.068)	0.286 (0.079)	-0.03	0.17
Percent Bachelor's Degree	0.155 (0.092)	0.148 (0.089)	0.07	0.00
Percent Postgraduate Degree	0.089 (0.075)	0.085 (0.079)	0.05	0.01
Percent Suburban	0.111 (0.242)	0.105 (0.242)	0.02	0.24
Percent Urban	0.471 (0.464)	0.378 (0.458)	0.20	0.00
Total Population	17,209 (15,826)	12,126 (14,624)	0.33	0.00
Income Decile	5.567 (2.805)	5.863 (2.815)	-0.11	0.00

B Additional Figures for Content Analysis

B.1 Confidence Intervals For the Fraction of Words Spoken by Tea Party and Mainstream Republican Candidates

Figure B.1.1 adds confidence intervals for the fraction of words spoken by Tea Party and mainstream Republican candidates (e.g., the mean value of an indicator variable for the speaker of a word appearing in the TV transcripts coming from the indicated group). We compute pointwise confidence intervals for the mean in each month. Given the volume of text in a month of 24-hour news coverage, confidence intervals on the fraction of words spoken by members of each group are very tight.

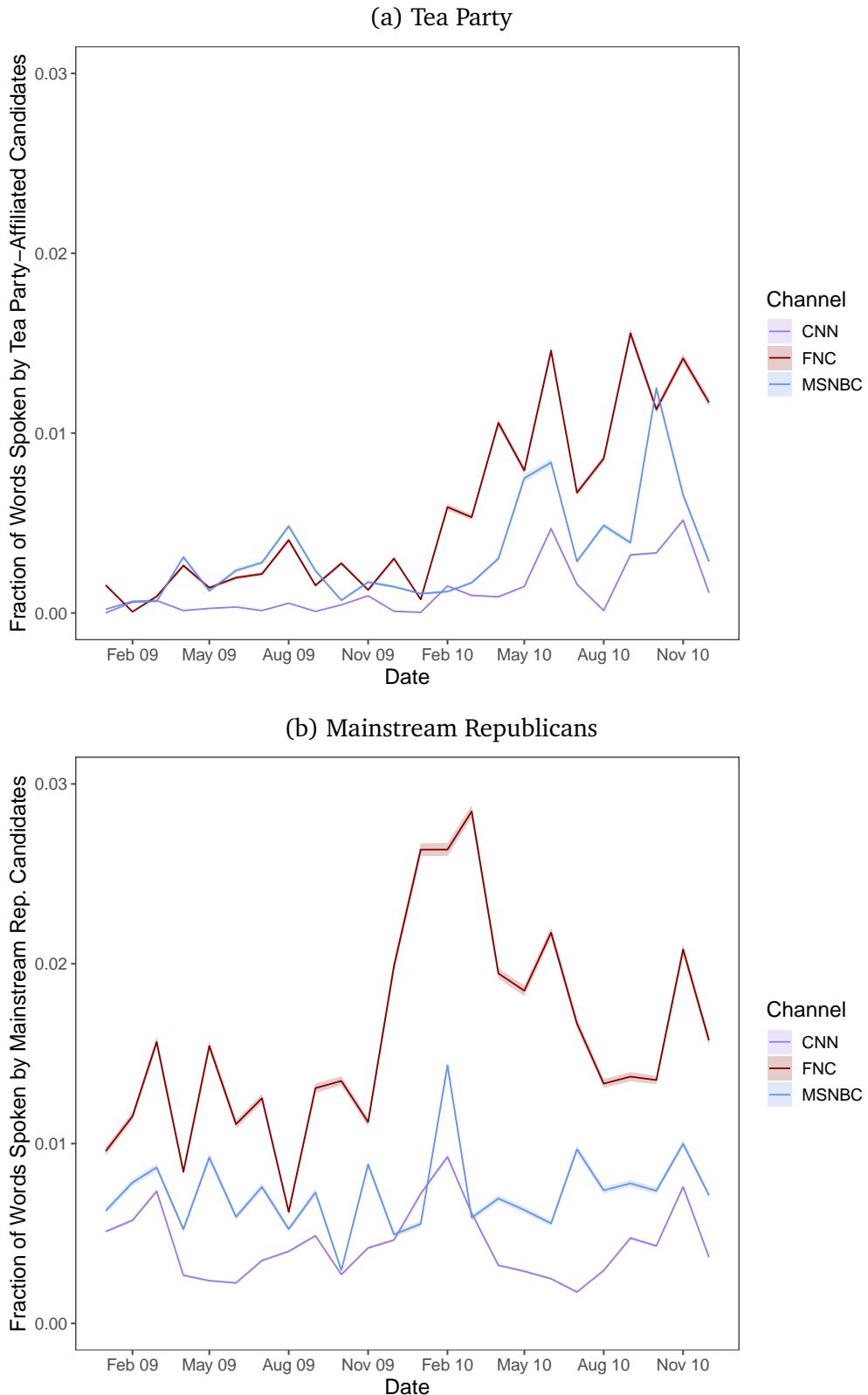


Figure B.1.1: The fraction of words spoken on each channel, by Tea Party members (top) and by mainstream Republican candidates (bottom). Figure includes pointwise 90% confidence intervals constructed using the t-distribution for the sample mean in each month.

B.2 Estimated Topic Weights of Republican-Emphasized Topics

Figure B.2.1 visualizes the relative weight of issues focused by all Republican candidates in both their appearances (top panel) and in cable news coverage (bottom panel).

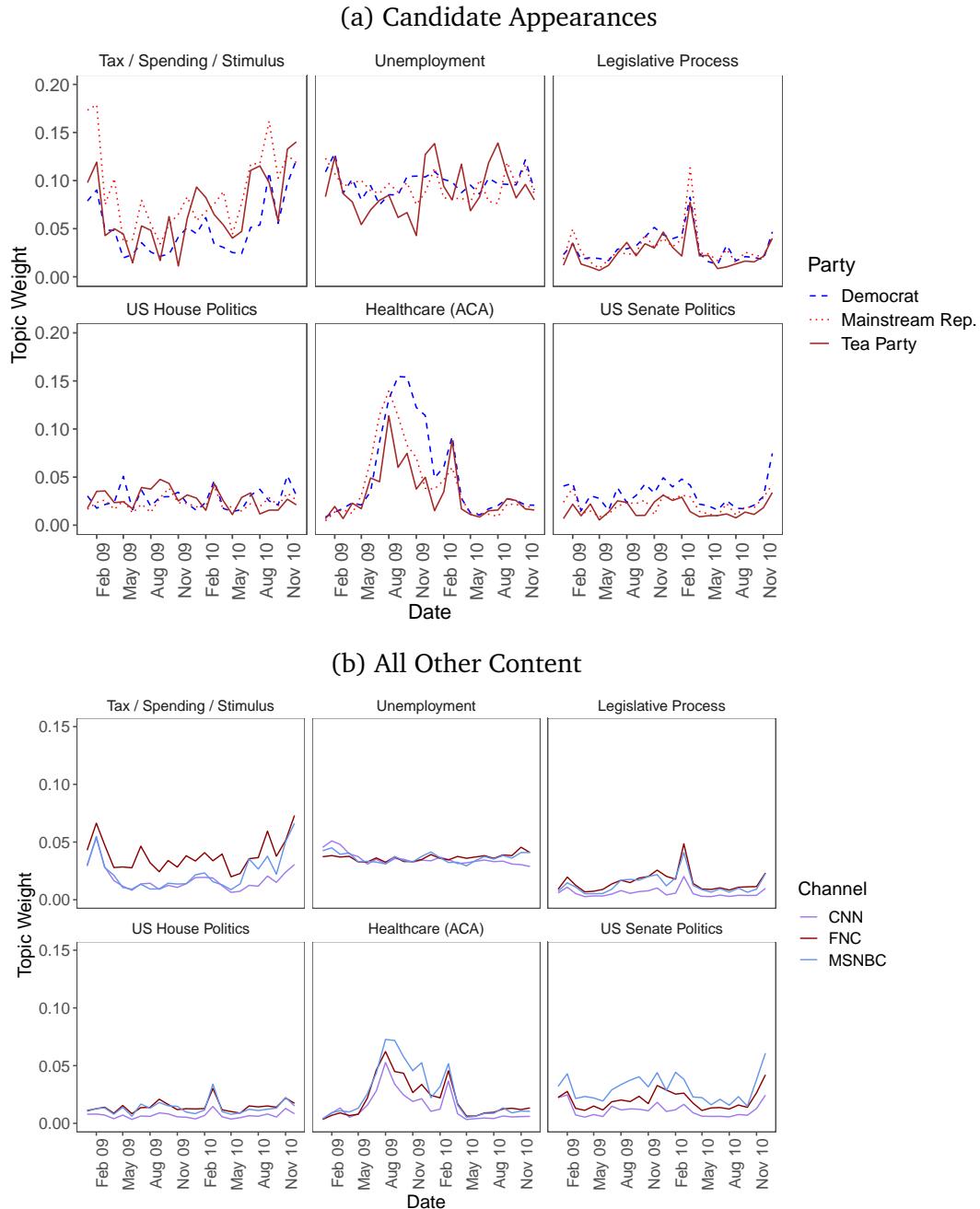


Figure B.2.1: Estimated topic weights of key Republican-party emphasized topics, in candidate appearances (top) and all other cable content (bottom).

B.3 Confidence Intervals For Tea Party and Republican Language Scores By Channel

Figure B.3.1 shows confidence intervals for the overall mean value of the Tea Party and Republican language scores on each of the channels. Confidence intervals follow the subsampling method of Gentzkow et al. (2019): we draw 100 subsets (sampling without replacement) of speaker-months, each of size 10% of the full data. We then run the multinomial inverse regression and the forward regression to predict language scores on each subset, and use the resulting distribution of estimates to construct confidence intervals. Intervals are centered around the estimated scores on the full data. The confidence interval for FNC's Tea Party score excludes the point estimates for both CNN or MSNBC.

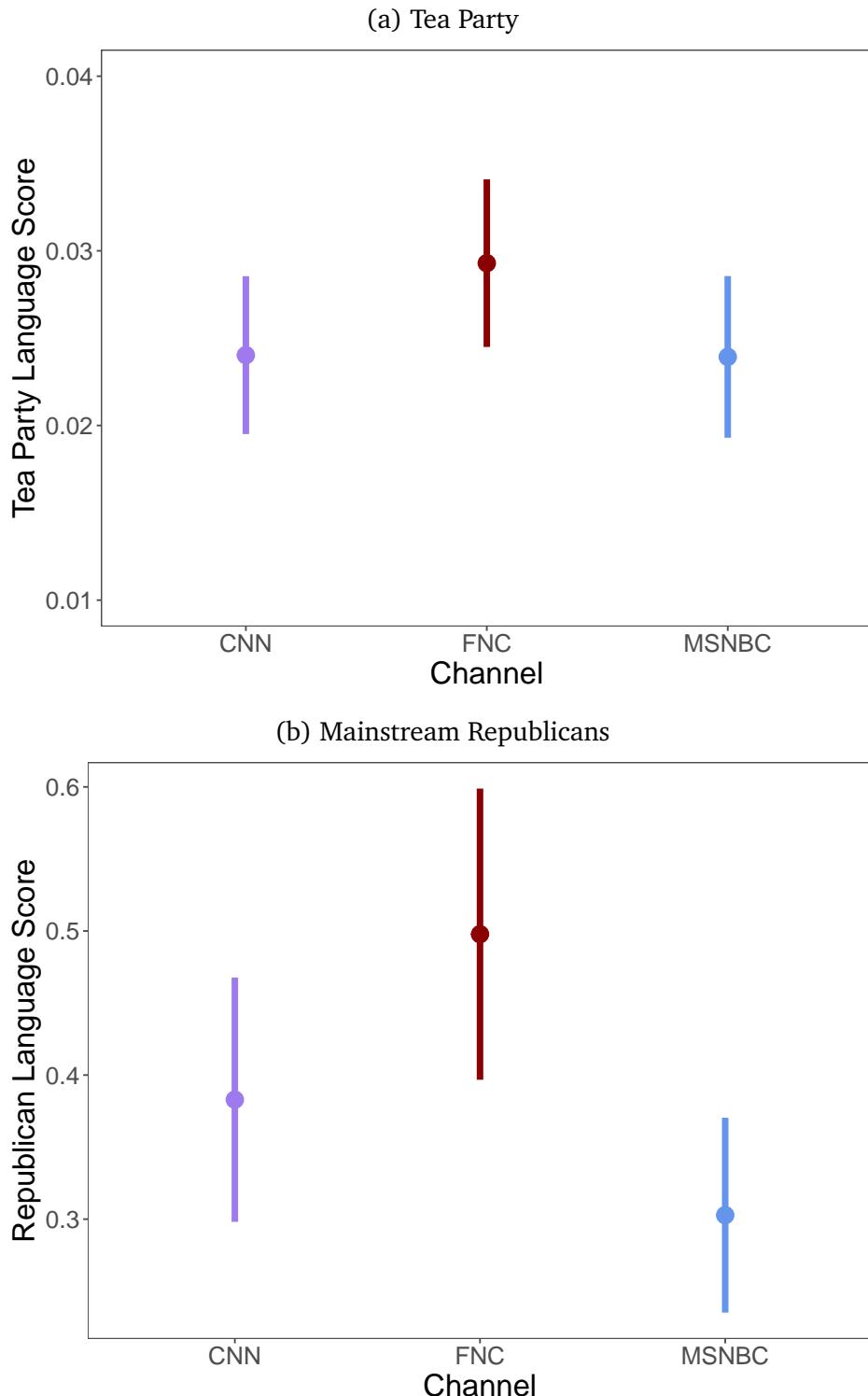


Figure B.3.1: Confidence intervals for the average predicted Tea Party (top) and Republican (bottom) language scores for each channel, aggregated over the entire period. Confidence intervals are constructed using a subsampling method described in Gentzkow et al. (2019); see text for details.

