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For a given countable partition of the range of a regenerative sequence {X,: n z 0}, let R, be 

the number of distinct sets in the partition visited by X up to time n. We study convergence issues 
associated with the range sequence {R,: n SO}. As an application, we generalize a theorem of 

Chosid and Isaac to Harris recurrent Markov chains. 
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1. Introduction 

Let {X,: n 2 0) be a stochastic sequence taking values in a measurable space 

(E, a). For a given family {A,: n 3 0) of g-measurable sets partitioning E, set Y,, = k 

if X,, E Ak. Let 4( i, i) = 1 and set 

+(i,j)=I(Y,# I;, x+,# q ,..., y_,# k;), R(i,j)= i +(i,k), (1.1) 
k=i 

for i<j, where Z(A) is 1 or 0 depending on whether or not w E A. Note that R(i, j) 

is the number of distinct sites visited by { Y,} during the interval [i, j]. The process 

{R(O, n): n 2 0}, which is called the range sequence associated with {X,,: n > 0}, 

counts the number of distinct sets Ak visited by X up to time n. The range process 

{R(O, n): n 2 0} has been extensively studied, in the case that {X,: n a 0) is a random 

walk with stationary increments; see, for example, Dvoretzky and Erdos [6], p. 35-40 

of Spitzer [ 121, and Jain and Pruitt [8]. Chosid and Isaac [ 1,2] have considered the 

problem when {X,,: n 2 0) is a recurrent countable state Markov chain. 

In this paper, we wish to study the range process in the case that {X,, : n * 0} is 

a delayed regenerative sequence, with associated regeneration times T,, T,, . . . (see 

p.298-302 of Cinlar [4] for the definition). Our starting point is a simple decomposi- 

tion formula for the range. In Section 2, we use this formula to improve the main 

result of Chosid and Isaac. Section 3 discusses the application of the results to 

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. 

0304-4149/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland) 



106 P. UC Glynn / Regenerative process 

Harris recurrent Markov chains, and considers a generalization to the case where 

{A,,: n 3 0) is not a partition of E. 

2. Convergence results for the range 

Let Rik = R(T, Tk- 1) for i< k, W, = R,,,,, - R,,, and set S(n)=inf{ja T,: 

Yj = n}. Then, 

$+I-’ 
Wj= C d(T,,k)=‘t”‘4(T,,k). T Z(Y,=n) 

k = T, k = T, n=O 

= F ‘fm’z(YT,+n ,..., Yk-_l#n,Yk=n) 

n=o k=T, 

= f Z(T,~S(n)<T,+,). (2.1) 
II=0 

The decomposition formula (2.1) plays an important role in our development. 

(2.2) Lemma. (i) Set 7i = T+, - Tp Then E( Wi/r,)+O as i+oo. 

(ii) Zf EWy<cc and ma 1, then EWm+O as i+oo. 

Proof. For (i), observe that 

E(W~/T;)= f, E{l/~i; TicS(n)<Ti+l) 
“=O 

= f P{S(n)a TJp’E{l/~,; S(n)< T2} (2.3) 
VI=0 

where the second equality follows from the regenerative property of X. Since 

f E{~/T,; S(n)< T,)=E(WI/T~)~~~ 
n=O 

one may apply bounded convergence to (2.3) to obtain (i). For (ii), note that 

EW”= 1 P{T,~S(n,),...,S(n,)<~+,> 
n,,...n,,, 

= C P{S(n,)a T,, . . . , S(n,)a TJ-’ 
n I..... “n, 

. P{S(n,)< T2,. . . , S(n,)< TJ. 

The bounded convergence theorem then applies to (2.4) provided that 

1 P{S(n,)tT, ,..., S(n,)<T,}=EWI”<Q 0 
n,....,n,. 

(2.4) 
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When m 2 1, Minkowski’s inequality yields 

n-l 

(E(R,,/n)“)““S J, (EC W/n)“)” m =; ;g: (EWT)““’ 
I 

so the following corollary is immediate. 

(2.5) Corollary. IfEW;“<co and mal, then E(R,,,/n)“+O as n-+a. 

The following lemma shows that the process {Rik: OS i < k} (To = 0) obeys a 

subadditive inequality. 

(2.6) Lemma. If 0 =G i <j < k, then Rik G R, + Rjk. 

