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A b s t r a c t  

Underlying the fundamental queueing formula L = hW is a relation between 
cumulative processes in continuous time (the integral of the queue length process) 
and in discrete lime (the sum of the waiting times of successive customers). Except 
for remainder terms which usually are asymptotically negligible, each cumulative 
process is a random time-transformation of the other. As a consequence, in addition 
to the familiar relation between the with-probability-one limits of the averages, 
roughly speaking, the customer-average wait obeys a central limit theorem if and 
only if the time-average queue length obeys a central limit theorem, in which case 
both averages, properly normalized, converge in distribution jointly, and the 
individual limiting distributions are simply related. This relation between the 
central limit theorems is conveniently expressed in terms of functional central 
limit theorems, using the continuous mapping theorem and related arguments. The 
central limit theorems can be applied to compare the asymptotic efficiency o f  
different estimators of queueing parameters. For example, when the arrival rate h 
is known and the interarrival times and waiting times are negatively correlated, it 
is more asymptotically efficient to estimate the long-run time-average queue length L 
indirectly by the sample-average of the waiting times, invoking L = hW, than it is 
to estimate it by the sample-average of the queue length. This variance-reduction 
principle extends a corresponding result for the standard GI/G/smodel established~ 
by Carson and Law [2]. 
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1. Introduction and summary 

A fundamental principle of queueing theory is expressed by the formula 
L = )tic, which states in part that the time-average queue length L is equal to the 
product of  the arrival rate )t and the customer-average wait in queue N. The principle 
also provides conditions for these averages to exist as limits; see [6,9,10] and references 
therein. The primary purpose of this paper is to provide a CLT (central limit theorem) 
refinement. Roughly speaking, we show that the customer-average wait obeys a CLT 
if and only if the time-average queue length obeys a CLT, and we relate the two limits. 
Just as the classical CLTs can be regarded as refinements of the classical LLNs (laws 
of large numbers), so our result is a refinement of the standard relation between the 
w.p.1 (with probability one) limits of  the averages. 

In order to relate the CLT behavior of the time averages and customer averages, 
in this paper we work with FCLTs (functional central limit theorems) instead of 
ordinary CLTs, using the theory of weak convergence of probability measures on the 
function space D = D [0, ~) ;  see [1,8,14] and references therein. Relations among 
the FCLTs are established using the continuous mapping theorem (theorem 5.1 of 
[1 ] ) and related mapping arguments for basic functions on D or D • D such as com- 
position, addition, composition plus translation, supremum and inverse [ 14]. 

A key idea here is to replace specific conditions on the stochastic process of  
interest (such as finite moments, stationarity, metric transitivity, independence, ~- 
mixing, the Markov property or the regenerative property) by the existence of other 
related limits. The FCLT setting is especially convenient for this purpose. It facilitates 
the same kind of sample-path analysis used to establish L = )tic in [9] and [10]. This 
same approach has been used to establish heavy-traffic limit theorems for queues 
given FCLTs for counting processes associated with the arrivals and service times; 
theorem 1 of  [5]. It has also been used to relate limits for stochastic processes to 
limits for their discounted counterparts [13]. Of particular relevance here, this ap- 
proach has been used to establish CLTs and FCLTs for random sums of random 
variables; sect. 17 of  [1], [4,8,14]. 

The FCLTs here are useful, not only to describe the averages (which are 
congestion measures of interest in their own right), but also to do statistical estimation 
of queueing system parameters by computer simulation or by direct system measure- 
ment. For example, if we want to estimate the expected waiting time, then we can 
either estimate it in the natural way using the usual customer average or we can 
estimate it indirectly via the time average of  the queueqength process, invoking L = )t IC. 
It is natural to ask which way provides a more efficient estimator. This question has 
been investigated for the GI/G/s queue by Carson and Law [2] using the regenerative 
property. The FCLTs here provide a basis for making such comparisons for more 
general systems. 

The rest of  the paper is organized as follows. In sect. 2 we review the basic 
relationship between cumulative processes underlying L = )tiC. We also present a new 
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variant of  L = XW, the relation between the (strong) SLLNs, aimed at producing 
something closer to a symmetric version. The existing versions go from k and 14/to L. 
We indicate how to go the other way, by adding an extra condition. (It is well known 
that an extra condition is needed.) We also relate L = XW to limits for other processes. 
From theorem 2 it is easy to see that the FCLT versions of L = XW in sects. 3 and 4 
can be viewed as direct FCLT analogs of  the standard SLLN versions of L = XW. 

