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A1 Definitions

In each period t = 1, 2, 3, ..., two policymakers, L (him) and R (her), bargain over policy. The

policy space is two-dimensional. The first dimension is an ideological continuum represented

by the real line, R. The second dimension captures the quality of policy. Each policy has a

maximum quality that we set to be zero, and quality is unbounded below. Thus, the policy

space is R× R−.

Policymakers have a common preference over quality but differ in their ideological pref-

erences. In the ideological space, L’s ideal point is 0 and R’s is π, such that their ideal

policy positions in the two-dimensional space are (0, 0) and (π, 0), respectively. We assume

that per-period utility is separable across dimensions, linear in quality, and quasiconcave

in ideology. A common functional form that satisfies these requirements is quadratic-loss

utility over policy.

We assume that decay λt arrives each period iid from an exponential distribution with rate

parameter r. We denote the CDF of λ by F (λ) and the corresponding density function by

f(λ). Only the proof of Lemma 4 relies on specific properties of the exponential distribution;
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for the other lemmas it is sufficient that F has full support on the positive reals and finite

expectation:

E[λ] = λ̄ < ∞

.

Section A4 shows that the numerical solution is very similar when we substitute alter-

native distributional assumptions in place of the exponential, suggesting that the specific

shape of this distribution is not crucial.

Finally, we assume that proposals must be on the efficient frontier; i.e., all proposed

policies take the form (x, 0). This assumption is needed to guarantee existence of an optimal

proposal and rule out cases where Proposer, recognizing that she cannot retain power, offers

a policy infinitesimally below the frontier to avoid realizing decay that period.

Our equilibrium concept is Markov Perfect Equilibrium (MPE). We will look for equi-

librium strategies that condition only on the current-period values of policy (x), quality

(q) and the identity of the proposer (either L or R). We further select equilibria with

continuous proposal strategies: equilibrium proposals x∗(x, q, P ) are continuous in (x, q)

for all x ∈ [0, 1], P ∈ {L,R}.1 We define the value functions vL(x, q, P ), vR(x, q, P ) for

P ∈ {L,R}, where P denotes the identity of the Proposer. The value functions give the

expected discounted future utility for each player along the equilibrium path of play begin-

ning from the point (x, q, P ). We define the total utility of any point as Ui(x, q, P ), where

Ui(x, q, P ) = ui(x, q) + δvi(x, q, P ) and δ < 1 is the common discounting parameter.

A2 Proofs

Proposition 1 in the main text is Proposition 4 in Callander and Martin (2017). The proof

is given in the appendix to that paper.

To prove Proposition 2, we first show that the policy space can be restricted without loss

to a bounded subset of R× R−.

Lemma 1. Let S⋆ be the set of all points (x, q) visited in equilibrium with positive probability.

S⋆ ⊆ [0, π]× [0,−B] where 0 < B < ∞.

Proof. Suppose that R is Proposer and L in the Opposition role. An identical argument will

apply in the opposite case. Note that the worst possible path for L following R’s ideal point

(π, 0) is decay forever from that point, which yields total utility for L in expectation of

1The continuity property is needed for Lemma 2.
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∞∑
t=0

δtuL(π, 0)−
∞∑
t=1

tλ̄δt

=
1

1− δ
uL(π, 0)− λ̄

δ

(1− δ)2
> −∞

Since the total utility for L here is finite, at some sufficiently negative decay shock he

will accept a proposal from R of (π, 0) over allowing the utility from the decayed status quo

to be realized, regardless of what he expects to follow from that point or from (π, 0). R will

prefer proposing this point to allowing decay to take hold for the same reason. Hence there

must be a finite lower bound below which no status quo is realized in equilibrium.

Lemma 1 implies that one-period utilities are bounded. This property is sufficient to

show that the value functions exist, are continuous, and are unique given the strategy of the

other player; uniqueness of the value functions implies that there is always a unique best

proposal and hence that a MPE in continuous strategies exists.