Proof. If 0 s i <j < k, then (1.1) implies that 

Tkkl rk-l 

R,,=R,+ 1 +(7;,l)=Rv+ c I(Y,fY I,..., Y,_,fY,) 
I= T, l=T, 

Tk-l 

sR,+ C I(Yq# Yl,..., Y,_l# Y,)=R,+Rj,. 0 
I= T, 

The following theorem now follows easily. 

(2.7) Theorem. If E W, < ~0, then Ro,/ n + 0 a.s. 

Proof. The regenerative structure of X implies that the distribution of {Rk+l,,+l: 

1 G k <j} is identical to that of {R,,-: 1 s k <j}. By virtue of Corollary 2.5 (m = l), the 

nonnegativity of R,, and Lemma 2.6, this implies that {Rkj: 1 s k <j} satisfies the 

postulates ofthe subadditive ergodic theorem (see Kingman (1973)). Hence, R, ,,/ n + 0 

as n + cc as. But by Lemma 2.6, 

O~R,,ln~R,,ln+R,./n~O a.s. 

as n+oo. Cl 

We wish to point out that the subadditive ergodic theorem has been previously 

used to analyze the mean range in a different setting; see Derriennic [5]. 

Corollary 2.5, Lemma 2.6, and the observation that R(0, n) s R,.,,+, yield the next 

result. 

(2.8) Corollary. (i) If EW, <OO, then R(0, n)/n + 0 U.S. 

(ii) If E(Ro,+ W,)“<o3, and rnz 1, then E(R,,/n)“-+O as n+co. 
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Recall that any irreducible recurrent Markov chain {X,,: n 2 0} on {0, 1,. . .} can 

be regarded as a regenerative sequence. In particular, Corollary 2.8 shows that if 

a(I.)PE 

1 

T,(i)-1 

,& 4(O,j) XO=i <co 
I 1 

(T,(i)=inf{m> T,_,(i): X,,, = i}, T,(i) =0) for some i, then R(0, n)/n+O a.s. This 

is Theorem 1 of [ 11. Note that if {X,: n 2 0) is positive recurrent, then a(i) s 

E{ T, (i) 1 X(0) = i} < 00, so that the mean range then automatically converges to zero 

a.s. Our results are somewhat stronger than those of [I] in the null recurrent case. 

Theorem 2.7 proves that R,,/n + 0 a.s., whereas [l] only proves that R,,/n is a.s. 

bounded under the hypothesis EW, <CD. In the same spirit, Corollary 2.8(ii) and 

Lemma 2.2(i) are more complete than those of [l]. 

A natural question, in the context of the Markov chains discussed above, is 

whether finiteness of a(i) is a solidarity property; in other words, if a(i) is finite 

for one i, need a(i) be finite for all i. Of course, if R(0, n)/n +O a.s. were to imply 

that a(i) CM, we would be done. However, as pointed out in [2], a symmetric 

nearest neighbor random walk on the integers obeys R(0, n)/n -+ 0 a.s., and yet 

~(I’)=00 for all i. 

(2.9) Proposition. Let X be an irreducible recurrent Markov chain. 

for one i, ff (i) is finite for all i. 

Then, .ifa(i)<co 

The proof of this result is similar to an argument appearing in Chung (1967, 

p. 84), in connection with a solidarity problem concerning moments of certain 

functionals. 

As indicated in [ 11, the mean range R(0, n)/ n can display a wide range of different 

limit behavior, in the absence of the moment condition EW, < ~0. 

(2.10) Example. Let 7,, TV, . . be a sequence of positive independent identically- 

distributed integer-valued random variables. Suppose their common distribution F 

is in the domain of attraction of a stable law with parameter 0 < a < 1. Let S, = 

7,+. . . + T,, and set I(n) = max{k: Sk d n}. The process X,, = S,(,,)+, - n is an irreduc- 

ible recurrent Markov chain on (0, 1,2, . . .}. Letting A,, = {n}, we consider the mean 

range on the subsequence {S,: n > l}. It is easily checked that 

R(0, S, - 1)/S, = ,m,ax, r,JSn G=G 

so that 

R(0, S,- 1)/S, =+ Z(Q) 

as n + co, where Z( cu) is a nondegenerate r.v. and + denotes weak convergence 

(see Feller (1971, p. 465)). We conclude that R(0, n)/n does not converge to zero 

a.s. along the subsequence S,. 
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So far, our study of convergence has centered on normalizing R(0, n) by n. In 

view of the geometric factors in (2.3) and (2.4), it is natural to investigate whether 

normalizing by Ka (O< (Y < 1) is adequate for ER(0, n). 

