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A1 Definitions

In each period t = 1,2, 3, ..., two policymakers, L (him) and R (her), bargain over policy. The
policy space is two-dimensional. The first dimension is an ideological continuum represented
by the real line, R. The second dimension captures the quality of policy. Each policy has a
maximum quality that we set to be zero, and quality is unbounded below. Thus, the policy
space is R x R™.

Policymakers have a common preference over quality but differ in their ideological pref-
erences. In the ideological space, L’s ideal point is 0 and R’s is m, such that their ideal
policy positions in the two-dimensional space are (0,0) and (7, 0), respectively. We assume
that per-period utility is separable across dimensions, linear in quality, and quasiconcave
in ideology. A common functional form that satisfies these requirements is quadratic-loss
utility over policy.

We assume that decay \; arrives each period iid from an exponential distribution with rate
parameter . We denote the CDF of A by F(\) and the corresponding density function by

f(A). Only the proof of Lemma 4 relies on specific properties of the exponential distribution;
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for the other lemmas it is sufficient that F' has full support on the positive reals and finite

expectation:

Section A4 shows that the numerical solution is very similar when we substitute alter-
native distributional assumptions in place of the exponential, suggesting that the specific
shape of this distribution is not crucial.

Finally, we assume that proposals must be on the efficient frontier; i.e., all proposed
policies take the form (z,0). This assumption is needed to guarantee existence of an optimal
proposal and rule out cases where Proposer, recognizing that she cannot retain power, offers
a policy infinitesimally below the frontier to avoid realizing decay that period.

Our equilibrium concept is Markov Perfect Equilibrium (MPE). We will look for equi-
librium strategies that condition only on the current-period values of policy (x), quality
(¢) and the identity of the proposer (either L or R). We further select equilibria with
continuous proposal strategies: equilibrium proposals z*(x, ¢, P) are continuous in (z,q)
for all z € [0,1],P € {L,R}.! We define the value functions v (x,q, P),vg(x,q, P) for
P € {L, R}, where P denotes the identity of the Proposer. The value functions give the
expected discounted future utility for each player along the equilibrium path of play begin-
ning from the point (z,q, P). We define the total utility of any point as U;(z, g, P), where
Ui(z,q, P) = ui(x,q) + évi(x,q, P) and 6 < 1 is the common discounting parameter.

A2 Proofs

Proposition 1 in the main text is Proposition 4 in Callander and Martin (2017). The proof
is given in the appendix to that paper.

To prove Proposition 2, we first show that the policy space can be restricted without loss
to a bounded subset of R x R™.

Lemma 1. Let S* be the set of all points (x, q) visited in equilibrium with positive probability.
S* C [0, 7] x [0, —B] where 0 < B < 0.

Proof. Suppose that R is Proposer and L in the Opposition role. An identical argument will
apply in the opposite case. Note that the worst possible path for L following R’s ideal point

(m,0) is decay forever from that point, which yields total utility for L in expectation of

IThe continuity property is needed for Lemma 2.
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Since the total utility for L here is finite, at some sufficiently negative decay shock he
will accept a proposal from R of (7, 0) over allowing the utility from the decayed status quo
to be realized, regardless of what he expects to follow from that point or from (7, 0). R will
prefer proposing this point to allowing decay to take hold for the same reason. Hence there

must be a finite lower bound below which no status quo is realized in equilibrium. O]

Lemma 1 implies that one-period utilities are bounded. This property is sufficient to
show that the value functions exist, are continuous, and are unique given the strategy of the
other player; uniqueness of the value functions implies that there is always a unique best

proposal and hence that a MPE in continuous strategies exists.

Lemma 2. The value functions vy, and vg are continuous in x and q and are unique. There

exists a MPE in continuous proposal strategies.

Proof. We apply theorem 9.6 of Stokey and Lucas (1989), which requires four assumptions
to hold.

The first (Assumption 9.4), which requires that the policy space is a bounded subset of
R!, is satisfied by Lemma 1.

The second (Assumption 9.5) imposes a technical condition on how the probability mea-
sure over the exogenous state variables — in our case, the current-period decay realization
A — can evolve over time. Our assumption that the distribution F' is constant over time
satisfies this.