C FNC Channel Positions and Viewership

How malleable were views on the Tea Party movement among people whose consumption of FNC was sensitive to its channel position on cable systems? While we cannot definitely answer this question given our lack of individual-level data that include both validated FNC viewership and attitudes regarding the Tea Party movement, we can indirectly address this question by examining how responsiveness to FNC's channel positions varied by individual attributes, and the extent to which salient individual attributes correspond to known demographics that predict support for the movement. To that end, we examine data from MediaMark Research's Survey of the American Consumer, subsetting to respondents from 2001 to 2009 (all responses were collected prior to the Tax Day rallies on 2009) who subscribed to a wired cable TV provider.² Importantly for our analysis, MediaMark asks respondents to report both whether they watch CNN, MSNBC, and FNC at all within the past week as well as how many hours they spent on each channel within the past week. By merging in channel positions of FNC and MSNBC by zip code to respondent information, we can examine the sensitivity of their FNC viewership to FNC channel positions. Additionally, some of the self-reported respondent attributes in MediaMark—age, left-right ideology, race and ethnicity, educational attainment, gender, and household income—are salient predictors of support for the Tea Party Parker and Barreto (2013). We also examine whether respondents' sensitivity to FNC channel positions depends on these demographic attributes.

C.1 Intensive and Extensive Effects

Tables C.1.1 and C.1.2 demonstrate that at both the extensive margin (i.e., watching any FNC) and the intensive margin (i.e., positive hours spent on FNC), respondents consumed less FNC

²And not viewers who watched FNC through a satellite service such as DirecTV; these viewers see a common, nationwide order that does not vary from location to location.

the higher its channel position is in respondents' cable systems. These findings hold even after accounting for the following control variables and state-year fixed effects:

- Cable system characteristics: whether a respondent's zip code had cable access to both FNC and MSNBC or only FNC, number of channels, and number of broadcast channels;
- Respondent attributes: household income, ideology, age, race and ethnicity, gender, and educational attainment; and
- Demographics: racial, gender, age, income, educational, and urban/rural makeup and population size in the 2000 Census in the respondent's zip code

Note that Table C.1.2 (and any subsequent regression tables in this section that focus on the intensive margin) has a smaller sample size due to excluding respondents who self-reported watching no FNC. Standard errors are clustered at the cable system level.

Table C.1.1: FNC Channel Positions on Cable Viewership (Extensive Margin)

	Any FNC			
	(1)	(2)	(3)	(4)
FNC Channel Pos.	-0.0007** (0.0003)	-0.0007** (0.0003)	-0.0007** (0.0003)	-0.0008*** (0.0002)
MSNBC Channel Pos.	0.0003 (0.0003)	0.0002 (0.0003)	0.0002 (0.0002)	0.0001 (0.0002)
HH Income (in Thousands)		0.0002*** (2.94×10^{-5})	0.0002*** (2.87×10^{-5})	0.0001*** (2.79×10^{-5})
Conservativism		0.049*** (0.002)	0.047*** (0.002)	0.045*** (0.002)
Age (Quintile)		0.085*** (0.003)	0.081*** (0.003)	0.080*** (0.003)
White		0.005 (0.006)	-0.003 (0.006)	0.007 (0.006)
Black		0.060*** (0.009)	0.060*** (0.009)	0.069*** (0.009)
Hispanic		-0.020*** (0.007)	-0.013* (0.007)	-0.012* (0.007)
College Degree		-0.015*** (0.004)	-0.010*** (0.003)	-0.009*** (0.003)
Man		0.043*** (0.003)	0.041*** (0.003)	0.045*** (0.003)
Cable System Characteristics	✓	✓	✓	✓
Zip Code Demographics			✓	✓
State-Year FEs				✓
Observations	158,059	126,715	125,649	125,649
R ²	0.03	0.05	0.05	0.08
Mean of DV	0.360	0.365	0.365	0.365

Table C.1.2: FNC Channel Positions on Cable Viewership (Intensive Margin)

	FNC Hours			
	(1)	(2)	(3)	(4)
FNC Channel Pos.	-0.003 (0.002)	-0.004* (0.002)	-0.004* (0.002)	-0.005** (0.002)
MSNBC Channel Pos.	0.001 (0.002)	0.0007 (0.002)	0.001 (0.002)	-0.0002 (0.002)
HH Income (in Thousands)		-0.004*** (0.0003)	-0.003*** (0.0003)	-0.004*** (0.0004)
Conservativism		0.510*** (0.026)	0.500*** (0.026)	0.489*** (0.026)
Age (Quintile)		1.01*** (0.042)	0.963*** (0.042)	0.931*** (0.041)
White		0.222*** (0.077)	0.214*** (0.080)	0.267*** (0.082)
Black		0.225** (0.103)	0.171 (0.107)	0.217** (0.109)
Hispanic		-0.088 (0.082)	-0.131 (0.083)	-0.152* (0.083)
College Degree		-0.245*** (0.049)	-0.194*** (0.049)	-0.198*** (0.050)
Man		0.046 (0.044)	0.046 (0.044)	0.063 (0.044)
Cable System Characteristics	✓	✓	✓	✓
Zip Code Demographics			✓	✓
State-Year FEs				✓
Observations	56,879	46,297	45,837	45,837
R ²	0.005	0.04	0.04	0.07
Mean of DV	3.616	3.611	3.612	3.612

Exogenous variation in FNC viewership arising from differences in channel positions across cable systems likely produced meaningful shifts in viewers' political knowledge and attitudes, including toward the Tea Party movement and its candidates. Based on the estimate in column 3 of Table C.1.2, a one-standard-deviation decrease in FNC's channel position (approximately 20 positions) is associated with roughly 6 additional minutes of weekly viewing among those who watched FNC at all. Although the MediaMark Research Survey of the American Consumer does not include detailed measures of political beliefs beyond general ideology, we can gauge the

magnitude of this effect by benchmarking against Broockman and Kalla (2025). Broockman and Kalla (2025) recruited a sample of regular FNC viewers and incentivized a random set of them to watch CNN instead for a month. In this experiment, the treatment group watched an additional 45 minutes of CNN per week and subsequently exhibited notable learning of information presented on CNN as well as attitudinal shifts on salient political issues and figures. Broockman and Kalla (2025) further argue that sustained exposure to cross-cutting media should yield even larger effects on beliefs and attitudes.

Our empirical context fits this description. The estimated treatment intensity of 6 minutes per week for a one-standard-deviation decrease in FNC channel position is averaged over 2001–2009. Since FNC channel positions in many local cable systems were established years prior to the Tea Party Movement (Martin and Yurukoglu 2017), the cumulative exposure to FNC induced by differences in channel positions likely produced belief and attitudinal shifts comparable in magnitude to those observed in Broockman and Kalla (2025). This applies to the specific context of the Tea Party Movement as well given FNC’s sustained Tea Party-focused coverage throughout the 2009-2010 election cycle (see “Content Analysis of Major Cable News Outlets” in the main text).

C.2 Heterogeneity by Viewer Attributes

Tables C.2.1 and C.2.2 examine whether FNC channel positions’ impact on viewership (at the extensive versus intensive margins) depends on respondent attributes, including the same control variables as the previous two tables. Coefficient estimates for individual attributes and their interactions with MSNBC’s channel positions are suppressed for brevity. Standard errors are clustered by cable system. Both tables reveal that many individual attributes that strongly predict both support for the Tea Party moment Parker and Barreto (2013) and FNC viewership—specifically race/ethnicity, gender, educational attainment, and household income—appear to have no bearing on respondents’ responsiveness to FNC channel positions. One exception is age (in quintiles),

which moderates FNC channel positions' impact on FNC viewership primarily at the extensive margin (see Table C.2.1). This may be due to the fact that older respondents are much more likely to watch FNC at baseline (see Tables C.1.1 and C.1.2), and hence the marginal impact of channel positions may be larger for relatively younger audiences. Also, at the extensive margin, conservative-leaning respondents are somewhat less responsive to FNC channel positions, although this heterogeneous effect is only one-tail significant after accounting for state-year fixed effects (see Table C.2.1). These exceptions aside, Tables C.2.1 and C.2.2 suggest that FNC channel positions' influence on FNC viewership is not limited to demographics that are unlikely to sympathize with Tea Party causes (e.g., women, minorities, college graduates, higher earners, and youths). Those who may have higher latent propensity to support the Tea Party movement might still be influenced by FNC channel positions in their consumption of the channel.

Table C.2.1: FNC Channel Positions on Cable Viewership (Extensive Margin)

	Any FNC			
	(1)	(2)	(3)	(4)
FNC Channel Pos.	-0.0007** (0.0003)	-0.001*** (0.0005)	-0.001*** (0.0005)	-0.001*** (0.0005)
MSNBC Channel Pos.	0.0003 (0.0003)	-0.0002 (0.0005)	-0.0001 (0.0005)	-0.0002 (0.0005)
FNC Channel Pos. \times HH Income		1.11×10^{-6} (1.76×10^{-6})	1.67×10^{-6} (1.73×10^{-6})	8.57×10^{-7} (1.61×10^{-6})
FNC Channel Pos. \times Conservatism		0.0003** (0.0001)	0.0003** (0.0001)	0.0002* (0.0001)
FNC Channel Pos. \times Age		0.0006*** (0.0002)	0.0006*** (0.0002)	0.0006*** (0.0002)
FNC Channel Pos. \times White		0.0002 (0.0004)	0.0002 (0.0004)	6.99×10^{-5} (0.0004)
FNC Channel Pos. \times Black		0.0006 (0.0006)	0.0006 (0.0005)	0.0004 (0.0005)
FNC Channel Pos. \times Hispanic		0.0004 (0.0004)	0.0005 (0.0004)	0.0006 (0.0004)
FNC Channel Pos. \times College Degree		-0.0001 (0.0002)	-0.0001 (0.0002)	-3.78×10^{-5} (0.0002)
FNC Channel Pos. \times Man		2.4×10^{-5} (0.0002)	-1.49×10^{-5} (0.0002)	-3.36×10^{-5} (0.0002)
Cable System Characteristics	✓	✓	✓	✓
Respondent Demographics		✓	✓	✓
Zip Code Demographics			✓	✓
State-Year FEs				✓
Observations	158,059	126,715	125,649	125,649
R ²	0.03	0.05	0.05	0.08
Mean of DV	0.360	0.365	0.365	0.365

Table C.2.2: FNC Channel Positions on Cable Viewership (Intensive Margin)

	FNC Hours			
	(1)	(2)	(3)	(4)
FNC Channel Pos.	-0.003 (0.002)	-0.011* (0.007)	-0.012* (0.007)	-0.010 (0.007)
MSNBC Channel Pos.	0.001 (0.002)	0.005 (0.006)	0.006 (0.006)	0.002 (0.006)
FNC Channel Pos. \times HH Income		1.4×10^{-5} (2.21×10^{-5})	9.95×10^{-6} (2.21×10^{-5})	9.56×10^{-6} (2.25×10^{-5})
FNC Channel Pos. \times Conservatism		-0.0009 (0.002)	-0.001 (0.002)	-0.001 (0.002)
FNC Channel Pos. \times Age		0.001 (0.003)	0.001 (0.003)	0.002 (0.003)
FNC Channel Pos. \times White		0.004 (0.006)	0.005 (0.006)	0.002 (0.006)
FNC Channel Pos. \times Black		0.001 (0.007)	0.002 (0.007)	-8.65×10^{-5} (0.007)
FNC Channel Pos. \times Hispanic		0.0007 (0.005)	0.002 (0.005)	0.004 (0.005)
FNC Channel Pos. \times College Degree		0.001 (0.003)	0.0008 (0.003)	0.0005 (0.003)
FNC Channel Pos. \times Man		0.002 (0.003)	0.003 (0.003)	0.002 (0.003)
Cable System Characteristics	✓	✓	✓	✓
Respondent Demographics		✓	✓	✓
Zip Code Demographics			✓	✓
State-Year FEs				✓
Observations	56,879	46,297	45,837	45,837
R ²	0.005	0.04	0.04	0.07
Mean of DV	3.616	3.611	3.612	3.612

D Additional Table and Figures for Tea Party Rallies

D.1 Weekly Frequencies of Tea Party Mentions by Cable Outlet

Figure D.1.1 replicates Skocpol and Williamson (2012)'s analysis of weekly frequencies of on-air references to the Tea Party movement by FNC, CNN, and MSNBC both leading up to Tax Day and afterwards, displays a modest lead in FNC's coverage of the movement ahead of the rallies.