In sect. 3 we establish the equivalence of the customer-average and time- 
average FCLTs under the condition that a remainder term is asymptotically negligible. 
In sect. 4 we show, paralleling the standard version of  L = XW, that a joint FCLT for 
the averages related to ~ and I4/by itself knocks out the remainder term. Our main 
result, theorem 4, establishes joint convergence for 15 related processes. In sect. 5 we 
discuss implications for parameter estimation from simulation or system measure- 
ments. We conclude in sect. 6 by discussing functional-law-of-the-iterated logarithm 
(FLIL) versions of  L = XW, which can be established by almost the same arguments 
as for the FCLT versions. 

We have also established related results that will be presented elsewhere. We 
have established ordinary-central-limit-theorem (CLT) versions of L = XW by very 
different arguments. Since both the conditions and the conclusions are weaker than 
the FCLTs here, neither set of  results contains the other. We have also established 
ordinary law-of-the-iterated-logarithm (LIL) versions of  L = ~ I4/. We have also extended 
the FCLT results here to the setting of  H = ;~G and generalizations such as [7]. Finally, 
we have further investigated the statistical applications discussed in sect. 5. 

2. A basic  r e la t ionsh ip  b e t w e e n  cum ul a t i ve  processes  

The standard L = XW framework is a sequence of ordered pairs of  random 
variables { (A k, D k), k = 1 ,2 ,  . . . }, where 0 ~< A k ~< A k + 1 and A k ~< D k for all k 
w.p.1. As in [9] and [10], the results in this section are for individual sample paths 
of the stochastic process { (A k, D k), k f> 1 }. In applications, the limits will typically 
hold for a set of  sample paths having probability one. 

We usually interpret A k and D k as the arrival and departure epochs of the kth 
arriving customer. (However, arrival and departure should be interpreted with respect 
to the system under consideration. For example, if the system refers to a queue, ex- 
cluding the servers, then D k is the epoch when the kth customer leaves the queue, 
which usually occurs when the customer begins service.) As regularity conditions, we 
assume that D k is finite and that there are only finitely many arrivals in finite time, 
i.e. Ag ~ oo as k ~ oo .  For many models, such as one single-server queue with the 
first-come first-served discipline, we also have D k <<. D k + 1 for all k, but we do not  
assume that the sequence {D k } is nondecreasing. We think of the system as initially 
empty, but other initial conditions can be introduced by letting A i = O, 1 < j <~ k, for 
some k. The sequence { (A k, D k) } is our complete model specification. 
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We think of the kth customer as being in the system during the interval [Ak, Dk] , 
so that we let the queue length at time t, Q (t), be the number of k with A k ~< t ~< D~, 
and we let the waiting time of  the kth customer be 1r k = D k - A  k. It is convenient to 
work with the indicator function of the interval [Ak, Dk] , defined by lk(t ) = 1 if 
A k ~< t~< D k and 0 otherwise. Then Q(t) and W k are defined by 

Q(t) = Z lk( t ) , t /> 0, and W k = (t) dt, k t> 1. (2.1) 
k = l  0 

Let N(t) be the arrival counting process, defined from the arrival sequence {Ak} 
by N(t) = max{ k/> 0: A k ~< t}, t ~> 0, where we understand A o = 0 without having a 
Oth customer. The sequence {Ak, k >I 1} andthe process IN(t), t >1 0} can be regarded 
as inverse processes because they satisfy the basic relation A k ~< t if and only if 
N(t) >1 k. 

We focus on the cumulative processes associated with W k and Q(t), namely, 
{Y'7_ 1 W.i, k>~ 1} and {fo t Q(s) ds, t ~> 0/, and the closely related customer average 
{k -1 Z ~  W., k~> l} and time average It -1 f tQ(s)ds ,  t>  O }. There is a basic re- 
lationsh/ipl I {2;k=0 Wj, k~> 0},{Ak, k~> 1} among the four processes 1 }, { fo r Q (s) ds, t /> 
and { N(t), t >1 0} that underlies Little's formula and its refinements. The basic relation- 
ship indicates that the cumulative process of Q(t) (Wk) is equal to the cumulative 
process of  W k (Q(t)) evaluated at the random time N(t) (Ak), plus a remainder term 
R (t) (Sk). This is perhaps best understood by a picture (see fig. 1). There, time is on the 
x-axis and the customer index is on the y-axis. A bar appears in [k - 1, k] • [A k, Dk] 
for customer k, so that Ir k measures the length of the kth bar and Q(t) counts the 
number of  bars intersecting the line x = t. Both cumulative processes thus measure the 
area of a set of  bars and partial bars. As t or k become large, the partial bars typically 
become relatively negligible, so that the two cumulative processes are measuring 
approximately the same thing. Of course, we need to relate t and k, the obvious way 
being to let k be N(t) when t is given, and to let t be A k when k is given. In fig. 1, 
fto O(s) ds and Z~ 7 = l Wk are depicted where N(to) = 17. 