The third (Assumption 9.6) requires that the correspondence that maps realizations of
decay A into a feasible set for the endogenous variables (z, ¢, and P) be nonempty, compact-
valued, and continuous in A\. The feasible set in our case is the union of two sets: the in-
tersection of Opposition’s and Proposer’s acceptance sets with no change in proposal power,
and the point (x,q — \) with the current period Opposition in the Proposer role. Nonempti-
ness is satisfied because the decayed status quo (z,q — \) is always available. Continuity
of the acceptance sets at any point where Proposer’s offer is accepted is ensured by the
continuity of the proposal strategies; an acceptance set that changed discontinuously in A
would imply that some future Proposer’s proposal strategies are discontinuous in either = or

q. Moreover, decay can occur only at points where the intersection of the acceptance sets



is empty (otherwise, the Proposer would propose a point inside, and it would be accepted).
Hence the feasible set everywhere changes continuously. Compactness follows because both
acceptance sets are closed and bounded (above by the efficient frontier, and below by the
inequality constraint defining the acceptance region).

The fourth (Assumption 9.7) imposes that the one-period utility function u is bounded
and continuous on the feasible set. wu is continuous by assumption. The upper bound on

one-period utility is zero, and the lower bound is finite per Lemma 1. O

We now show several useful properties of the value functions vy (z,q, P),vg(z,q, P). We
first show that the value functions are monotone for both players along the ideological di-

mension. We can write the value functions as
oloa.P) = [ UG (g = A P)F()A 1)
0

where ¢g*(x,q — A, P) is the equilibrium outcome resulting from status quo (z,q, P) when
the realization of decay is A. Defining the Opposition’s acceptance set A = {(z/, ¢/, P)
U—P(x/7 qu P) > U_p(l', q— >‘7 _P)}u we have:

% arg max 4 UP(xl7ql7P) max4 UP(x/7q/7P) Z UP(:an - /\7 _P)
g(:E,q—)\,P)Z (2)
(x,q— X\, —P) 0.W.

With that notation in place, we can state:

Lemma 3. The value functions are monotone in x for x € [0,7|. vr(x,-) is decreasing in

x, and vg(x,+) 1s increasing.

Proof. We apply Theorem 9.7 of Stokey and Lucas (1989). ug and u, are monotone in the
directions proposed. The remaining condition to verify is that the acceptance sets A are
monotone in the sense defined in Stokey and Lucas’ Assumption 9.9. We consider the case
with R proposing, L receiving, with current status quo of (z,q) or (2, ¢), with 2’ > x, and
current-period decay (not yet realized) of A. An identical argument will apply for the case
of L proposing, with the directions of inequalities and set containment operations reversed.
The needed monotonicity condition is A(z") D A(x). The acceptance sets are defined by the

utility the Opposition would get after allowing decay to manifest and taking power:

A(%l) = {(j7 Q) : uL<j7 Cj) + 51)[/(;%7 67 R) > uL(xlv q— )‘> + 5UL('T/7 q— )‘7 L>}
A(l’) = {(i'ﬂj) : uL<J~;7(j) + 51}11(5:767 R) > UL(ZE,q - /\) + 51}11(377(] - >‘7 L)}



Given this definition, A(z") D A(x) iff:

ur(z',q—N) +ovp(2',q — N\ L) <wup(x,g—N) +ovp(z,g— N\, L) ¥V A (3)
= 5(UL($/,Q - )‘7L) - ’UL(ZC,Q - >\7L>> < uL('Ta 0) o 'U/L($/,O) (4)

Note that the right-hand side of (4) is strictly positive because uy, is strictly decreasing in

x. Suppose this condition is not satisfied, and instead:
/ 1 /
vp(x',g— AN L) —vp(x,q— N\, L) > g(uL(:E, 0) —ug(z',0)) >0

for some value of A\ > 0. Since vy (2',q — A\, L) = max U (y) s.t. Ug(y) > Ex[Ugr(2’,q — X —
XN, R)], this implies that there is some value of X' > 0 such that

Ur(x,g— X=X, R) > Ugr(z',q— X — N, R)
which implies that
1
vp(z,q— A= N, R) —vg(2',qg— A= XN, R) > g(uR(x', 0) —ugp(z,0)) >0

Repeated application of this logic eventually yields a contradiction because we know
from Lemma 1 that for some sufficiently negative value on the vertical dimension, g, the
Opposition accepts Proposer’s ideal point from any point on the x dimension and hence
vp(z,q, P) —vp(z',q, P) = 0.

This shows vg(-, R) is monotone in x. To show wvg(-, L) is also monotone, note that

because L will optimally exactly satisfy R’s participation constraint, we have that

vr(z,q,L)
= | Urla .= M D) 100
_ /OOO Un(z, g — A R) F(\)dA
— | (untag = 2+ Gunta. = X R) 70
And because ug and vg(+, R) are both monotone in z, vg(-, L) must be as well. O

We next show that under the exponential distribution, proposal power is always valuable

in equilibrium.