Lemma 2. The value functions vL and vR are continuous in x and q and are unique. There

exists a MPE in continuous proposal strategies.

Proof. We apply theorem 9.6 of Stokey and Lucas (1989), which requires four assumptions

to hold.

The first (Assumption 9.4), which requires that the policy space is a bounded subset of

Rl, is satisfied by Lemma 1.

The second (Assumption 9.5) imposes a technical condition on how the probability mea-

sure over the exogenous state variables — in our case, the current-period decay realization

λ — can evolve over time. Our assumption that the distribution F is constant over time

satisfies this.

The third (Assumption 9.6) requires that the correspondence that maps realizations of

decay λ into a feasible set for the endogenous variables (x, q, and P ) be nonempty, compact-

valued, and continuous in λ. The feasible set in our case is the union of two sets: the in-

tersection of Opposition’s and Proposer’s acceptance sets with no change in proposal power,

and the point (x, q−λ) with the current period Opposition in the Proposer role. Nonempti-

ness is satisfied because the decayed status quo (x, q − λ) is always available. Continuity

of the acceptance sets at any point where Proposer’s offer is accepted is ensured by the

continuity of the proposal strategies; an acceptance set that changed discontinuously in λ

would imply that some future Proposer’s proposal strategies are discontinuous in either x or

q. Moreover, decay can occur only at points where the intersection of the acceptance sets
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is empty (otherwise, the Proposer would propose a point inside, and it would be accepted).

Hence the feasible set everywhere changes continuously. Compactness follows because both

acceptance sets are closed and bounded (above by the efficient frontier, and below by the

inequality constraint defining the acceptance region).

The fourth (Assumption 9.7) imposes that the one-period utility function u is bounded

and continuous on the feasible set. u is continuous by assumption. The upper bound on

one-period utility is zero, and the lower bound is finite per Lemma 1.

We now show several useful properties of the value functions vL(x, q, P ), vR(x, q, P ). We

first show that the value functions are monotone for both players along the ideological di-

mension. We can write the value functions as

vi(x, q, P ) =

∫ ∞

0

Ui(g
∗(x, q − λ, P ))f(λ)dλ (1)

where g∗(x, q − λ, P ) is the equilibrium outcome resulting from status quo (x, q, P ) when

the realization of decay is λ. Defining the Opposition’s acceptance set A = {(x′, q′, P ) :

U−P (x
′, q′, P ) ≥ U−P (x, q − λ,−P )}, we have:

g∗(x, q − λ, P ) =

argmaxA UP (x
′, q′, P ) maxA UP (x

′, q′, P ) ≥ UP (x, q − λ,−P )

(x, q − λ,−P ) o.w.
(2)

With that notation in place, we can state:

Lemma 3. The value functions are monotone in x for x ∈ [0, π]. vL(x, ·) is decreasing in

x, and vR(x, ·) is increasing.

Proof. We apply Theorem 9.7 of Stokey and Lucas (1989). uR and uL are monotone in the

directions proposed. The remaining condition to verify is that the acceptance sets A are

monotone in the sense defined in Stokey and Lucas’ Assumption 9.9. We consider the case

with R proposing, L receiving, with current status quo of (x, q) or (x′, q), with x′ > x, and

current-period decay (not yet realized) of λ. An identical argument will apply for the case

of L proposing, with the directions of inequalities and set containment operations reversed.