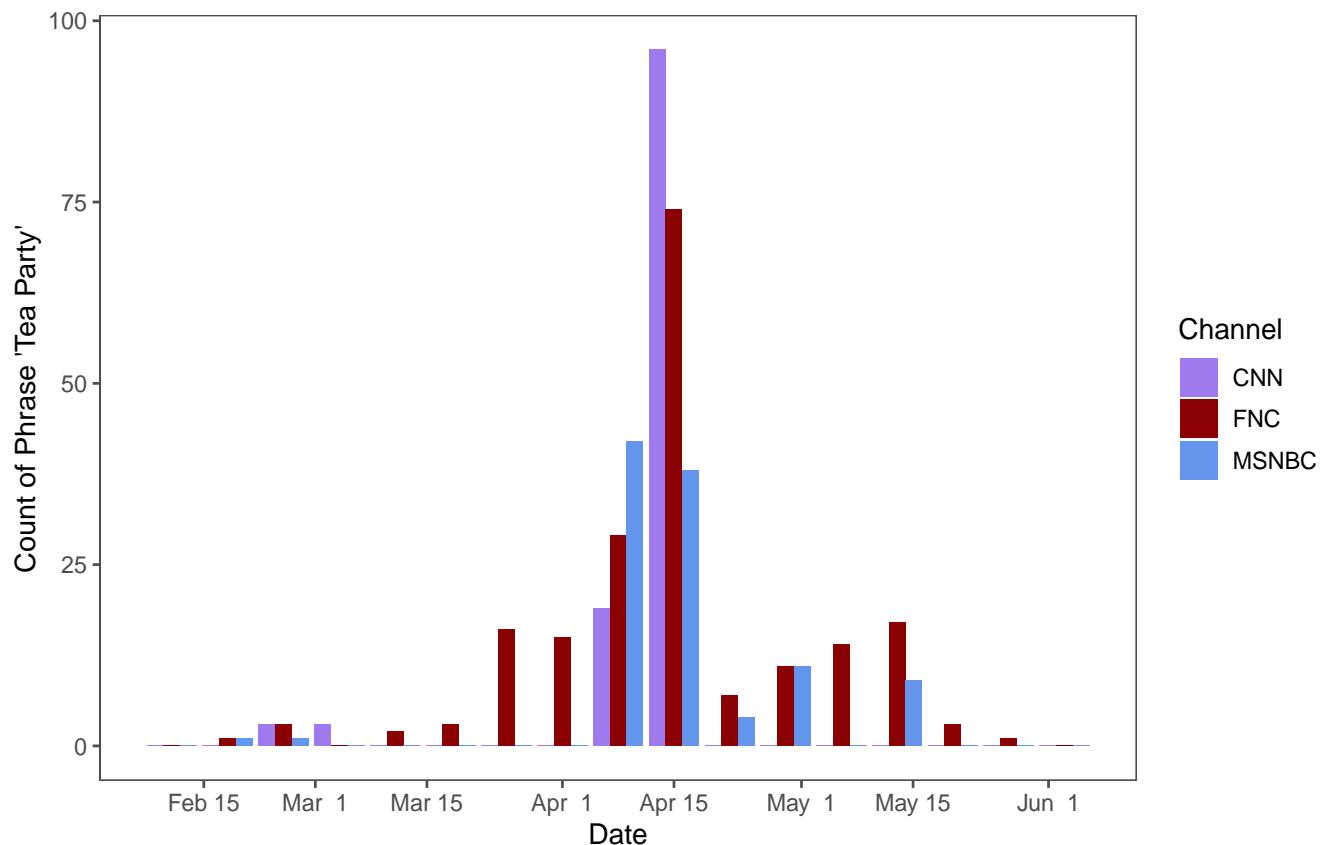


Figure D.1.1: Weekly Frequencies of Tea Party Mentions by Cable Outlet

D.2 Tea Party Rally Sizes and Pre-Rallies Average FNC Primetime Rating Across Counties

Figure D.2.1 shows a (weak) positive association between the average primetime FNC rating (aggregated to the county level) during the six months prior to Tax Day of 2009 and rally attendance as a percentage of county population. The size of points indicates the number of Nielsen households in the county average.

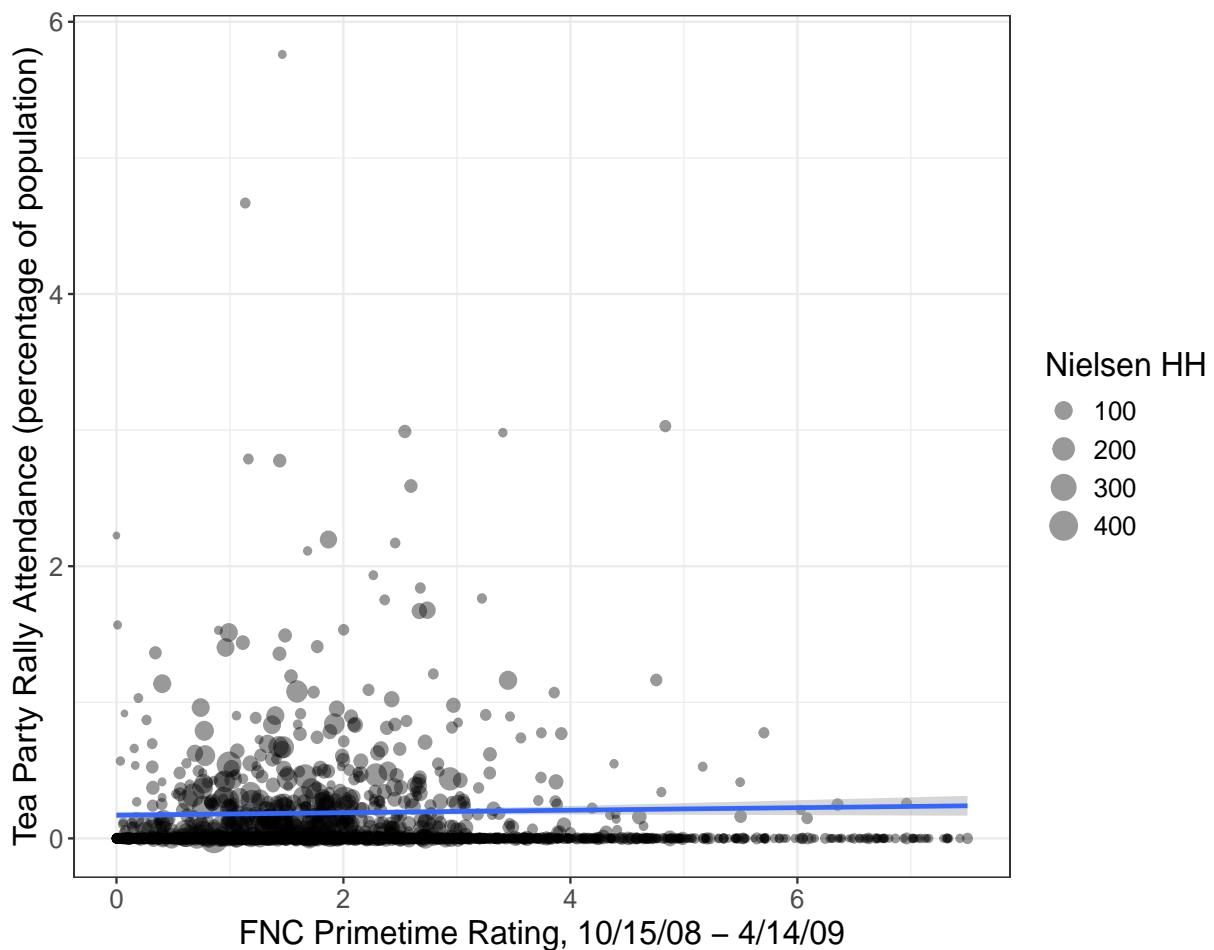


Figure D.2.1: Positive Association between Tea Party Rally Sizes and Pre-Rallies Average FNC Primetime Rating Across Counties

D.3 Effects of Tea Party Rally Size on Subsequent FNC Ratings (2SLS)

Table D.3.1 reports 2SLS estimates for Tea Party rally sizes on subsequent FNC ratings, instrumenting for rally size using rainfall on 4/15/2009 as in Madestam et al. (2013).

Table D.3.1: Effects of Tea Party Rally Size on Subsequent FNC Ratings (2SLS)

	Fox News Rating, Summer 2010			
	(1)	(2)	(3)	(4)
% Tea Party Rally Attendance	0.070 (0.379)	0.133 (0.286)	0.257 (0.256)	0.312 (0.246)
Pre-April 2009 Rating		0.087*** (0.015)	0.070*** (0.011)	0.061*** (0.011)
Cable System Controls	✓	✓	✓	✓
Cable Positions	✓	✓	✓	✓
County Demographics			✓	✓
2008 and 2006 Voting				✓
Rain Prob. Decile FEs	✓	✓	✓	✓
Population Decile FEs	✓	✓	✓	✓
Region FEs	✓	✓	✓	✓
Observations	2,607	2,607	2,607	2,607
R ²	0.11	0.16	0.19	0.20
Mean of DV	0.709	0.709	0.709	0.709

E Strategic Entry of Tea Party Candidates

As the Tea Party movement attracted greater national attention following the Tax Day rallies, a wave of Tea Party-backed Republican candidates entered the 2010 midterm elections in order to attain nominations by the Republican party (Blum 2020; Skocpol and Williamson 2012). Given existing evidence that FNC may have encouraged the emergence of quality Republican candidates contesting marginal districts with Democratic incumbents (Arceneaux et al. 2020, 2025), we investigate whether FNC influenced prospective Tea Party candidates to enter congressional races in the 2010 midterm elections. To this end, we estimate regressions of the following form:

$$TeaPartyEntry_d = \alpha Accessibility_d^{FNC} + \mathbf{X}_d \Gamma + \epsilon_d \quad (A.1)$$

The outcome variable $TeaPartyEntry_d$ is an indicator of whether any Tea Party-affiliated Republican candidate ran in the 2010 House election in congressional district d .³ The explanatory variable of interest, $Accessibility_d^{FNC}$, represents one of two measures of the accessibility of FNC via cable TV in congressional district d in the 2010 election cycle. One such measure is the density of FNC across a congressional district, which equals the share of zip codes overlapping with a congressional district (weighted by population size) that had access to FNC via cable TV (Arceneaux et al. 2020, 2025). However, the expansion of FNC across the United States was nearly complete by 2010 (Martin and Yurukoglu 2017), so there is only modest variation in this variable. As a result, we also use an alternative measure of FNC's accessibility, which is the additive inverse (i.e., multiplying by -1) of average cable channel position of FNC in zip codes that overlap with a congressional district (weighted by zip code population size). Insofar as Tea Party candidates were more likely to enter the 2010 House of Representatives elections in congressional districts with greater exposure to FNC, we should expect the estimated coefficient of $\alpha > 0$.

³All results remain qualitatively identical if we subset to non-incumbent Tea Party candidates.

\mathbf{X}_d consists of cable system characteristics (specifically, the numbers of all cable channels and broadcast channels available)⁴ aggregated at the congressional district level in the same manner as our measures of FNC accessibility, congressional district-aggregated demographics (racial, gender, age, income, educational, and urban/rural makeup in the 2010 Census), and state fixed effects.

Table E.1 reports estimation results using FNC density by congressional district in 2010 as the independent variable of interest, and Table E.2 displays analogous estimation results using the additive inverse of the weighted average FNC channel position in each congressional district in 2010 as the alternative measure of FNC accessibility. We cluster standard errors at the state level in both tables. Even though the estimated coefficient of interest always positive, as expected, it is never statistically distinguishable from zero. In short, we find no evidence that Tea Party candidates strategically entered the 2010 midterm elections in congressional districts that had systematically higher degrees of FNC accessibility.

⁴Unlike in other regression analyses involving cable system controls, we do not include indicators for whether a cable system provided FNC, MSNBC, or both as it would be collinear with one of our measures of FNC accessibility, namely FNC's density (Arceneaux et al. 2020, 2025). Also, to facilitate comparability with the analyses of strategic candidate entry in Arceneaux et al. (2020, 2025), we exclude measures of MSNBC's accessibility from our cable system controls, although all results are qualitatively identical if MSNBC accessibility is controlled for.

Table E.1: No Evidence of Strategic Entry of Tea Party Candidates Based on Congressional District-Level Fox News Density

	Tea Party Entry		
	(1)	(2)	(3)
FNC Channel Density	0.049 (0.303)	0.245 (0.395)	0.694 (0.988)
Cable system controls	✓	✓	✓
Demographic controls		✓	✓
State FEs			✓
Observations	436	435	435
R ²	0.002	0.06	0.17
Mean of DV	0.378	0.379	0.379

Table E.2: No Evidence of Strategic Entry of Tea Party Candidates Based on Congressional District-Level Weighted Average Fox News Channel Position

	Tea Party Entry		
	(1)	(2)	(3)
Weighted Ave. FNC Channel Pos.	0.003 (0.003)	0.002 (0.003)	0.002 (0.003)
Cable system controls	✓	✓	✓
Demographic controls		✓	✓
State FEs			✓
Observations	436	435	435
R ²	0.004	0.06	0.17
Mean of DV	0.378	0.379	0.379

Our analysis above is related to, but also distinct from, Arceneaux et al. (2020)'s and Arceneaux et al. (2025)'s studies regarding the impact of FNC on strategic candidate entry. To recap, Arceneaux et al. (2020, 2025) find that as FNC increasingly penetrated congressional districts during its staggered nationwide rollout, it increased the self-perceived electoral viability of Potential Candidates (PCs) from the Republican Party in affected districts, leading quality Republican

PCs (i.e., those with prior elective experiences) to strategically contest districts with high FNC density that were tenuously held by Democratic incumbents.

In theory, given FNC's outsized and favorable coverage of the Tea Party movement (see Section titled "Content Analysis of Major Cable News Outlets" in the main text), FNC could have triggered a similar belief-updating process and induced Tea Party-affiliated PCs to enter the 2010 midterm elections. At first glance, the null results in Tables E.1 and E.2 may therefore seem inconsistent with the findings of Arceneaux et al. (2020) and Arceneaux et al. (2025).

In practice, however, a few design differences between our analysis and Arceneaux et al. (2020) and Arceneaux et al. (2025) imply that our results need not refute their conclusions, but rather point to the need for further work on how political media influence candidate supply. Most importantly, Arceneaux et al. (2020, 2025) use district-level FNC density—the proportion of a congressional district that received FNC based on zip code-level variation—as their treatment variable. Their analysis spans 1998-2010, a period when FNC's staggered national rollout produced considerable geographic and temporal variation in availability. In contrast, given our objective of studying Tea Party candidate emergence, our analysis focuses on the 2009-2010 election cycle, by which point FNC's nationwide expansion was nearly complete (Martin and Yurukoglu 2017). In fact, the median FNC density in our sample is 0.985, indicating near universal coverage; such limited variation plausibly explains the absence of a discernible relationship between FNC density and Tea Party candidate emergence in Table E.1.

We also examine the inverse of FNC's average cable-channel position, weighted by zip-code population, as an alternative measure of accessibility. Yet, as Table E.2 shows, this measure yields similar null results. Variations in channel position may not constitute a sufficiently large treatment dose to systematically affect strategic candidate entries even if they influence donor and voter behavior as shown in the main text. Whether a local cable system carried FNC at all was far more observable, and thus more salient for belief formation, than its channel number. Moving from the absence to the presence of FNC arguably represents a much stronger informational treatment than variation in channel placement, and the latter may not be sufficiently pivotal for the strategic

calculus of electoral entry by Tea Party-aligned PCs, given the high costs associated with running for office (Arceneaux et al. 2020, 2025).