Lemma 4. v;(x,q,1) > vi(x,q,—i) V (z,q) € S*.
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Proof. Recall that

(z,q, — / Uslg" (g — A, —i)) F(\)dA

Maximization by the Proposer implies that ¢*(x, g—\, —i) sets U;(¢*(x,q— X, —1i)) = Us(x, q—
A, i). Hence

vz, q, —i) = /OOO Ui(z,q — Ai) f(A)dA
_ / " (il g = X) + Fuie, g — A1) FO)N
= u;(2,0) + ¢ — A+ 0E\[vi(z,q — A, 1)]
which implies

Byl g~ A,i)) = WD ZU@OZOER Ly 5)

Where the inequality holds because u; and ¢ are weakly negative, A > 0, and § < 1. In
words, the expected value of being in power at all points on the vertical line below (x,q) —
taking expectations over the distribution of decay — must be strictly greater than the value
of being out of power at (z,q).

Using the memoryless property of the exponential, we can write the expectation on the
left hand side as:

Bluia =09 = [ uog— A0
0
— /0 vi(z, g — A z)f(A)d)\Jr/oo vi(z, ¢ — A, i) fF(A)dA
- / vi(z,q — M\ i) f(AN)AN+ (1 — F(e)) /Oo v, q — A i) f(A)dA
0 0
Differentiating with respect to € and taking the limit as € — 0 yields the relation:
vi(,q,1) = Ex[vi(z,q — A\, 1)]

and thus v;(z, q,1) > v;(z,q, —1). ]

We can now state the main characterization result (Proposition 2 in the main text).



Proposition 2. A Markov Perfect Equilibrium in continuous proposal strategies exists. In
any such equilibrium, there exist functions Ay, A2, A, with \; : [0, 7] = [0,00), j € {1,2,3},
and a policy threshold x' € (0,7) such that when ¢ is sufficiently close to 1, the following
properties hold for any status quo x € [0, ]|:

1. For A\ < \i(x), with A\i(z) > 0 if and only if x < &', L rejects R’s proposal such that

delay 1s experienced and power transitions.

2. For Ay < \o(x) with Xo(z) > M\i(z), R concedes on policy offering xp < x or L rejects
the proposal.

3. For Ay > A3(x) with A\3(x) > Xo(z), R proposes xp > x and this proposal is accepted.

Behavior is symmetric when L is the Proposer.

Proof. Existence is Lemma 2.

To show part 1), note that decay must occur in equilibrium as a consequence of Lemma 4.
Since Opposition (strictly) prefers to take power, when the realization of the decay shock is
small and the status quo x is close to Opposition’s ideal, the proposer does not have enough
policy concessions to give to convince Opposition to remove decay and allow Proposer to
retain power. The maximum concession that the Proposer can give is to offer Opposition’s
ideal point, which (in the R-receiving case) has utility to R of dvg(m,0, L). The Opposition

will accept this offer if:
5UR<7T7 07 L) 2 UR(ZE, _>\) + 5UR(‘7:7 07 R)

By continuity and monotonicity of the value functions and the full-support assumption
on F(A), there exist « sufficiently close to m and A sufficiently close to 0 that this constraint
cannot be satisfied.

To show part 2), suppose the path is currently at (z,0) and the current realization of
decay is A\. The Opposition will accept Proposer’s offer of (2/,0) if U;(2’, 0, —i) > U;(z, — A\, 7),
i.e. that:

wi(2',0) + dv; (2,0, —i) > u;(x,0) — X\ + v (x, — A, )
Rearranging:

ui(x/7 0) - ui(aja O) + A Z 5<Ui($a _)\7 Z) - Ui(x/7 07 _Z))



Plugging in 2’ = z, we get:
A > 5(?}i($, _>\7 Z) - Ui(x7 07 _2))

Suppose a return to the frontier is acceptable to Opposition for all realizations of A\ from

(x,0). Then the inequality above also holds in expectation:
A > §(Ex[vi(z, =\, )] — vs(x,0, —i))
Plugging in from equation (5) we have:
(1 —=9)vi(x,0,—i) < u(z,0)

where u;(z,0) < 0, with the inequality strict at all points other than Opposition’s ideal,
so there is some ¢ close enough to 1 that this is a contradiction for all such x. Hence, either
decay occurs or Proposer concedes.