The needed monotonicity condition is A(x′) ⊃ A(x). The acceptance sets are defined by the

utility the Opposition would get after allowing decay to manifest and taking power:

A(x′) = {(x̃, q̃) : uL(x̃, q̃) + δvL(x̃, q̃, R) ≥ uL(x
′, q − λ) + δvL(x

′, q − λ, L)}

A(x) = {(x̃, q̃) : uL(x̃, q̃) + δvL(x̃, q̃, R) ≥ uL(x, q − λ) + δvL(x, q − λ, L)}
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Given this definition, A(x′) ⊃ A(x) iff:

uL(x
′, q − λ) + δvL(x

′, q − λ, L) ≤ uL(x, q − λ) + δvL(x, q − λ, L) ∀ λ (3)

⇒ δ(vL(x
′, q − λ, L)− vL(x, q − λ, L)) ≤ uL(x, 0)− uL(x

′, 0) (4)

Note that the right-hand side of (4) is strictly positive because uL is strictly decreasing in

x. Suppose this condition is not satisfied, and instead:

vL(x
′, q − λ, L)− vL(x, q − λ, L) >

1

δ
(uL(x, 0)− uL(x

′, 0)) > 0

for some value of λ > 0. Since vL(x
′, q − λ, L) = maxUL(y) s.t. UR(y) ≥ Eλ′ [UR(x

′, q − λ−
λ′, R)], this implies that there is some value of λ′ > 0 such that

UR(x, q − λ− λ′, R) > UR(x
′, q − λ− λ′, R)

which implies that

vR(x, q − λ− λ′, R)− vR(x
′, q − λ− λ′, R) >

1

δ
(uR(x

′, 0)− uR(x, 0)) > 0

Repeated application of this logic eventually yields a contradiction because we know

from Lemma 1 that for some sufficiently negative value on the vertical dimension, q, the

Opposition accepts Proposer’s ideal point from any point on the x dimension and hence

vP (x, q, P )− vP (x
′, q, P ) = 0.

This shows vR(·, R) is monotone in x. To show vR(·, L) is also monotone, note that

because L will optimally exactly satisfy R’s participation constraint, we have that

vR(x, q, L)

=

∫ ∞

0

UR(g
∗(x, q − λ, L))f(λ)dλ

=

∫ ∞

0

UR(x, q − λ,R)f(λ)dλ

=

∫ ∞

0

(uR(x, q − λ) + δvR(x, q − λ,R)) f(λ)dλ

And because uR and vR(·, R) are both monotone in x, vR(·, L) must be as well.

We next show that under the exponential distribution, proposal power is always valuable

in equilibrium.

Lemma 4. vi(x, q, i) > vi(x, q,−i) ∀ (x, q) ∈ S⋆.
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Proof. Recall that

vi(x, q,−i) =

∫ ∞

0

Ui(g
∗(x, q − λ,−i))f(λ)dλ

Maximization by the Proposer implies that g∗(x, q−λ,−i) sets Ui(g
∗(x, q−λ,−i)) = Ui(x, q−

λ, i). Hence

vi(x, q,−i) =

∫ ∞

0

Ui(x, q − λ, i)f(λ)dλ

=

∫ ∞

0

(ui(x, q − λ) + δvi(x, q − λ, i)) f(λ)dλ

= ui(x, 0) + q − λ̄+ δEλ[vi(x, q − λ, i)]

which implies

Eλ[vi(x, q − λ, i)] =
vi(x, q,−i)− ui(x, 0)− q + λ̄

δ
> vi(x, q,−i) (5)

Where the inequality holds because ui and q are weakly negative, λ̄ > 0, and δ < 1. In

words, the expected value of being in power at all points on the vertical line below (x, q) —

taking expectations over the distribution of decay — must be strictly greater than the value

of being out of power at (x, q).

Using the memoryless property of the exponential, we can write the expectation on the

left hand side as:

Eλ[vi(x, q − λ, i)] =

∫ ∞

0

vi(x, q − λ, i)f(λ)dλ

=

∫ ϵ

0

vi(x, q − λ, i)f(λ)dλ+

∫ ∞

ϵ

vi(x, q − λ, i)f(λ)dλ

=

∫ ϵ

0

vi(x, q − λ, i)f(λ)dλ+ (1− F (ϵ))

∫ ∞

0

vi(x, q − λ, i)f(λ)dλ

Differentiating with respect to ϵ and taking the limit as ϵ → 0 yields the relation:

vi(x, q, i) = Eλ[vi(x, q − λ, i)]

and thus vi(x, q, i) > vi(x, q,−i).