Additionally, Arceneaux et al. (2020, 2025) study the emergence of quality challengers, whereas our dependent variable—the appearance of Tea Party candidates—includes both quality Tea Party candidates with prior elective experiences and those without. Moreover, Arceneaux et al. (2020, 2025) find that FNC's effect on candidate entry was largest in districts held by Democratic incumbents, where quality Republican PCs were more likely to enter as FNC density increased. Extending this logic to Tea Party candidates would require assumptions about whether FNC's availability more strongly affected perceived viability against Democratic or mainstream Republican incumbents. Existing scholarship suggests that both motivations shaped strategic entry by Tea Party candidates (Skocpol and Williamson 2012). It is possible that disaggregating our analysis by the quality of Tea Party candidates—for which we do not have comprehensive data—and incumbent partisanship could yield findings similar to those documented by Arceneaux et al. (2020, 2025). We leave this as a promising direction for future research on how political media shapes the supply side of inter- and intra- party electoral competition.

F Placebo Test of FNC Channel Positions on Rainfall on Tax Day, 2009

Rainfall on Tax Day, 2009, has been shown to reduce Tea Party rally turnout on that day (Madestam et al. 2013). To provide reassurance that the exclusion of said rainfall does not confound our analysis of the effects of incidental exposure to FNC on movement support at later stages (e.g., campaign contributions to and voting for Tea Party candidates), we conduct a placebo test to ensure that FNC channel positions do not predict county-level rainfall on Tax Day.

Table F.1 reports the estimates from this placebo test, demonstrating that FNC channel positions are uncorrelated with rainfall on Tax Day in 2009. Consequently, rainfall does not present an omitted variable bias to our subsequent empirical tests.

Table F.1: Placebo Test of Channel Positions On Rainfall on Tax Day, 2009

	Rain on 4/15		
	(1)	(2)	(3)
FNC Channel Pos.	0.002 (0.002)	0.002 (0.002)	0.002 (0.002)
MSNBC Channel Pos.	-0.002 (0.002)	-0.002 (0.002)	-0.002 (0.002)
Cable System Controls	✓	✓	✓
County Demographics		✓	✓
2008 and 2006 Voting			✓
Rain Prob. Decile FEs	✓	✓	✓
Population Decile FEs	✓	✓	✓
Region FEs	✓	✓	✓
Observations	2,656	2,656	2,656
R ²	0.20	0.23	0.24

G Additional Tables and Figures for Campaign Contributions

G.1 Coefficient Stability of Table 5, Column 3

We examine the robustness of the coefficient estimate in Column 3 of Table 5, "FNC Effect on Zip Code-Level Total Itemized Contributions In Dollar Amounts," to omitted variable bias in the spirit of Oster (2019). Building on Altonji et al. (2005), Oster (2019) proposes a test for how large selection on unobservables would need to be, relative to selection on observables, in order to fully explain away an estimated treatment effect.

The core intuition underlying Oster (2019) is that insofar as including observable controls significantly increases the explanatory power of a linear model (as measured by R^2) without notably changing the estimated coefficient of interest, it would be unlikely for omitted variables of comparable importance to overturn the result. Oster (2019) formalizes this intuition by parameterizing the proportionality of selection on unobservables to selection on observables required to produce a true treatment effect of zero as δ . Specifically, Let $Y = \beta X + \Psi\omega_o + U + \epsilon$ denote the true data-generating process for some outcome variable of interest, Y . Here, X represents the treatment variable, ω_o denotes a vector of observed controls, and U unobservables. Let $O = \Psi\omega_o$, then δ can be formally defined as $\delta = \frac{\text{Cov}(U, X)}{\text{Var}(U)} / \frac{\text{Cov}(O, X)}{\text{Var}(O)}$.

Oster (2019) derives the following consistent estimator of δ :

$$\delta^* = \frac{\hat{\beta}_f(R_f - R_r)}{(\hat{\beta}_f - \hat{\beta}_r)(R_{\max} - R_r)} \quad (\text{A.2})$$

Here, $\hat{\beta}_f$ and $\hat{\beta}_r$ represent the coefficient estimate obtained from the model estimated on the full model with all observables versus the reduced model with fewer or no observables, respectively. Analogously, R_f and R_r represent the R^2 obtained on the model estimated on the full versus reduced models, respectively. Finally, R_{\max} represents the maximum R^2 obtainable if all factors responsible for selection into treatment—whether observed or not—were included. Oster

(2019) recommends setting $R_{\max} = \min(1, 1.3R_f)$, where 1.3 is a cutoff that would allow 90% of the randomized experiments analyzed in Oster (2019) to survive.

Similarly, Oster (2019)'s methodology also helps to identify bounds on estimated treatment effects. Specifically, following Oster (2019)'s protocol of assuming $\delta = 1$ (i.e., proportional selection) and $R_{\max} = \min(1, 1.3R_f)$, the true treatment effect may be bounded between $\hat{\beta}_f$ and β^* , where

$$\beta^* = \hat{\beta}_f - (\hat{\beta}_r - \hat{\beta}_f) \frac{R_{\max} - R_r}{\hat{\beta}_f - \hat{\beta}_r} \quad (\text{A.3})$$

We adopt Oster (2019)'s methodology to examine coefficient stability for our statistically significant findings. Throughout all such applications, we focus on the full model that includes all observable controls and applicable fixed effects. We compare this full model to an alternative, reduced model that excludes all control variables except for those capturing local cable system characteristics, as the latter are necessary in order for FNC's cable channel positions to have an expected negative relationship between local support for Tea Party candidates; see Section titled "Research Design for Testing FNC Impact on Movement Support" for details. Also, we retain the same fixed effects in the reduced model so that we can focus on comparing within- R^2 for both models.

Applying this approach to column 3 of Table 5, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.1.1, and compares it to the full model in column 2 (the latter is identical to column 3 of Table 5). Using the model statistics reported in Table G.1.1, we calculate that selection on unobservables would need to be at least 23.2 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-29.2, -28].

Table G.1.1: FNC Effect on Zip Code-Level Total Itemized Contributions In Dollars (for Oster Ratio Calculation)

	Tea Party Candidates	
	(1)	(2)
FNC Channel Pos.	-32.9*** (10.8)	-29.2*** (10.1)
MSNBC Channel Pos.	0.858 (9.41)	8.04 (9.02)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
R ²	0.03	0.10
Mean of DV	3725.453	3725.453

G.2 Residualized Scatter Plot For Table 5, Column 3

Figure G.2.1 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 3 of Table 5 in the main text.

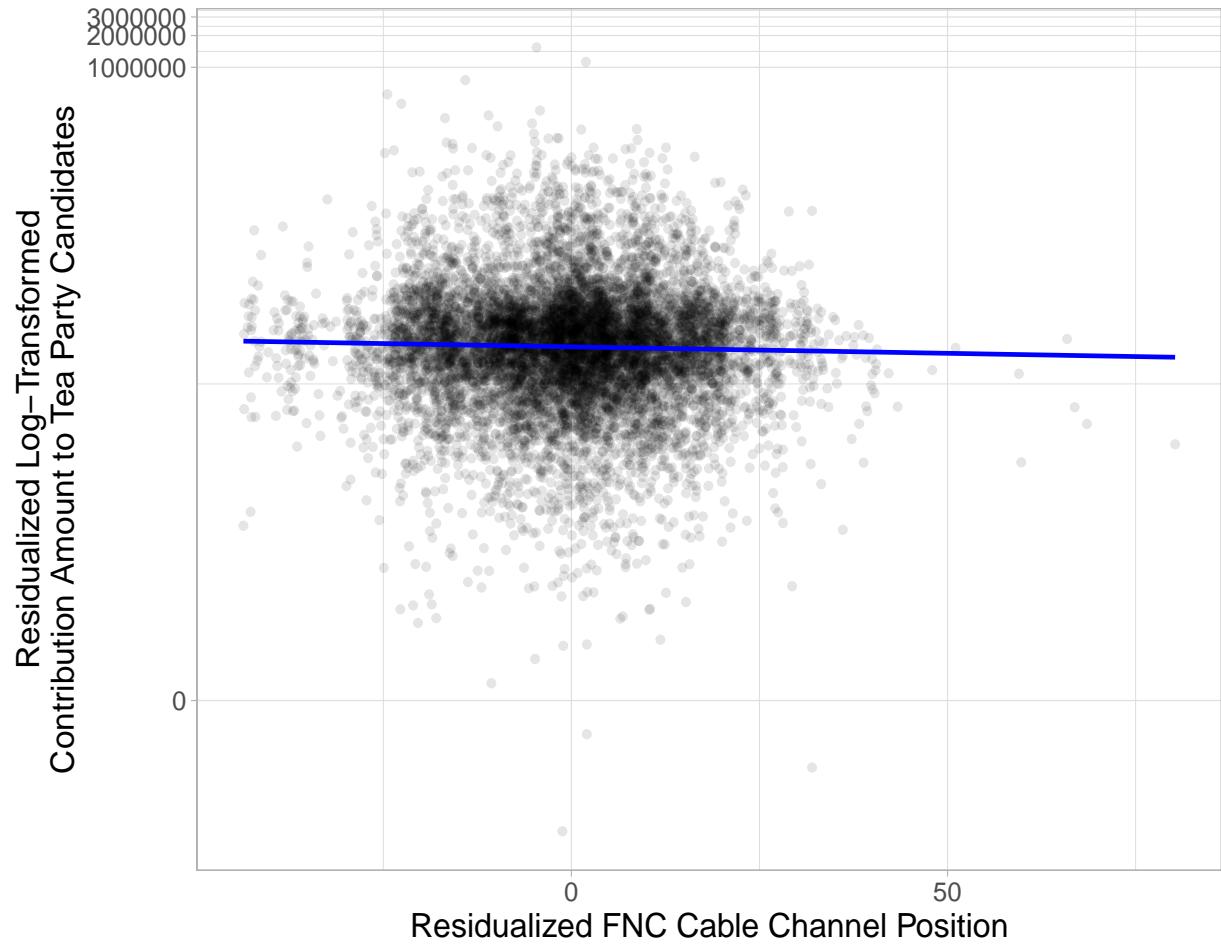


Figure G.2.1: Residualized Scatter Plot For Table 5, Column 3

G.3 Number of Itemized Contributors as Alternative Outcome Variable for Table 5

Table G.3.1 reports estimation results for zip-code total itemized contributions to Tea Party candidates (by counts of unique donors) in columns (1)-(3), and those to other Congressional Republican candidates in columns (4)-(6).

Table G.3.1: FNC Effect on Zip Code-Level Total Number of Itemized Contributors

	Tea Party Candidates			Other Rep. Candidates		
	(1)	(2)	(3)	(4)	(5)	(6)
FNC Channel Pos.	-0.030*** (0.011)	-0.021** (0.010)	-0.022*** (0.008)	-0.014 (0.016)	0.0005 (0.015)	0.002 (0.012)
MSNBC Channel Pos.	0.005 (0.010)	0.018** (0.009)	0.014 (0.009)	-0.022* (0.011)	-0.003 (0.010)	-0.012 (0.009)
Cable system controls	✓	✓	✓	✓	✓	✓
Demographic controls		✓	✓		✓	✓
State FEs			✓			✓
Observations	24,360	23,299	23,299	24,250	23,230	23,230
R ²	0.04	0.22	0.28	0.04	0.30	0.34
Mean of DV	3.937	4.096	4.096	7.115	7.385	7.385

G.4 Stacked Version of Table 5

Table G.4.1 compares the main treatment effect of FNC channel positions on total zip code contributions to Tea Party candidates versus other Republican candidates in a stacked regression, with the same set of control variables and their interactions with an indicator of campaign contribution recipients being Tea Party candidates.

Table G.4.1: Stacked Regressions Comparing Zip Code-Level Total Itemized Contribution to Tea Party vs. Non-Tea Party Republican Candidates

	(1)	(2)	(3)	(4)	(5)	(6)
	4,342.5*** (1,599.6)	-25,570.9** (12,058.8)		3.02*** (0.959)	-16.9*** (6.26)	
Tea Party Candidates						
FNC Channel Pos.	-14.8 (27.4)	-2.29 (28.3)	-1.67 (25.2)	-0.014 (0.016)	0.0005 (0.015)	0.002 (0.012)
FNC Channel Pos. \times Tea Party Candidates	-15.9 (27.1)	-21.8 (28.2)	-27.6 (26.1)	-0.015 (0.016)	-0.022 (0.016)	-0.025* (0.014)
MSNBC Channel Pos.	-45.5** (22.2)	-20.4 (20.1)	-22.2 (15.2)	-0.022* (0.011)	-0.003 (0.010)	-0.012 (0.009)
MSNBC Channel Pos. \times Tea Party Candidates	47.4** (21.7)	34.7 (21.1)	30.2* (17.3)	0.027** (0.013)	0.021 (0.013)	0.026* (0.013)
Cable system-by-Tea Party controls	✓	✓	✓	✓	✓	✓
Demographic-by-Tea Party controls		✓	✓	✓	✓	✓
State-by-Tea Party FEs			✓			✓
Observations	48,720	46,598	46,598	48,610	46,529	46,529
R ²	0.02	0.10	0.12	0.05	0.29	0.33
Mean of DV	5785.489	6002.937	6002.937	5.522	5.738	5.738

G.5 Itemized Contributions to Democrats

Tables G.5.1 and G.5.2 show that there are no detectable effect of FNC cable channel positions on campaign contributions to Democratic candidates (measured in terms of total dollar amounts versus number of unique itemized contributors by zip code), including the same set of control variables as shown in other tables in this section.

Table G.5.1: FNC Effect on Zip Code-Level Total Itemized Contributions to Democratic Candidates

	Dollar Amounts		
	(1)	(2)	(3)
FNC Channel Pos.	11.1 (59.6)	38.2 (51.9)	17.6 (41.5)
MSNBC Channel Pos.	-122.9 (80.6)	-64.5 (67.1)	-76.4 (50.7)
Cable system controls	✓	✓	✓
Demographic controls		✓	✓
State FEs			✓
Observations	24,360	23,299	23,299
R ²	0.05	0.26	0.28
Mean of DV	17642.020	18335.101	18335.101

Table G.5.2: FNC Effect on Zip Code-Level Total Number of Itemized Contributors to Democratic Candidates

	Number of Itemized Contributors		
	(1)	(2)	(3)
FNC Channel Pos.	0.014 (0.053)	0.072* (0.040)	0.049 (0.032)
MSNBC Channel Pos.	-0.089* (0.054)	-0.027 (0.039)	-0.050* (0.029)
Cable system controls	✓	✓	✓
Demographic controls		✓	✓
State FEs			✓
Observations	24,360	23,299	23,299
R ²	0.09	0.44	0.48
Mean of DV	20.572	21.428	21.428

G.6 Coefficient Stability of Table 6, Columns 3 and 6

We demonstrate the robustness of the coefficient estimate in Columns 3 and 6 of Table 6, "Zip-Code Itemized Contributions (In Dollar Amounts) to Tea Party Candidates Among Existing vs. New Donors," to omitted variable bias in the spirit of Oster (2019); see Section G.1 for an overview of the methodology.