It is also possible and useful to bound each cumulative process by the other 
cumulative process evaluated at random times related to the arrivals and departures. 
For this purpose, let O(t) be the output counting process, depicting the number of k 
for which D k ~< t, and let D~ = max 1 <<.j<<.kD i. We omit the proof, which is similar 
to those in [9] and [10]. (More details appear in a previous draft.) 

THEOREM 1 

The cumulative processes are related by 
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Fig. 1. The cumulative processes associated with Q(t) and W k. 
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(a) 
0 ( t )  N ( t )  t N ( t )  

~. W k <<. ~ W k - R ( t )  = l Q ( s ) d s  <~ ~. W k forall t ~ > 0 ,  
k = l  k = l  k = l  

0 

A k A k D]r 
k 

. I Q(s)ds <~ ~ Wj = [  Q(s)ds + Sk <~ [ Q(s)ds 

o j=l  Jo o 
J 

for all k~> 1, 

where 

N<t) i k ]  R(t) = 7, Ik(s) d~, t~> O, and S,, - ~ b(s) ds, ~:~> 1; (2.2) 
k =  l t ] = 1  A k  

(b) S k <. R(Atc ) and R(t)  <. Sg(t) for a l l k a n d t ;  

(c) If {Ak, k >i 1} is strictly increasing, then R (Ak) = S k . 

An elementary consequence of theorem 1 is that the remainder terms vanish 
whenever the system is empty (where N(t) = O(t) and D~ <~ t <~ A k + 1 ). This yields in- 
equalities for the lim infs and lim Sups when the system is empty infinitely often. 

C O R O L L A R Y  1.1 

If there exists asequence {tk'k>~ 1} with t k ~ ~ as k-~ ~ suchthat Q(tk) = 0 
for all k, then 

lim t -1 I Q(s) ds <~ ~ t -1 N(t  
t.-~ ~ t-'* ~ 0 

lim n "l 
\ n  ~ * *  k = l  

I ( ,)<im ) t -1 Q(slds >t lJ___m t -1 N( t  1 n -1 ~. W k . 
t ''~.~ t "~ ~ \ n  k = 1 

0 

There are two aspects to L = h W: (i) establishing that the normalized remainder 
terms t - lR( t )  and k- lSk become negligible as t ~ ~ and k ~ ~ ,  and (ii) exploiting 
the remaining relation when the remainder terms are neglected. The practical value is 
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almost entirely in the second aspect; the first aspect is primarily a technical detail. It 
is customary to treat the two aspects together [9], but this combined treatment 
causes a certain unpleasant asymmetry to appear because the very existence of one 
pair of  limits is sufficient to knock out the remainder term, while the existence of  the 
other pair is not. The following elementary example shows that going from limits 
related to X and L to a limit for W is not possible without adding an extra condition. 

Example 1 

Let A s = k for all k, corresponding to deterministic arrivals. Let D2k = 2 k + a 
and Dj = j for j :~ 2 k, i ~> 1 and k >/ 0. All customers depart immediately upon arrival 
except the customers arriving at epochs 2 k. The customer arriving at 2 k replaces the 
arrival at 2 k - a, so that there is always one customer in the system (not counting 
instants of  arrival and departure). Obviously, 

t 

lim k - l A  k = am t - i N ( t )  = 1 = lim t -1 I Q ( s ) d s ,  
k - - ~  ~. t - ~  r t - +  * *  

0 

but 

2 k -  1 2 k 

y. lvj=2 k- and wj=2 
j=x  j = l  

so that 

{ n } 
n -1 if" W/, n ~> 1 

j = l  

does not converge as n -~ oo. It has every point in the interval [1,2] as a limit of some 
subsequence. However, we can apply corollary 1.1 to see that 

t 

lim n -1 ~.  W k <~ lim t -1 Q(s)ds  = 1 ~< li--mn -1 W k. [] 
n ~ o o  k = l  t ~  t--+ oo k = l  

0 

We now present a new result that is closer to a symmetric statement. We also 
relate more of  the relevant limits. For this purpose, consider the following limits, all 
of  which apply to individual sample paths of  {(A k, D~)}. At this point, we change the 
notation somewhat. We use q and w for the limits of  the averages instead of  L and W. 
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(i) lim n- ~ A n = X- 1 0 < X- 1 < oo (ii) tim t- 1N(t) = X, 0 < k < oo 