We can now state the main characterization result (Proposition 2 in the main text).

6



Proposition 2. A Markov Perfect Equilibrium in continuous proposal strategies exists. In

any such equilibrium, there exist functions λ1, λ2, λ3, with λj : [0, π] → [0,∞), j ∈ {1, 2, 3},
and a policy threshold x′ ∈ (0, π) such that when δ is sufficiently close to 1, the following

properties hold for any status quo x ∈ [0, π]:

1. For λt < λ1(x), with λ1(x) > 0 if and only if x ≤ x′, L rejects R’s proposal such that

delay is experienced and power transitions.

2. For λt ≤ λ2(x) with λ2(x) ≥ λ1(x), R concedes on policy offering xP < x or L rejects

the proposal.

3. For λt ≥ λ3(x) with λ3(x) ≥ λ2(x), R proposes xP > x and this proposal is accepted.

Behavior is symmetric when L is the Proposer.

Proof. Existence is Lemma 2.

To show part 1), note that decay must occur in equilibrium as a consequence of Lemma 4.

Since Opposition (strictly) prefers to take power, when the realization of the decay shock is

small and the status quo x is close to Opposition’s ideal, the proposer does not have enough

policy concessions to give to convince Opposition to remove decay and allow Proposer to

retain power. The maximum concession that the Proposer can give is to offer Opposition’s

ideal point, which (in the R-receiving case) has utility to R of δvR(π, 0, L). The Opposition

will accept this offer if:

δvR(π, 0, L) ≥ uR(x,−λ) + δvR(x, 0, R)

By continuity and monotonicity of the value functions and the full-support assumption

on F (λ), there exist x sufficiently close to π and λ sufficiently close to 0 that this constraint

cannot be satisfied.

To show part 2), suppose the path is currently at (x, 0) and the current realization of

decay is λ. The Opposition will accept Proposer’s offer of (x′, 0) if Ui(x
′, 0,−i) ≥ Ui(x,−λ, i),

i.e. that:

ui(x
′, 0) + δvi(x

′, 0,−i) ≥ ui(x, 0)− λ+ δvi(x,−λ, i)

Rearranging:

ui(x
′, 0)− ui(x, 0) + λ ≥ δ(vi(x,−λ, i)− vi(x

′, 0,−i))
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Plugging in x′ = x, we get:

λ ≥ δ(vi(x,−λ, i)− vi(x, 0,−i))

Suppose a return to the frontier is acceptable to Opposition for all realizations of λ from

(x, 0). Then the inequality above also holds in expectation:

λ̄ ≥ δ(Eλ[vi(x,−λ, i)]− vi(x, 0,−i))

Plugging in from equation (5) we have:

(1− δ)vi(x, 0,−i) ≤ ui(x, 0)

where ui(x, 0) ≤ 0, with the inequality strict at all points other than Opposition’s ideal,

so there is some δ close enough to 1 that this is a contradiction for all such x. Hence, either

decay occurs or Proposer concedes.

Part 3) follows directly from the logic of Lemma 1. No matter the status quo on the

policy dimension, because the expected future utility is bounded, there exists some current-

period decay large enough to induce the Opposition to accept an offer that moves the status

quo towards Proposer, regardless of what path of play she anticipates will follow from then

on.

A3 Probabilistic transition rules

All properties of the equilibrium given in Proposition 2 extend to the case where the tran-

sition rule is probabilistic rather than deterministic as in our baseline case, under two as-

sumptions:

1. The probability of transition is a function only of the quality of implemented policy

and not of the policy location: P(Pt ̸= Pt−1) ≡ ρ(qt−1).

2. limq→0 ρ(q) ̸= 0

Lemma 1 is unchanged by this modification.