For column 3 of Table 6, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.6.1, and compares it to the full model in column 2 (the latter is identical to column 3 of Table 6). Using model statistics reported in Table G.6.1, we calculate that selection on unobservables would need to be at least 43.4 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-24.3, -23.7].

Table G.6.1: Itemized Contributions In Dollars From Existing Contributors (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-25.9*** (9.06)	-24.3*** (8.65)
MSNBC Channel Pos.	2.64 (7.97)	6.66 (7.72)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.008	0.06
Mean of DV	2879.354	2879.354

Similarly, for column 6 of Table 6, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.6.2, and compares it to the full model in column 2 (the latter is identical to column 6 of Table 6). Using model statistics reported in Table G.6.2, we calculate that selection on unobservables would need to be at least 43.7 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from new donors to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-6.5, -6.3].

Table G.6.2: Itemized Contributions In Dollars From New Contributors (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-6.87*** (2.32)	-6.47*** (2.11)
MSNBC Channel Pos.	-1.73 (1.81)	-0.671 (1.78)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.02	0.09
Mean of DV	844.396	844.396

G.7 Residualized Scatter Plots For Table 6, Columns 3 and 6

Figure G.7.1 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 3 of Table 6 in the main text.

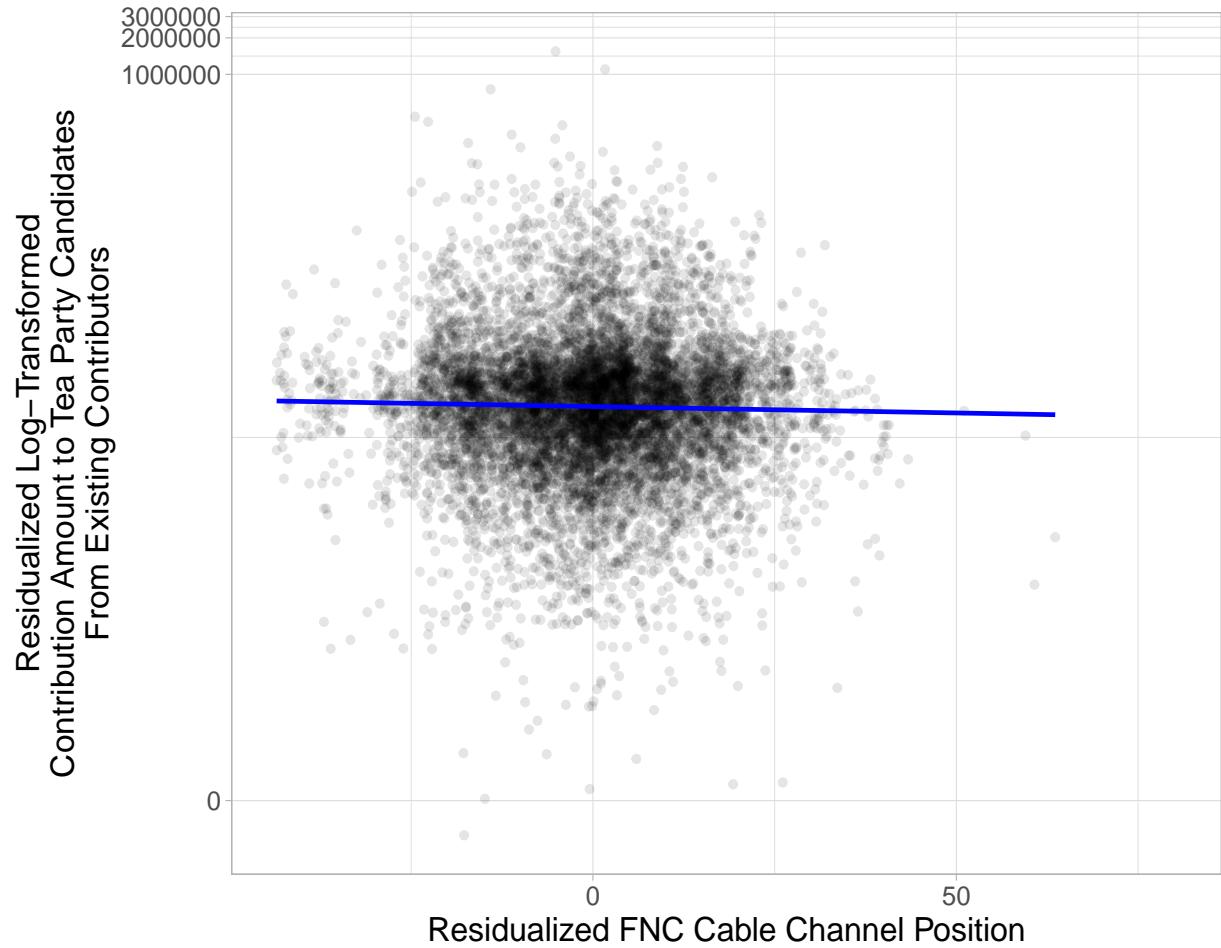


Figure G.7.1: Residualized Scatter Plot For Table 6, Column 3

Similarly, Figure G.7.2 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from new individual donors to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 3 of Table 6 in the main text.

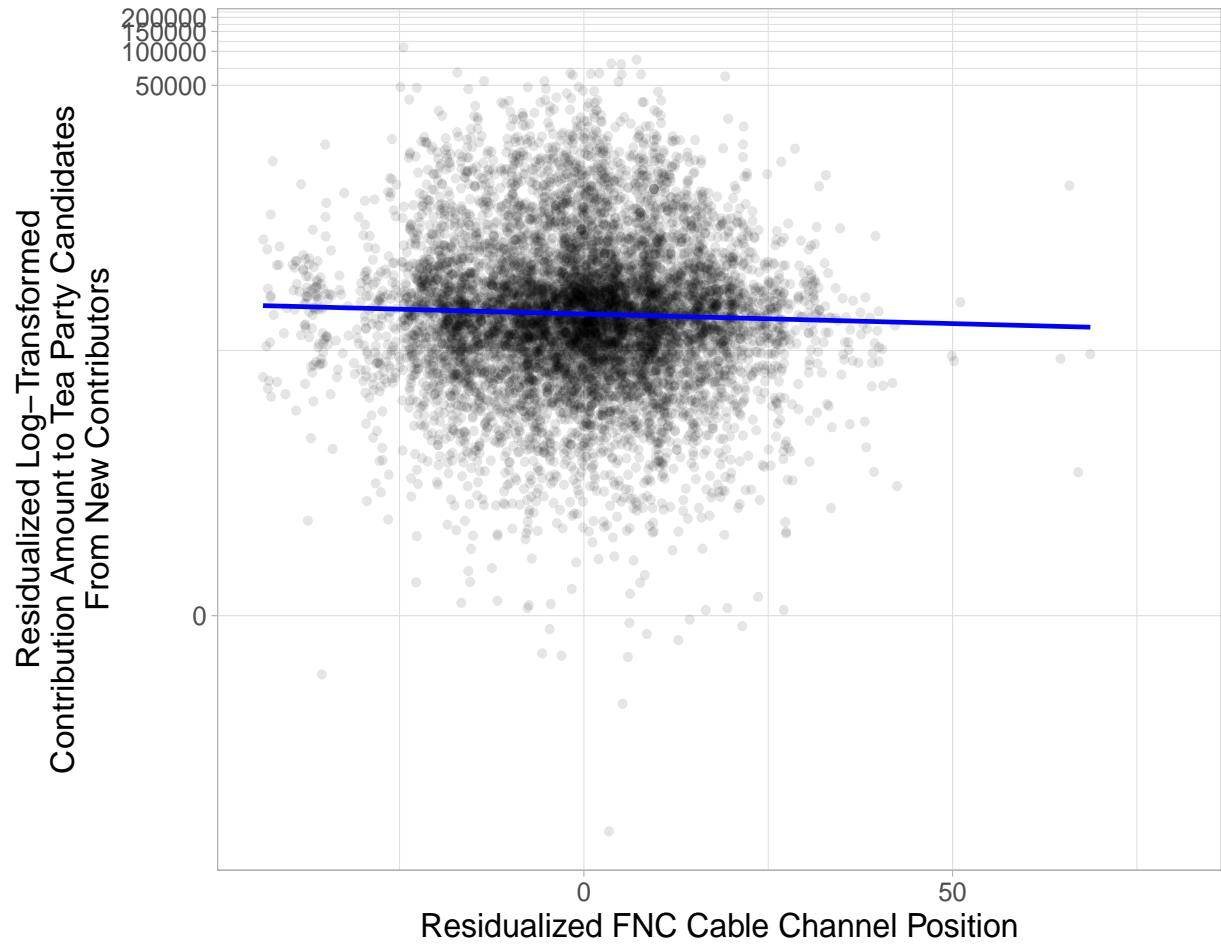


Figure G.7.2: Residualized Scatter Plot For Table 6, Column 6

G.8 Number of Itemized Contributors as Alternative Outcome Variable for Table 6

Table G.8.1 reports estimated effects of FNC's cable channel positions on itemized contributions to Tea Party candidates (aggregated as counts of unique donors) separately for existing versus new donors.

Table G.8.1: Zip-Code Itemized Contributions (By Total Number of Contributors) to Tea Party Candidates Among Existing vs. New Contributors

	Existing Contributors			New Contributors		
	(1)	(2)	(3)	(4)	(5)	(6)
FNC Channel Pos.	-0.016** (0.007)	-0.011 (0.007)	-0.012** (0.006)	-0.014*** (0.004)	-0.012*** (0.004)	-0.012*** (0.003)
MSNBC Channel Pos.	0.003 (0.006)	0.010* (0.006)	0.008 (0.006)	0.002 (0.004)	0.006 (0.004)	0.004 (0.004)
Cable system controls	✓	✓	✓	✓	✓	✓
Demographic controls		✓	✓		✓	✓
State FE			✓			✓
Observations	24,360	23,299	23,299	24,360	23,299	23,299
R ²	0.03	0.17	0.23	0.03	0.13	0.20
Mean of DV	2.479	2.576	2.576	1.450	1.511	1.511

G.9 Coefficient Stability of Table 7, Columns 3, 6 and 9

We demonstrate the robustness of the coefficient estimate in Columns 3, 6, and 9 of Table 7, "Zip-Code Itemized Contributions (In Dollar Amounts) to Tea Party Candidates Across Existing Donors," to omitted variable bias in the spirit of Oster (2019); see Section G.1 for an overview of the methodology.

For column 3 of Table 7, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.9.1, and compares it to the full model in column 2 (the latter is identical to column 3 of Table 7). Using model statistics reported in Table G.9.1, we obtain a δ of -85.5. This means that selection on unobservables would need to be at least 85.5 times as strong as selection on observable zip code-level demographics, and in the opposite direction, in order to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the first tercile of all donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-0.4, -0.4].

Table G.9.1: Itemized Contributions In Dollars From The 1st Tercile of (All) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-0.382** (0.186)	-0.395** (0.169)
MSNBC Channel Pos.	-0.091 (0.122)	-0.010 (0.113)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.004	0.03
Mean of DV	38.272	38.272

Similarly, for column 6 of Table 7, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.9.2, and compares it to the full model in column 2 (the latter is identical to column 6 of Table 7). Using model statistics reported in Table G.9.2, we calculate that selection on unobservables would need to be at least 28.1 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the second tercile of all donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-7.9, -7.6].

Table G.9.2: Itemized Contributions In Dollars From The 2nd Tercile of (All) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-8.71** (3.82)	-7.92** (3.44)
MSNBC Channel Pos.	-0.247 (2.77)	1.01 (2.62)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.003	0.02
Mean of DV	520.813	520.813

Finally, for column 9 of Table 7, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.9.3, and compares it to the full model in column 2 (the latter is identical to column 9 of Table 7). Using model statistics reported in Table G.9.3, we calculate that selection on unobservables would need to be at least 57.1 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the third tercile of all donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-13.6, -13.4].

Table G.9.3: Itemized Contributions In Dollars From The 3rd Tercile of (All) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-14.3** (6.36)	-13.6** (6.25)
MSNBC Channel Pos.	3.46 (6.13)	5.78 (6.04)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.005	0.04
Mean of DV	1917.340	1917.340

G.10 Residualized Scatter Plots For Table 7, Columns 3, 6, and 9

Figure G.10.1 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the first tercile of all donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 3 of Table 7 in the main text.