(iii) tim n - 1 D  = X- ' ,  ( iv)  l im n - '  W n = 0 ,  

(v) lim n -1D n = X -1 , (vi) lim t - 10 ( t )  = X, 

(vii) lim t -1Q(t)  = 0, (viii) 
[, --+ ~ 

t 

(ix) lim t -1 I Q(s) ds = q' (x) 
t - - + ~  

0 

(xi) ]Jm t-1 R(t)  = 0,  (xii) 

n 

l i m n  -1 
n --~ ~,, k = l  

Wk=W, 

tim n - i S  =0 ,  
n 

F / - - >  ~ 

A n 

lim n -1 J Q(s) d s = w ,  
n --4. ~ 

0 

N(t) D~I 

(xiii) lim t -1 Z Wk = q, (xiv) lim n -1 I Q(s) ds= w, 
t - ~  k =  1 n ~ r  

0 

o(t) 
(xv) lim t -1 ~ Wk= q. 

t ~  k =  1 

(2.3) 

The standard statement is that limits (i) and (viii) imply (ix), and if the limits 
hold, then q = kw. Usually, q, k and w are constants (nonrandom), but they could be 
random variables; then the relationship q = Xw holds for each sample path. Part (e) 
below offers something close to a symmetric version. 

T H E O R E M 2  

The limits in (2.3) are related as follows: 

(a) 
(b) 
(c) 

(i) holds if and only if (ii) holds. Henceforth, assume that they hold. 

(iii), (iv) and (v) are equivalent. 

(vi) and (vii) are equivalent. 



P. W. Glynn, W. Whitt, A central-limit-theorem version o f  L = ~ W 199 

(d) 
(e) 

(0 
(g) 
(h) 

(iii) implies (vi), but (vi) does not  imply (iii). 

(viii) holds if and only if (iii) and (ix) hold, in which case q = ;kw. 

If (viii) holds, then so do limits (x)- (xv) .  

(x) and (xi) are equivalent. 

Under (ix), any one of (i i i)-(v),  (x) and (xi) implies all other limits. 

Proof  

Part (a) is an elementary well-known consequence of  the inverse relationship. 
Given (i), (iii) is equivalent to (iv) because W n =D n - A  n . Obviously, (i) and (v) imply 
(iii) because A n <~ D n <~ D~ for all n. We show that (i) and (iii) imply (v) by showing 
that, for any positive e, there is an no(e ) such that D n <~ (1 + e )A  n for n >1 no(e). 
For e given, we obtain no(e ) from A n 1 Wn ~ 0 as n ~ oo, which holds by virtue of (i) 
and (iii). Hence, there is no(e ) such that W n <<. eAn for n >i no(e). This in turn implies 
that D n <<. (1 + e)A n for n >1 no(e ). Obviously, n- l  Dno(e) ~ 0 as n ~ oo, so that 
there exists n 1 (e) i> no(e) such that D~ ~< (1 + e)A n for n/> n 1 (e). Since e is arbitrary 
(v) indeed follows from (iii). Part (c) is immediate since Q(t) = N ( t )  - 0 (t). 

For part (d), (iii) ~ (vi) is similar to (iii) ~ (v): Again, by (i) and (iii), for 
arbitrary e > 0, there exists no(e ) such that W n < eAn for n >1 no(e). Using this e 
and no(e ) , we have the set inclusions 

_ + W <<- t} A {n :n>/  no(e)} { n : D ~ <  t } D { n : A  n n 

D__{n:An<~ t/(1 + e)} N {n:n>~ no(e)} 

D__ {n:N( t / (1  + e))>~ n} f~ {n:n>~ n0(e)} , 

so that O(t)  >~ N(t / (1  + e)) - no(e ) for all t />  0. Since O(t)  <<. N( t )  for all t and 
t -  1N( t )  ~ ;~ as t ~  oo, 

1 
lJm t - i N ( t )  >~ lim t -~ O(t)  >1 lim t - l O ( t )  >1 lim t -~N( t ) .  

l + e  
t - - ~  t - - > ~  k - + ~  t - ~  

Since e was arbitrary, t - 1 0 ( t )  -~ k as t ~ oo. 

For the second half of  (d), apply example 1 to see that (i) and (vi) do not 
imply (iii): W2k = 2 k for all k there. 