In Lemma 2, only the demonstration of Stokey and Lucas’ Assumption 9.6 requires

slight modification, that the feasible set now contains an additional point, (x, q − λ, P ), in

addition to (x, q− λ,−P ). This addition preserves the required properties of nonemptiness,

compactness, and continuity.
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To show Lemma 3, modify Equation (4) to the case with probabilistic transition, yielding:

δ(ρ(q − λ)vL(x
′, q − λ, L) + (1− ρ(q − λ))vL(x

′, q − λ,R)

−ρ(q − λ)vL(x, q − λ, L)− (1− ρ(q − λ))vL(x, q − λ,R))

≤ uL(x, 0)− uL(x
′, 0)

Rearranging,

ρ(q − λ) (vL(x
′, q − λ, L)− vL(x, q − λ, L))+

(1− ρ(q − λ)) (vL(x
′, q − λ,R)− vL(x, q − λ,R))

≤ uL(x, 0)− uL(x
′, 0)

δ

Analogously to the proof with deterministic transition, if this property does not hold (a

necessary condition for vR(·, R) to be non-monotone in the direction proposed) then either

vL(x
′, q− λ, L)− vL(x, q− λ, L) > 0 or vL(x

′, q− λ,R)− vL(x, q− λ,R) > 0 for some λ > 0.

As in the proof with deterministic transition, the former condition implies vR(x, q − λ−
λ′, R)−vR(x

′, q−λ−λ′, R) for some λ′ > 0, and so on until we reach the same contradiction

that for some sufficiently large q the value functions are constant in x.

The latter condition leads to exactly the same contradiction, with the only difference

being that the logical chain starts one additional step below the x-axis: vL(x
′, q − λ,R) −

vL(x, q−λ,R) > 0 implies UL(x
′, q−λ−λ′, R) > UL(x, q−λ−λ′, R) for some λ′ > 0, which

implies vL(x
′, q − λ− λ′, L)− vL(x, q − λ− λ′, L) > 0.

To show Lemma 4, modify equation 5 to the case with probabilistic transition as follows:

Eλ[ρ(λ)vi(x, q−λ, i)+(1−ρ(λ))vi(x, q−λ,−i)] =
vi(x, q,−i)− ui(x, 0)− q + λ̄

δ
> vi(x, q,−i)

(6)

The expectation Eλ[ρ(λ)vi(x, q − λ, i) + (1 − ρ(λ))vi(x, q − λ,−i)] on the left hand side

in (6) is:
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=

∫ ∞

0

(ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)) f(λ)dλ

=

∫ ϵ

0

(ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)) f(λ)dλ

+

∫ ∞

ϵ

(ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)) f(λ)dλ

=

∫ ϵ

0

(ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)) f(λ)dλ

+ (1− F (ϵ))

∫ ∞

0

(ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)) f(λ)dλ

Again differentiating both sides with respect to ϵ and taking limits as ϵ → ∞, we have

the similar relation to that derived in Lemma 4:

lim
q→0

ρ(q)vi(x, q, i) + (1− lim
q→0

ρ(q))vi(x, q,−i) = Eλ[ρ(λ)vi(x, q − λ, i) + (1− ρ(λ))vi(x, q − λ,−i)]

and hence limq→0 ρ(q)vi(x, q, i)+ (1− limq→0 ρ(q))vi(x, q,−i) > vi(x, q,−i), which simpli-

fies to vi(x, q, i) > vi(x, q,−i) as desired for any limq→0 ρ(0) ̸= 0.

A4 Equilibrium under alternative distributional assump-

tions

Although the proof of Proposition 2 uses a property of the exponential distribution, it does

not appear that this property is critical to the result. We solve numerically for the value

functions with two alternative distributions of decay, uniform and lognormal, holding the

mean of the distribution at 1 as in the baseline case. The results are qualitatively very

similar to the baseline case.
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(a) Uniform on [0, 2]. (b) Lognormal (µ = −0.5, σ = 1.0)

Figure A1: Equilibrium regions under alternative assumptions about the distribution of
decay. E[λ] = 1 in both, as in the baseline case.
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