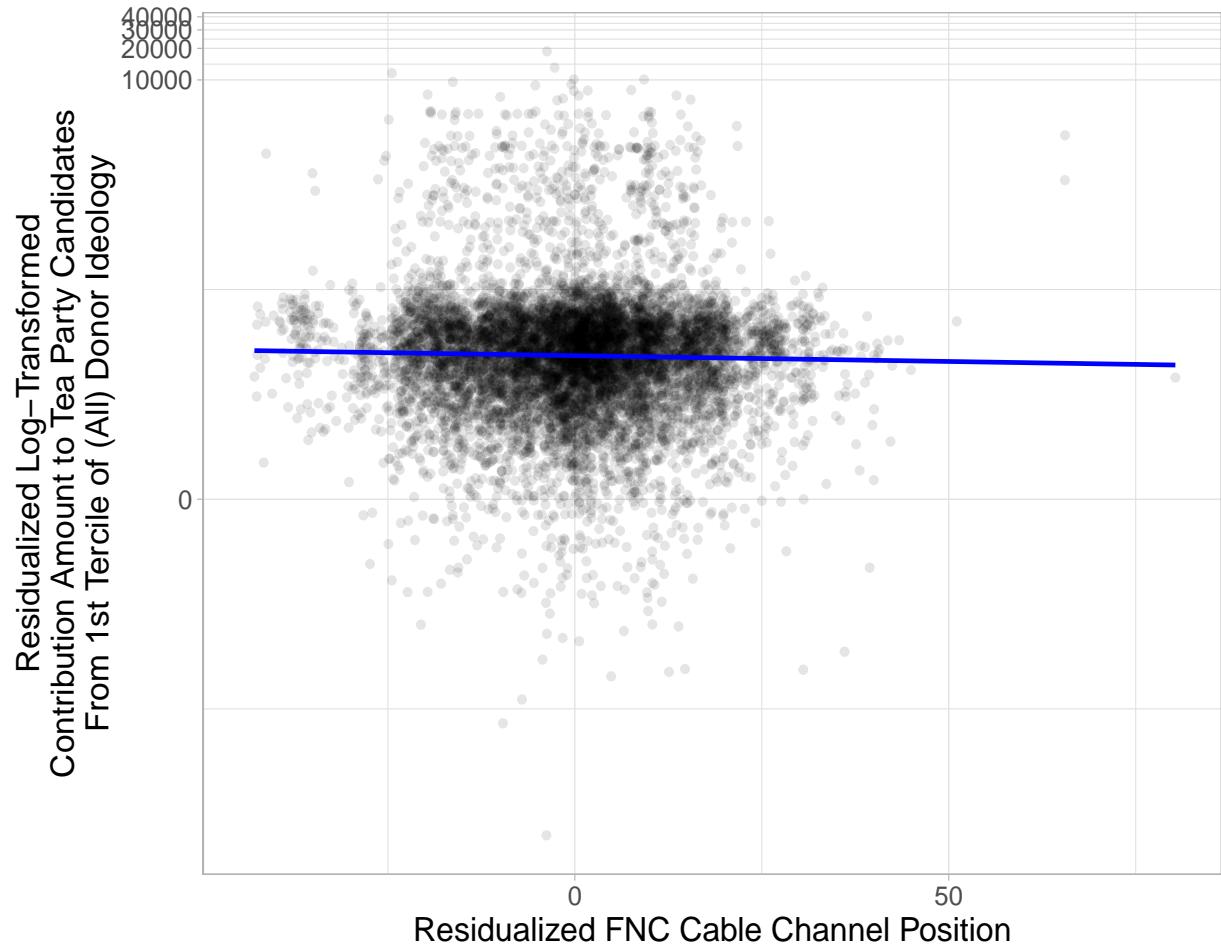


Figure G.10.1: Residualized Scatter Plot For Table 7, Column 3

Similarly, Figure G.10.2 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the second tercile of all donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 6 of Table 7 in the main text.

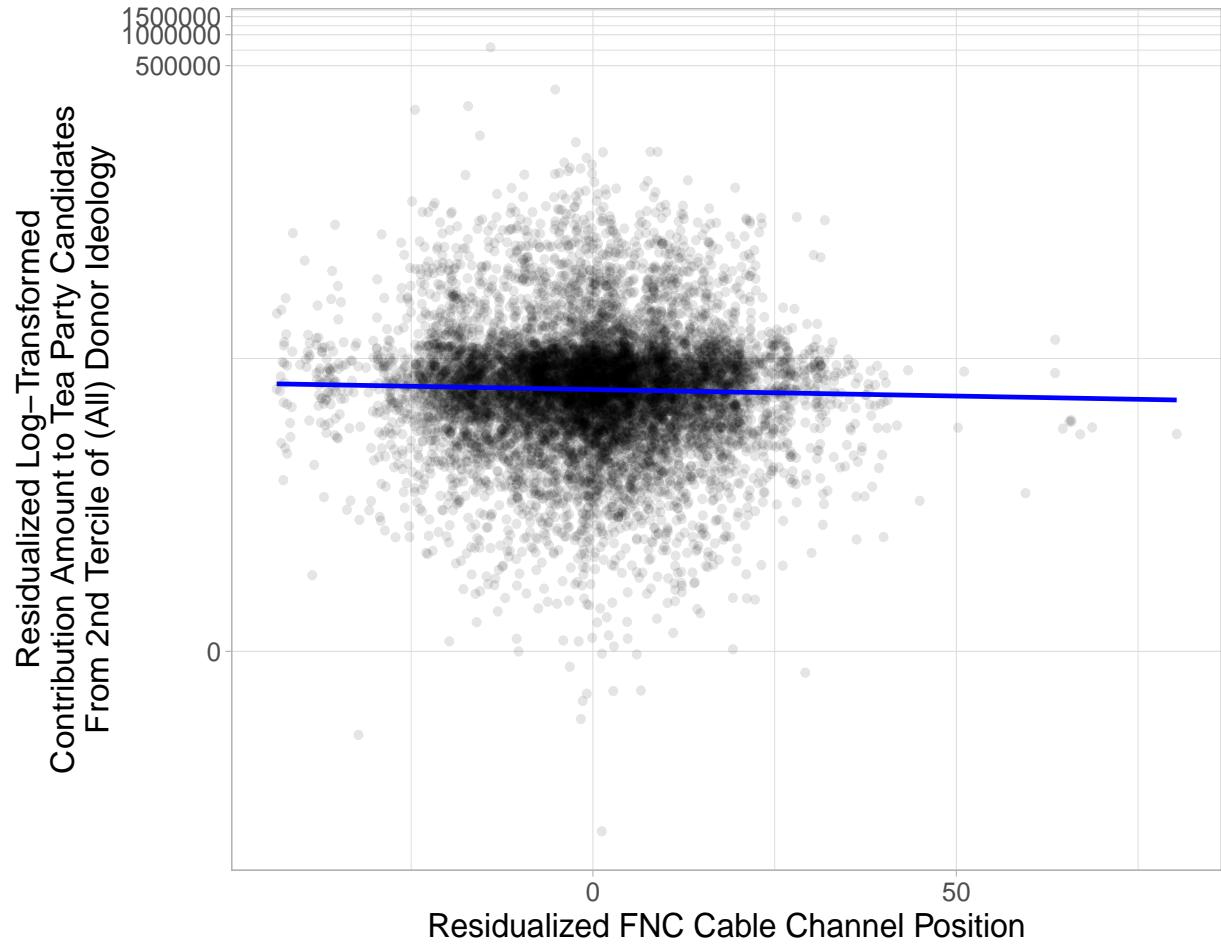


Figure G.10.2: Residualized Scatter Plot For Table 7, Column 6

Likewise, Figure G.10.3 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the third tercile of all donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 9 of Table 7 in the main text.

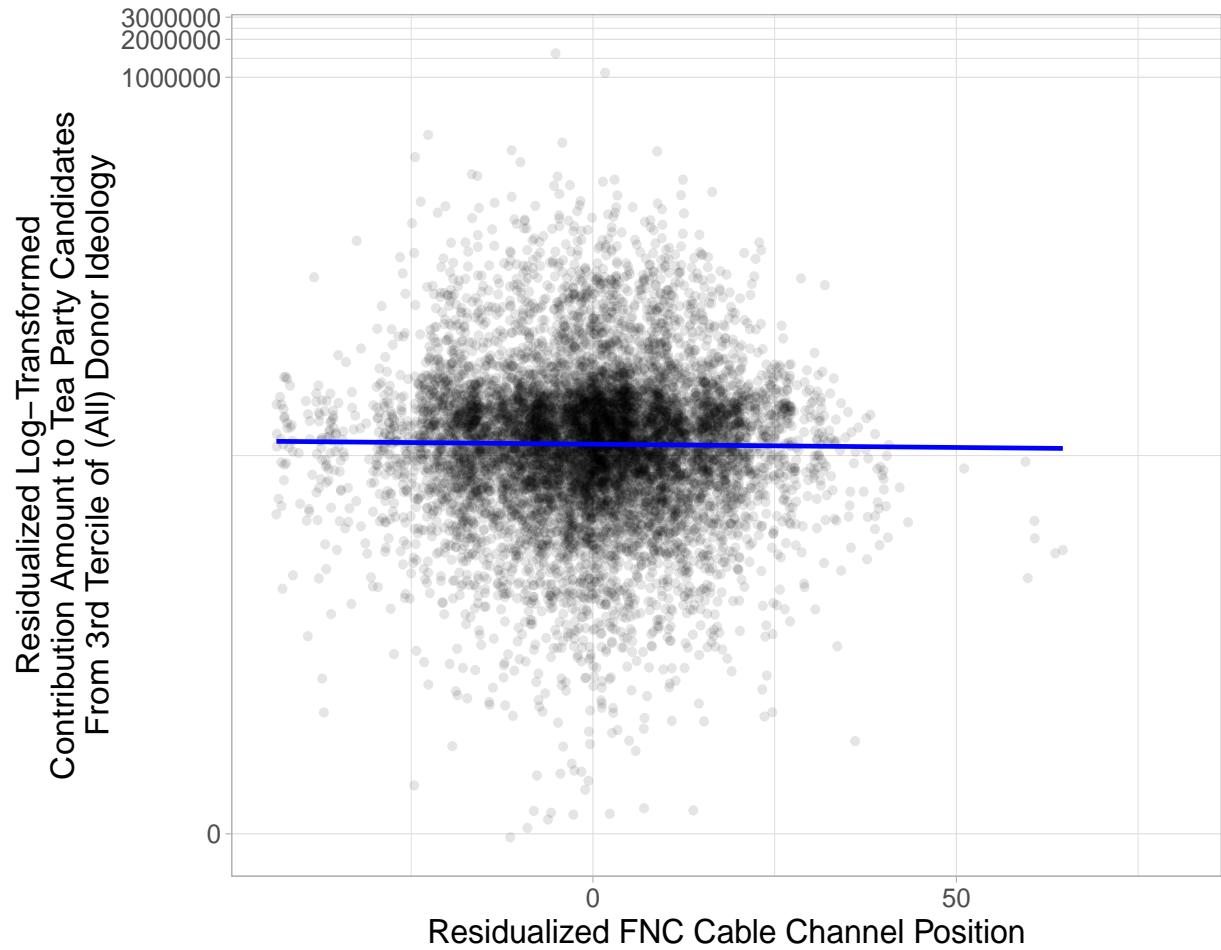


Figure G.10.3: Residualized Scatter Plot For Table 7, Column 9

G.11 Coefficient Stability of Table 8, Columns 3, 6 and 9

We demonstrate the robustness of the coefficient estimate in Columns 3, 6, and 9 of Table 8, "Zip-Code Itemized Contributions (In Dollar Amounts) to Tea Party Candidates Across Existing Republican Donors," to omitted variable bias in the spirit of Oster (2019); see Section G.1 for an overview of the methodology.

For column 3 of Table 8, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.11.1, and compares it to the full model in column 2 (the latter is identical to column 3 of Table 8). Using model statistics reported in Table G.11.1, we

calculate that selection on unobservables would need to be at least 29.5 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the first tercile of Republican donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-11.4, -11].

Table G.11.1: Itemized Contributions In Dollars From The 1st Tercile of (Republican) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-12.5*** (4.54)	-11.4*** (4.19)
MSNBC Channel Pos.	1.03 (3.38)	3.17 (3.22)
Cable system controls	✓	✓
Demographic controls		✓
State FE _s	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.006	0.04
Mean of DV	870.438	870.438

Similarly, for column 6 of Table 8, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.11.2, and compares it to the full model in column 2 (the latter is identical to column 6 of Table 8). Using model statistics reported in Table G.11.2, we calculate that selection on unobservables would need to be at least 18.9 times as strong as selection on observable zip code-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the second tercile of Republican donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-5.8, -5.5].

Table G.11.2: Itemized Contributions In Dollars From The 2nd Tercile of (Republican) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-6.62** (3.17)	-5.77* (3.06)
MSNBC Channel Pos.	-0.610 (3.40)	0.534 (3.38)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.003	0.02
Mean of DV	777.031	777.031

Finally, for column 9 of Table 8, we estimate a reduced model without controlling for zip code-level demographics in column 1 of Table G.11.3, and compares it to the full model in column 2 (the latter is identical to column 9 of Table 8). Using model statistics reported in Table G.11.3, we obtain a δ of -30.2. This means that selection on unobservables would need to be at least 30.2 times as strong as selection on observable zip code-level demographics, and in the opposite direction, in order to explain away the negative estimated treatment effect of FNC's cable channel positions on amounts of itemized contributions from existing donors in the third tercile of Republican donor ideology to Tea Party candidates. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-4.9, -4.7].

Table G.11.3: Itemized Contributions In Dollars From The 3rd Tercile of (Republican) Donor Ideology (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-4.24 (3.30)	-4.71 (3.51)
MSNBC Channel Pos.	2.67 (3.28)	3.06 (3.29)
Cable system controls	✓	✓
Demographic controls		✓
State FEs	✓	✓
Observations	23,299	23,299
Within Adjusted R ²	0.001	0.01
Mean of DV	830.215	830.215

G.12 Residualized Scatter Plots For Table 8, Columns 3, 6, and 9

Figure G.12.1 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the first tercile of Republican donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 3 of Table 8 in the main text.