Part 3) follows directly from the logic of Lemma 1. No matter the status quo on the
policy dimension, because the expected future utility is bounded, there exists some current-
period decay large enough to induce the Opposition to accept an offer that moves the status
quo towards Proposer, regardless of what path of play she anticipates will follow from then

on.
[l

A3 Probabilistic transition rules

All properties of the equilibrium given in Proposition 2 extend to the case where the tran-
sition rule is probabilistic rather than deterministic as in our baseline case, under two as-

sumptions:

1. The probability of transition is a function only of the quality of implemented policy
and not of the policy location: P(P, # P,_1) = p(q—1)-

2. lim, 0 p(q) #0

Lemma 1 is unchanged by this modification.

In Lemma 2, only the demonstration of Stokey and Lucas’ Assumption 9.6 requires
slight modification, that the feasible set now contains an additional point, (z,q — A, P), in
addition to (z,q — A, —P). This addition preserves the required properties of nonemptiness,

compactness, and continuity.



To show Lemma 3, modify Equation (4) to the case with probabilistic transition, yielding:

d(p(g — Nvr(2',qg = N\, L) + (1 = p(qg — A)v(2', ¢ — A\, R)
—p(g — Mvr(z,g— A\ L) — (1 = plg — A\))ve(z,qg — A\, R))
< wug(z,0) —ur(2',0)

Rearranging,

P(q - )‘) (UL([L'/,(] - )‘>L) - "UL(IE,C] - )‘7L)) +

(1 - p(q - A)) (UL(:LJ7 q—A, R) - vL(x> q—A, R))
< ur(z,0) ;uL(:U',O)

Analogously to the proof with deterministic transition, if this property does not hold (a
necessary condition for vg(-, R) to be non-monotone in the direction proposed) then either
vp(',g—AN L) —vp(x,g— A\, L) > 0orv(2',qg— A\ R) —vg(z,qg— A\, R) > 0 for some A > 0.

As in the proof with deterministic transition, the former condition implies vg(z,q — A —
N, R) —vg(2',q—A— N, R) for some X > 0, and so on until we reach the same contradiction
that for some sufficiently large ¢ the value functions are constant in x.

The latter condition leads to exactly the same contradiction, with the only difference
being that the logical chain starts one additional step below the x-axis: vy (2',q¢ — A\, R) —
vp(x,q— A, R) > 0 implies U (2',q— A= N, R) > Up(x,q— A — XN, R) for some X' > 0, which
implies vy (z',g — A= XN, L) —vp(x,g— A —X,L) > 0.

To show Lemma 4, modify equation 5 to the case with probabilistic transition as follows:

)

> Ui(‘rv q, _Z)
(6)
The expectation Ey[p(N)vi(z,q — A, i) + (1 — p(X))vi(z, g — A\, —i)] on the left hand side

in (6) is:

Exlp(\vi(w, g=A, i) +(1—p(\))vi(, g=\, —i)] = =



= Ai) + (1= pA)vi(z, g = A, =) F(A)dA

[e=]

/ (PN il — M) + (1= p(\))us(r, g — A, —1)) FA)IA
/OO S0 i)+ (= pN)urls g — A —i)) FA)dA
/ Nl g = A i) + (1= p(\)oi(, g — A, —i) F\)dA

]

_|_

=]

+(1— F(e ))/ (p(Nvi(z, ¢ = A i) + (1 = p(A)vilw, ¢ = A, =i)) F(A)dA

Again differentiating both sides with respect to € and taking limits as € — oo, we have

the similar relation to that derived in Lemma 4:

lim p(q)vi(z, ¢,1) + (1 = lim p(q))vi(z, ¢, —0) = Ealp(Mvi(w, ¢ = A, 1) + (1 = p(A)vi(, ¢ = A, —0)]

and hence lim, o p(q)vi(x, q, 1) + (1 —lim,0 p(q))vi(z, ¢, —i) > v;(x, q, —1), which simpli-
fies to v;(z, ¢, i) > v;(x, q, —1i) as desired for any lim, o p(0) # 0.

A4 Equilibrium under alternative distributional assump-

tions

Although the proof of Proposition 2 uses a property of the exponential distribution, it does
not appear that this property is critical to the result. We solve numerically for the value
functions with two alternative distributions of decay, uniform and lognormal, holding the
mean of the distribution at 1 as in the baseline case. The results are qualitatively very

similar to the baseline case.
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(a) Uniform on [0, 2].
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Figure Al:
decay. E[A] =1 in both, as in the baseline case.
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