(2.11) Example. Let {X,: n 2 0) be a sequence of nonnegative independent identi- 

cally distributed integer-valued random variables. Then, X is regenerative with 

T, = n, and EW, G 1. Suppose that n -“ER(O, n) + 0 as n + co where (Y < 1. Then, 

i Ec$(O, k)/k= i (ER(0, k)-ER(0, k-l))/k 
k=l k=l 

= ; ER(0, k)/k(k+l)+R(O, n)/(n+l)-R(O,O); 
k=l 

(2.12) 

letting n + ~0, we see that the second term vanishes and the first is summable since 

we are assuming that ER(0, n) = O(na) f or (Y < 1. We will now show that (2.12) 

diverges in general, proving that ER(0, n) = O(n-) is not valid without further 

assumptions. Using (2.1), we see that 

; E+(O, k)/k= f f P{X,# n}“-‘P{X,= n}/k 
k=l n=O k=l 

= - f log(P{X, = n})P{X, = n} 
n=cl 

(2.13) 

where we interpret log(O) . 0 = 0. Choosing the mass function P{X, = n} to be 

C/n(log n)’ (some constant C) for n 2 2 causes (2.13) to diverge. 

We therefore have the following conclusion. If {X,,: n 20) is a regenerative 

sequence for which ET, <a, then ER(0, n)/n converges to zero regardless of the 

partition used. On the other hand, one needs conditions on the partition to ensure 

convergence to ER(0, n)/na to zero, for LY < 1. 

(2.14) Proposition. Suppose that C?=0 nYP{S(n) -C T2} < ~0 for some y > 1. Then, 

npDLROn ~Oa.s.andn~“ER,,jO,asn~~, wherecr=l/y. 

Proof. Let 2, = max{ k: S(k) < T,,,} and observe that RI,, s 2,. But Z,, = 

max{V,,..., V,,}, where {Vi: is l} is the independent and identically distributed 

sequence defined by 

V,=max{k: T,sS(k)< rl;+,}. 

Noting that 

EV:= F nYP{S(n)<T,;S(m)>T,form>nj 
n=O 

(2.15) 

G f nYP{S(n)< T2}, 
n=O 

(2.16) 
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it follows that EVY -COO under our hypotheses. Hence, Cl=, V,Y/n converges to a 

finite quantity, which implies that Z,Y/ n + 0 a.s. Thus, nmaRO,, + 0 a.s. 

For the convergence of nmaERln, we use the finiteness of EV,Y to conclude that 

EZz/n + 0 as n + cc (see p. 90 of Chung [3]). But 

O~(ER,,/n”)Y~(EZ,/n~)y~ EZz/n, (2.17) 

where the last inequality is a statement of the fact that (E/XI’)“’ is a nondecreasing 

function of r for any random variable X (Feller [7, p. 1551). Relation (2.17) implies 

our result. q 

Recalling that R(0, n) G RO, + R,,, we obtain the following corollary. 

(2.18) Corollary. Assume that the conditions of Proposition 

ER,,<m, then n-“ER(0, n)+O as n-m, for cxs l/y. 

2.14 are in force. If 

To conclude this section, recall that if {X,,: n 2 0) is a delayed regenerative 

sequence for which ET, < o;), then 

as n + CO (see [4, p. 2991) ; the probability r is called the ergodic measure for the 

sequence. Note that 

P{S(n)< T,]s ? P{X~,+,EA,; T, > k} = T(A,,)ET,. 
k=O 

Hence, if ET, < 03, a sufficient condition for n-“ER,, + 0 is to require that the 

partition satisfy Cr==, n ‘r( A,,) < 00 for some y 2 l/a, where 7~ is the ergodic measure 

of x. 

3. Some extensions 

The analysis of Section 2 can be easily extended to cover the case in which 

{XVI: n * 0) is a Harris recurrent Markov chain (see Revuz [ 11, p. 751 for the 

definition). For any initial distribution for X0, a probability space can be constructed 

which supports both the Markov chain {X,,: n 2 0) and a sequence {T,,: n 2 1) of 

random times, and which satisfy: 

(i) {X,+,: k > 0} has an identical distribution for each n * 1, 

(ii) %‘(X,: j< T,,) is independent of %‘(X,:j> T,,,) for nz 1; 

see Niemi and Nummelin (1982) for details of the construction. The Markov chain 

X can therefore be analyzed as a stochastic process analog of a 1 -dependent sequence 

of identically distributed random variables. To extend the results of Section 2 to 

our current setting, it is necessary to obtain a moment bound similar to (2.4). 
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Retaining the notation of Section 2, we note that the l-dependence yields the bound 

=s c j-J PW,,f n,. . .1 

n=O j=O 

= f P{S(n)3 T2}mP{S(n)< T2}. (3.1) 
n=O 

Since Lemma 2.6 clearly continues to hold, systematic application of (3.1) proves 

that Theorem 2.7 and its Corollary 2.8 remain valid in the Harris chain setting. 