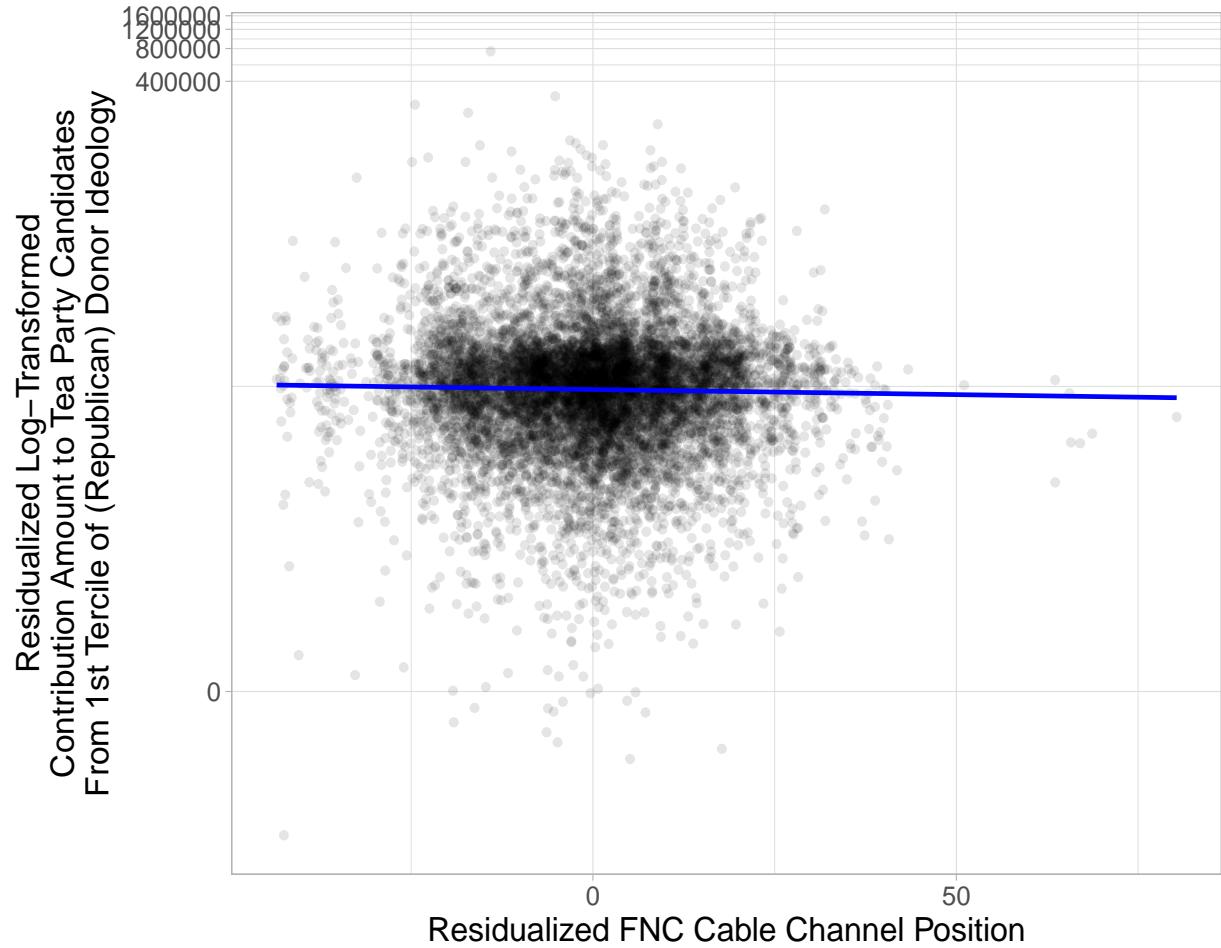


Figure G.12.1: Residualized Scatter Plot For Table 8, Column 3

Similarly, Figure ?? displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the second tercile of Republican donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 6 of Table 8 in the main text.

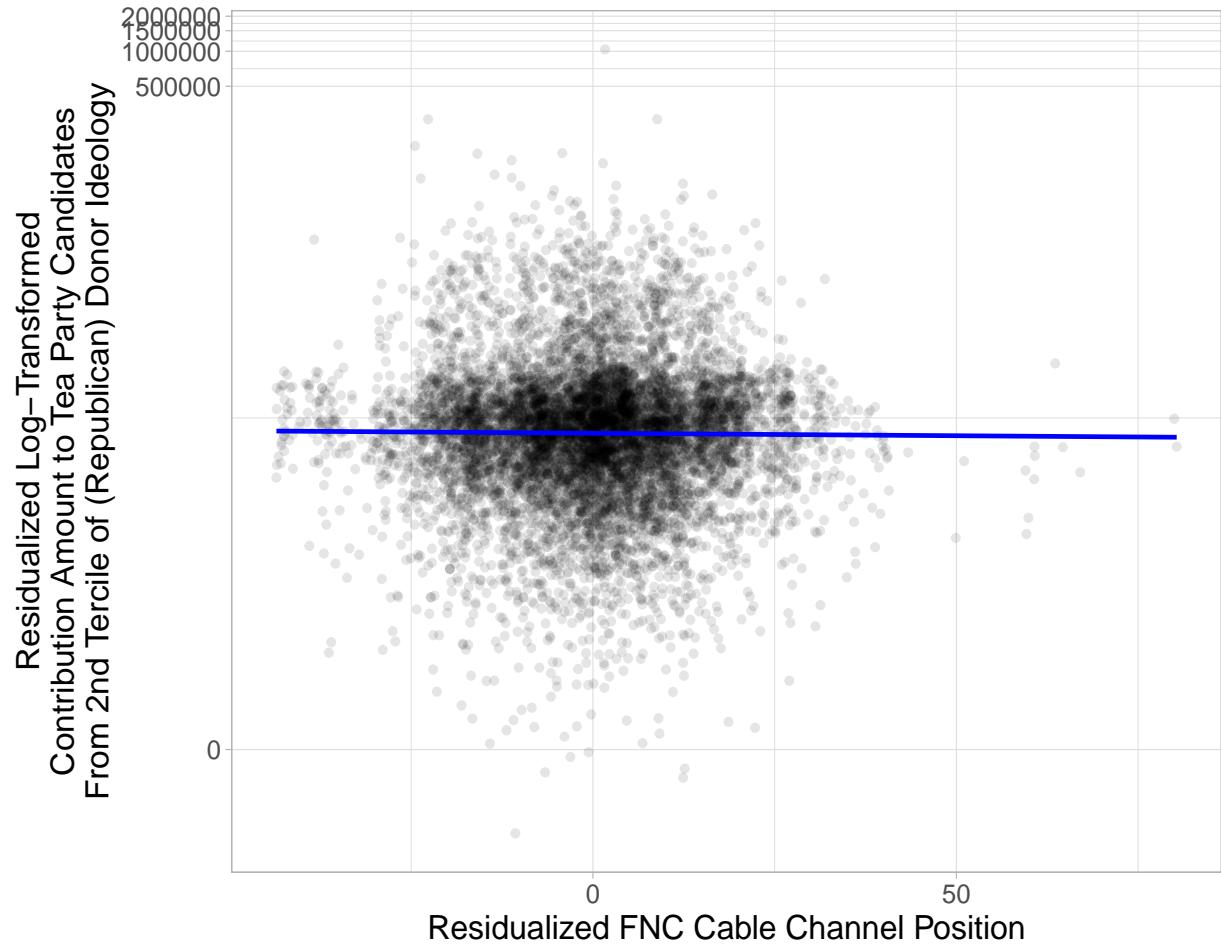


Figure G.12.2: Residualized Scatter Plot For Table 8, Column 6

Likewise, Figure G.12.3 displays the residualized scatter plot between zip code-level itemized contributions (in aggregate dollar amount, $\log(\cdot + 1)$ -transformed) from existing individual donors in the third tercile of Republican donor ideology to Tea Party candidates and FNC cable channel position, after partialling out fixed effects and control variables in column 9 of Table 8 in the main text.

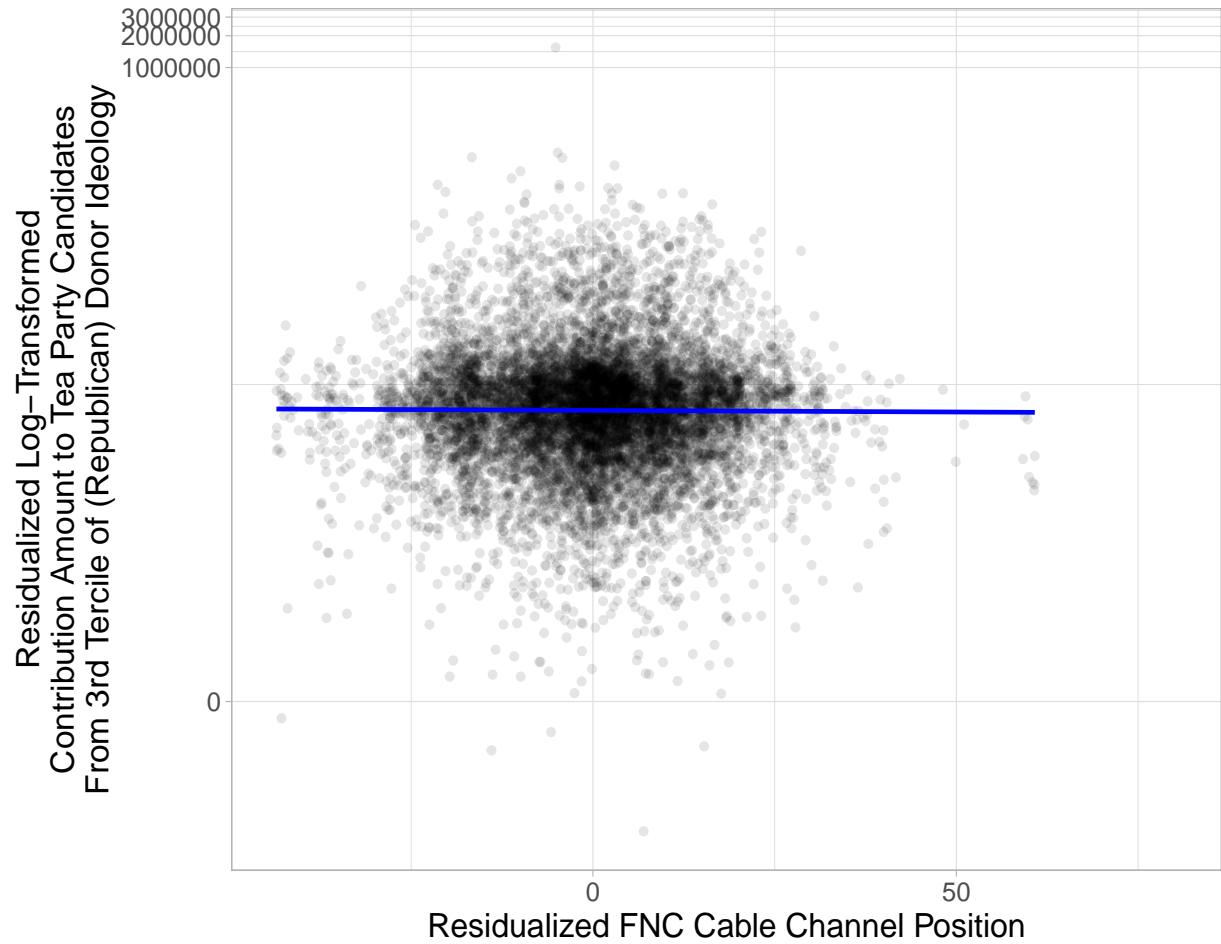


Figure G.12.3: Residualized Scatter Plot For Table 8, Column 9

G.13 Number of Itemized Contributors as Alternative Outcome Variable For Tables 7 and 8

Tables G.13.1 separately estimates treatment effects by donor ideology based on terciles derived from all existing donors, aggregating contributions by counts of unique donors. Table G.13.2 estimates differential treatment effects by ideology tercile among existing donors *who previously gave to Republican candidates*, again aggregating contributions by counts of unique donor.

Table G.13.1: Zip-Code Itemized Contributions (By Total Number of Contributors) to Tea Party Candidates Across Existing Contributors

	Donor Ideology (-1, -0.342)			Donor Ideology (-0.342, 0.289)			Donor Ideology (0.289, 1)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
FNC Channel Pos.	-0.0004 (0.0003)	-0.0004 (0.0002)	-0.0004** (0.0002)	-0.0003* (0.002)	-0.0003* (0.002)	-0.0002** (0.001)	-0.0009** (0.005)	-0.007 (0.005)	-0.006* (0.004)
MSNBC Channel Pos.	-0.0003* (0.0002)	-0.0002 (0.0001)	-0.0001 (0.0001)	-0.0002 (0.001)	0.0010 (0.001)	0.0009 (0.0009)	0.003 (0.004)	0.008* (0.004)	0.005 (0.004)
Cable system controls	✓	✓	✓	✓	✓	✓	✓	✓	✓
Demographic controls		✓	✓		✓	✓	✓	✓	✓
State FEs			✓			✓			✓
Observations	24,360	23,299	23,299	24,360	23,299	23,299	24,360	23,299	23,299
R ²	0.01	0.07	0.10	0.02	0.10	0.14	0.03	0.15	0.22
Mean of DV	0.039	0.040	0.040	0.353	0.366	0.366	1.423	1.479	1.479

Table G.13.2: Zip-Code Itemized Contributions (By Total Number of Contributors) to Tea Party Candidates Across Existing Republican Contributors

	Donor Ideology (-0.691, 0.367)			Donor Ideology (0.367, 0.456)			Donor Ideology (0.456, 0.965)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
FNC Channel Pos.	-0.005* (0.003)	-0.005 (0.003)	-0.005** (0.002)	-0.003* (0.002)	-0.002 (0.002)	-0.002* (0.001)	-0.004* (0.002)	-0.002 (0.002)	-0.002 (0.002)
MSNBC Channel Pos.	0.002 (0.003)	0.004 (0.003)	0.004 (0.003)	0.005 (0.001)	0.002 (0.001)	0.001 (0.001)	0.0005 (0.001)	0.0005 (0.001)	0.003* (0.002)
Cable system controls	✓	✓	✓	✓	✓	✓	✓	✓	✓
Demographic controls		✓	✓		✓			✓	✓
State FEs			✓			✓			✓
Observations	24,360	23,299	23,299	24,360	23,299	23,299	24,360	23,299	23,299
R ²	0.01	0.11	0.15	0.02	0.14	0.20	0.02	0.10	0.17
Mean of DV	0.611	0.633	0.633	0.565	0.587	0.587	0.641	0.667	0.667

H Additional Figure and Table for Primary Voting

H.1 Coefficient Stability of Table 9, Column 2

We demonstrate the robustness of the coefficient estimate in Column 2 of Table 9, "Exposure to Fox News Increased Precinct Primary Vote Shares for Tea Party Candidates", to omitted variable bias in the spirit of Oster (2019); see Section G.1 for an overview of the methodology.

For column 2 of Table 9, we estimate a reduced model without controlling for precinct-level demographics in column 1 of Table H.1.1, and compares it to the full model in column 2 (the latter is identical to column 2 of Table 9). Using model statistics reported in Table H.1.1, we calculate that selection on unobservables would need to be at least 114.4 times as strong as selection on observable precinct-level demographics to explain away the negative estimated treatment effect of FNC's cable channel positions on Tea Party candidates' primary vote. Alternatively, under the assumption of proportional selection, we can bound the true treatment effect between [-0.00181, -0.00179].

Table H.1.1: Tea Party Cand. Vote Share (for Oster Ratio Calculation)

	(1)	(2)
FNC Channel Pos.	-0.002** (0.0007)	-0.002*** (0.0007)
MSNBC Channel Pos.	0.0004 (0.0004)	0.0003 (0.0004)
Cable system controls	✓	✓
Demographic controls		✓
District FEs	✓	✓
Observations	3,063	3,063
Within Adjusted R ²	0.02	0.05
Mean of DV	0.530	0.530

H.2 Residualized (Weighted) Scatter Plot Between Tea Party Candidates' Primary Vote Shares and FNC Cable Channel Positions

Figure H.2.1 displays the residualized scatter plot between precinct-level Tea Party candidates' vote shares in Republican primaries and FNC cable channel position, after partialling out fixed effects and control variables in column 2 of Table 9 in the main text, and weighting observations by total votes cast in said Republican primaries by precinct.

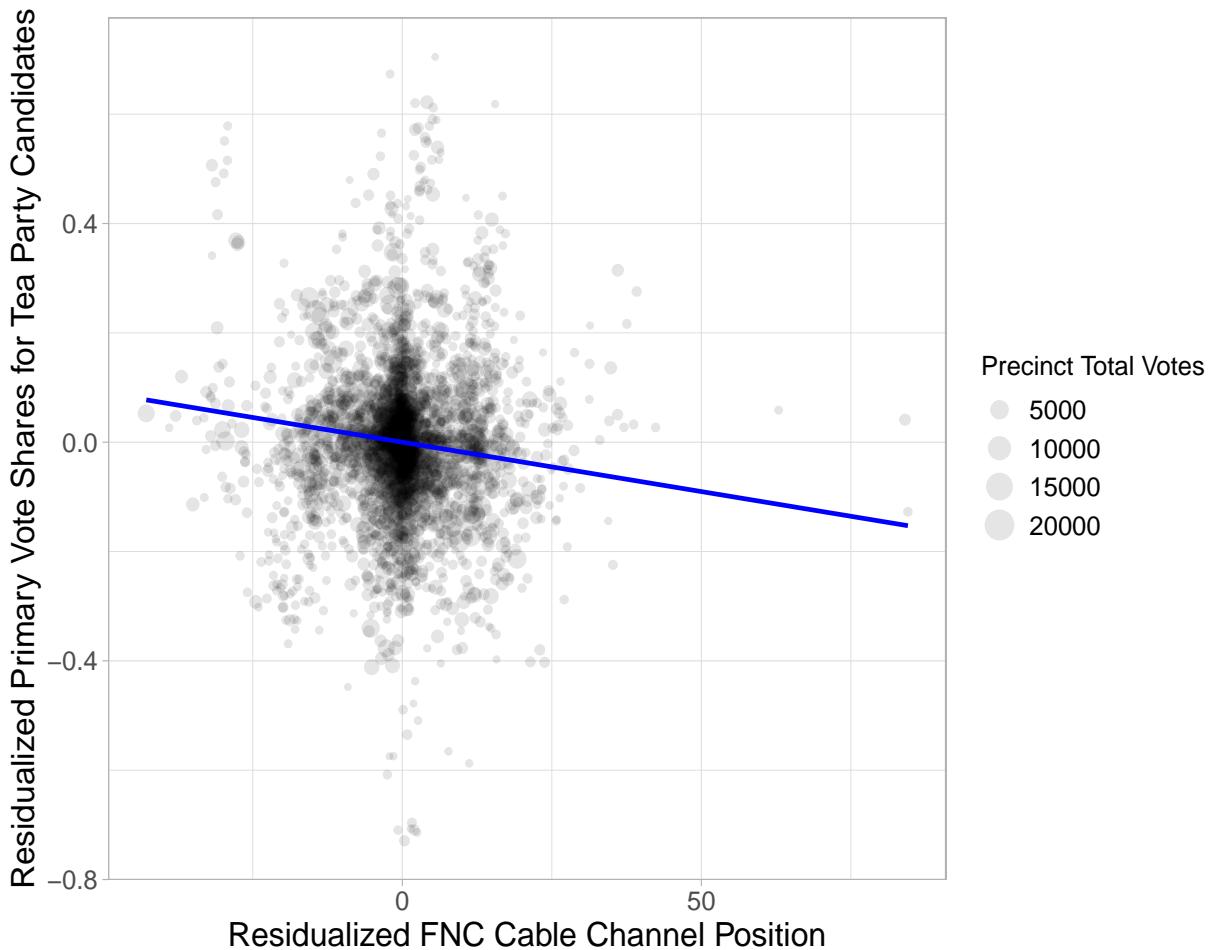


Figure H.2.1: Residualized Scatter Plot For Table 9, Column 2

H.3 Effects of FNC Cable Channel Positions on (Weighted) Turnout in Primary Elections

In Table H.3.1, the dependent variable is the number of total votes cast in the 2009-2010 Republican primary election in a given zip code divided by the total number of residents who are age-eligible for voting; we calculate the latter based on the 2010 Census' data on each zip code's total population and distribution by age ranges. This fraction proxies for turnout rates in these Republican primaries as we do not have data on precinct- or zip code- level number of eligible voters—and hence cannot observe the true denominator. We include the same sets of control variables as reported in Table 9 in the main text. We cluster standard errors by cable system and weight observations by the number of age-eligible residents to account for heteroscedasticity.

Table H.3.1 shows that there are no detectable turnout effects in primary elections that we can attribute to FNC cable channel positions, but we caution over-interpreting this result given the significant amount of noise in the dependent variable.

Table H.3.1: FNC Effects on Turnout (Share of Age-Eligible Population) in Republican Primaries

	Primary Turnout Rate Proxy (# Votes Cast / # Age-Eligible Residents)	
	(1)	(2)
FNC Channel Pos.	-1.28×10^{-5} (0.0003)	-3.98×10^{-5} (0.0002)
MSNBC Channel Pos.	5.41×10^{-5} (0.0001)	-2.78×10^{-5} (0.0001)
Cable system controls	✓	✓
Demographic controls		✓
District FE	✓	✓
Observations	3,071	3,063
R ²	0.54	0.60
Mean of DV	0.109	0.109

I Mentions of the Occupy Wall Street Movement

Figure I.1 shows the analogue of Figure D.1.1 for coverage of the Occupy Wall Street movement. We plot the weekly frequencies of on-air references to the OWS movement by FNC, CNN, and MSNBC in the time period surrounding the removal of OWS protesters from Zuccotti Park in November 2011. We also searched for transcript segments attributed to any individual named as a progenitor of the movement on the Wikipedia page of Occupy Wall Street (https://en.wikipedia.org/wiki/Occupy_Wall_Street) or anyone identified with a chyron containing "Adbusters", "Occupy" or "OWS" over the entire period covered by our transcripts (2009-2012) and found zero such segments.

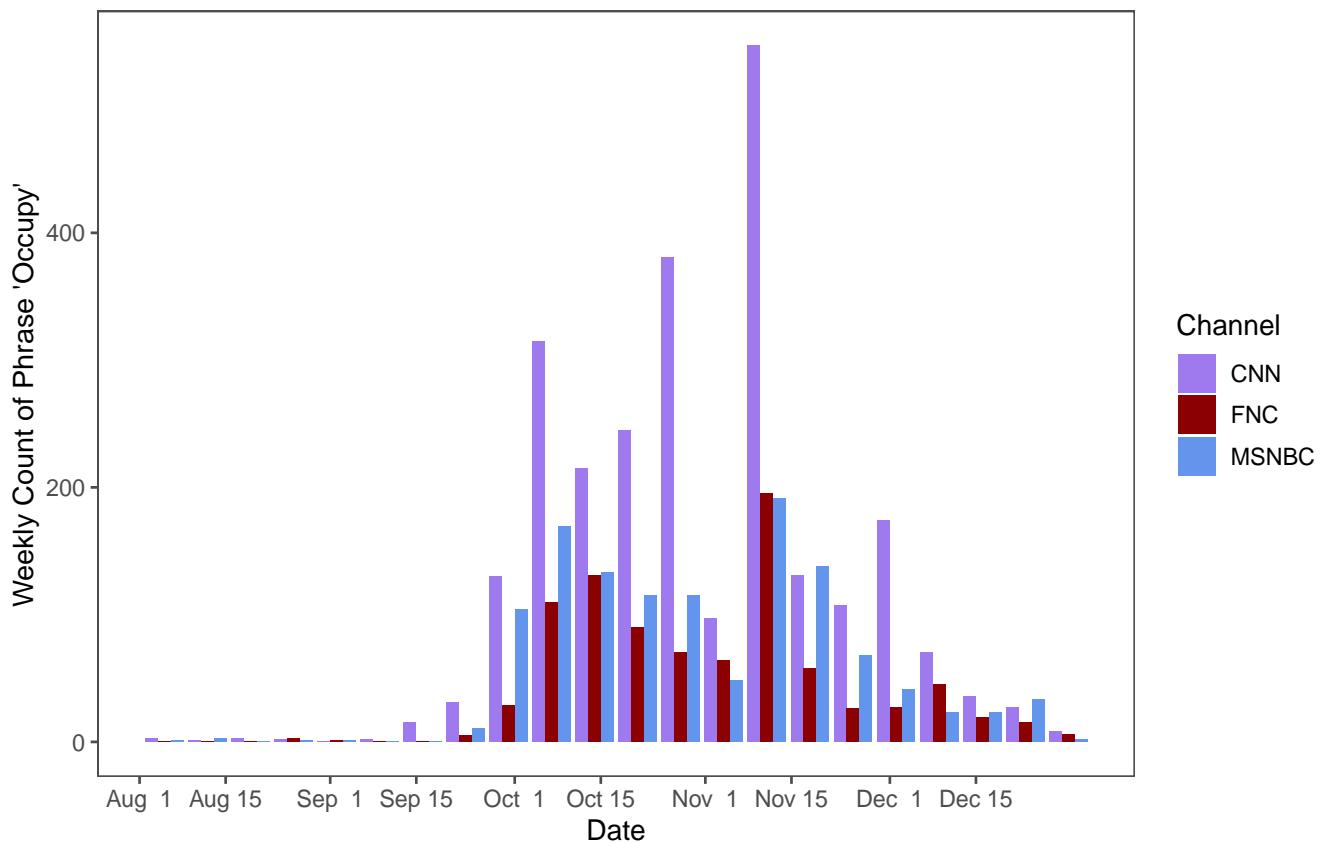


Figure I.1: Weekly Frequencies of Occupy Wall Street Mentions by Cable Outlet

References

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005. “Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools.” *Journal of Political Economy* 113 (1): 151–184, Publisher: The University of Chicago Press.

Anscombe, Stephen, Maxwell Palmer, and Amanda Lee. 2014. “Precinct-Level Election Data.” <https://dataVERSE.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YN4TLR>.

Arceneaux, Kevin, Johanna Dunaway, Martin Johnson, and Ryan J. Vander Wielen. 2020. “Strategic Candidate Entry and Congressional Elections in the Era of Fox News.” *American Journal of Political Science* 64 (2): 398–415.

Arceneaux, Kevin, Johanna Dunaway, Martin Johnson, and Ryan J. Vander Wielen. 2025. *The House that Fox News Built?: Representation, Political Accountability, and the Rise of Partisan News*. Cambridge: Cambridge University Press, . 10.1017/9781009432092.

Bailey, Michael A., Jonathan Mummolo, and Hans Noel. 2012. “Tea Party Influence: A Story of Activists and Elites.” *American Politics Research* 40 (5): 769–804.

Blum, Rachel M. 2020. *How the Tea Party Captured the GOP: Insurgent Factions in American Politics*. Chicago: University of Chicago Press.

Bonica, Adam. 2019. “Database on Ideology, Money in Politics, and Elections (DIME).” <https://dataVERSE.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/05PX0B>.

Broockman, David E., and Joshua L. Kalla. 2025. “Consuming Cross-Cutting Media Causes Learning and Moderates Attitudes: A Field Experiment with Fox News Viewers.” *The Journal of Politics* 87 (1): 246–261.

Gentzkow, Matthew, Jesse M. Shapiro, and Matt Taddy. 2019. “Measuring Group Differences in High-Dimensional Choices: Method and Application to Congressional Speech.” *Econometrica* 87 (4): 1307–1340.

Gervais, Bryan T., and Irwin L. Morris. 2018. *Reactionary Republicanism: How the Tea Party in the House Paved the Way for Trump’s Victory*. Oxford: Oxford University Press.

Gervais, Bryan T., and Jeffrey A. Taylor. 2016. “Subpartisan Cues and Ideological Distinctions: The Effect of the Tea Party Label on Voter Perceptions of Congressional Candidates.” *Social Science Quarterly* 97 (5): 1130–1143.

Madestam, Andreas, Daniel Shoag, Stan Veuger, and David Yanagizawa-Drott. 2013. “Do Political Protests Matter? Evidence From the Tea Party Movement.” *The Quarterly Journal of Economics* 128 (4): 1633–1686.

Martin, Gregory J., and Ali Yurukoglu. 2017. “Bias in Cable News: Persuasion and Polarization.” *American Economic Review* 107 (9): 2565–2599.

Oster, Emily. 2019. “Unobservable Selection and Coefficient Stability: Theory and Evidence.” *Journal of Business & Economic Statistics* 37 (2): 187–204.

Parker, Christopher S., and Matt A. Barreto. 2013. *Change They Can’t Believe In*. Princeton, NJ: Princeton University Press.

Skocpol, Theda, and Vanessa Williamson. 2012. *The Tea Party and the Remaking of Republican Conservatism*. Oxford: Oxford University Press.

Zernike, Kate, Kitty Bennett, Ford Fessenden, Kevin Quealy, Amy Schoenfeld, Archie Tse, and Derek Willis. 2010. “Where Tea Party Candidates Are Running.” *New York Times*, <https://archive.nytimes.com/www.nytimes.com/interactive/2010/10/15/us/politics/tea-party-graphic.html>.