Further verification, based also on (3.1), proves that Proposition 2.18 also works 

for Harris chains. 

Our second extension concerns the case where the collection r = {A,: n 2 0) is 

not a partition of E. For a given family I- of sets satisfying lJAEr A = E, let 

+(r, A) = card{A n A: AE r} (3.2) 

for A E E. If r is a countable partition of E and A, = {X0,. . . , X,}, then 4(r, A,,) = 

R(0, n)+ 1, where R(0, n) is the range process associated with the partition r Thus, 

(3.2) legitimately generalizes the range sequence studied in Section 2. In the case 

that r is not a partition, +(r, A,,) can potentially be of magnitude 2”, and hence 

it is not reasonable to expect that 4(r, A,)/n will always converge. Instead, it is 

natural to study log +(r, A,)/n. 

Set & = 4(r, Aik) for 0~ i < k where Aik = {X,, . . . , X,_,}. 

(3.3) Lemma. For 0 c i <j < k, log & < log & + log +jjk. 

Proof. The argument follows that used by Steele (1978). Note that An Alk = 
(An A,j) u (An Ajk), so that there are fewer sets of the form of the form An Aik 
than pairs of sets An A,, A n Ajk. It follows that 4ik d 4v4jk. q 

The following theorem is an easy consequence. 

(3.4) Theorem. Let X be a delayed regenerative sequence satisfying E log 4,2 < 00. 

Then, (log c#B,,)/~ + v(r) a.s. as n-+oo, where v(r) is a$nite constant. 

Proof. Since {log &: 1 s i < k} has the same distribution as {log 4,+l,k+l: 1 c i < k}, 

Lemma 3.3 and our moment hypothesis allow one to apply the subadditive ergodic 

theorem. As a consequence, (log &)/n + V(T) a.s. as n + ~0, for each i 2 1. Since 

the limit holds for each i > 1, it follows that V(T) is a tail random variable, in the 

sense that V(T) is independent of /3(X,: j < T,) for each i 2 1. Hence, a zero-one 

law applies and V(T) is constant a.s. q 

(3.5) Corollary. Let X be a delayed regenerative sequence satisfying ET, < 03. Then 

(log d(r, A,))/n+ V(r)/ET, a.s. as n+co. 
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Proof. Since log &I,~ < r, log 2, the moment hypothesis of Theorem 3.4 is satisfied, so 

(log &,)/n+ V(r) as. (3.6) 

as n+oo. 

We now show that if W, c W,, then +(r, W,)S c#J(~, WJ. Observe that two sets 

A, n W are distinct if and only if (A,AAJ n W f 0, where A denotes symmetric 

difference. Thus, if W, G W,, there are more sets of the form An W, than An W,, 

proving that +(I’, W,) s d(r, W,). Since Aon 2 A,,,, it follows that &,n 2 4,“. Thus, 

Lemma 3.3 proves that log &,, can be squeezed by log $B,,: 

Log 41 n =Z log &I =G log A, + log 4, n. (3.7) 

Let N(m) = max{k: Tk s m} and observe that 

“rN(,+, E A, G A,( ,,,, +,-I. (3.8) 

Relations (3.7) and (3.8) allows us to ‘squeeze’ log d(r, A,,,) via 

log +,,N(m)~ log 4(r, A,,) s log 401 +log &,N(~I+,. (3.9) 

Dividing through in (3.9) by N(m), using (3.6), and exploiting the fact that 

N( m)/m + ~/ET, a.s. yields the desired conclusion. 0 

To conclude this section, we wish to point out that the constant V(T)/E7, has 

been extensively studied in a rather different context. Vapnik and Chervonenkis 

( 197 1) showed that if {X,,: n 2 0) is a sequence of independent and identically 

distributed variates, then the empirical discrepancy function associated with r, 

namely 

Isup i I(X,EA)-nP{XI~A} 
n AET i-l 

converges to zero as. if and only if V(T)/ET, vanishes (see also [ 131); the constant 

V(T)/E7, is called the Vapnik-Chervonenkis entropy associated with IY 
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