We obtain (e) and (f) together using theorem 1. The implication (viii) ~ (ix) is 
provided by applying theorem 1 (a) plus (c) above: 
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(V)  l o., i lira W k ~< lim t -1 Q ( s ) d s  
Xw = O( t )  k = 1 t ~  

0 

<<. lim t -1 a ( s ) d s  <~ lim N ( t )  ~ Wk ~" Xw. 
t - ~  *~ ~ t - +  ** k = 1 

0 

Since (viii) ~ (iv), ((i), (viii)) -~ (iii) too by part (b). Finally, ((i), (iii), (ix)) --> (viii) is 
proved by applying (b) above and theorem l(a). From (i) and (iii), we obtain (v), so 
that 

A k 

X - l q  = lim A~c 1 Q(s) ds <~ lim k -1 W/ 

k ---> ** 0 k ---> ** ] = 1  

~< lim k -1 ~, W] ~< lim (D~) -1 a ( s )  ds = )C 1 q. 
k " - '  '~' ] =  1 k ~  ,~, / 

0 

For (g), apply (a) and theorem l(b). For (h), apply theorem l(a) to show that 
(ix) and (x) imply (viii). The rest follows from (b)- ( f ) .  [] 

3. A cen t ra l - l imi t - theorem r e f i n e m e n t  

We work in the setting of [1] and [14], which means weak convergence 
(convergence in distribution), denoted by =>.  We often write X n = >  X, omitting 
"as n --> ~ "  when this is obvious. We consider random elements o fD = D [0, oo), the 
space of all real-valued functions on [0, oo) which are right-continuous with left limits. 
Let the space D be endowed with the standard Skorohod (J1) topology and let 
product spaces D g be endowed with the usual product topology. Let C = C[0, o~) 
be the subset of continuous functions in D. Convergence x n -~ x in D with the 
Skorohod topology reduces to uniform convergence on compact subsets when x E C. 

We define the following random functions in D. Let [x] be the integer part of 
X .  

A n ( t  ) = n -112 [A[nt] - p n t ] ,  N ( t )  = n -U2 [N(nt )  - Xn t ] ,  

,] t] Wn(t) = n -112 W k - w n  , Qn( t )  = n - ' /2  Q(s)ds - q n  , 

0 
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rA[nt] tl 
(QA)n(t) = n-112[ ! Q(s) d s - X - l q n  , 

,] (WN)n(t) = n -1/2 W k -  )kwn , 
= 1  

(3.1) 

Rn(t ) = n-1/2R(nt), Sn(t ) = n-ll2S[nt], O(t) = 0 and e(t) = t 

for t />  0, where here /a, ),, w and q are positive real numbers. Note that the process 
Q(t) defined in sect. 2 need not be a random element of  D, but the associated cumu- 
lative process fotQ(s) ds is, as are all random functions in (3.1). Let g denote equality 
in distribution. 

THEOREM 3 

Suppose tha t /a  = )C 1, q = ), w, and one of  the remainder terms is asymptotically 
negligible, i.e. that either R n = > 0 or S n = > 0.  If any one of the following four weak 
convergence limits in D X D holds: 

(l/gn, An) = >  (Ir A) where 

( I O n , N ) = >  (W,N) where 

(Qn'An) = >  ( Q ' A )  where 

(Qn' Nn) = >  (Q, N) where 

P(A E C) = 1, 

P(N E C) = 1, 

P(A E C) = 1, 

P(NE C) = 1, 

o r  

then the other three do too and, in addition, there is the joint convergence 

(Wn, Q n , A n , N ,  (QA)n, (WN)n,Rn,S)  = >  (W, Q,A ,N ,  W, Q, O, O)in  D s, 

in which case 

N(t) = - XA(k t )  d= _ X3/2 A(t) 

Q(t) = W()~t) - q A ( X t )  ~ ~kl/2(W(t) -qA( t ) ) ,  t >10. (3.2) 
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If, in addition, one of ( i ) - ( iv)  holds with two-dimensional Brownian motion as a 
limit, then the joint limit process (A,  Ir N, Q) is also Brownian motion; see (3.6) and 
(3.7) for the covariances. 

Proof 

First, from theorem 7.3 plus the corollary to lemma 7.6 of [14], if either 
A n = >  A with P(A E C) = 1 or N n = >  N with P(N E C) = 1, then both hold and, 
moreover, there is the joint convergence (A n, N n) = > (A, N), where N(t) = - ;~A (;k t), 
t~> 0.Moreover, O n = >  ;k-leandTn = >  ~.e, where 

On(t ) = n-XA[nt] and Tn( t  ) = n - lN(n t ) ,  t >f O. (3.3) 

To apply the corollary to lemma 7.6 in [14], make the translation 

x ( t )  = O n ( t ) , x ~ l ( t )  = Wln(t ) + n -1, c = n -U2, a = ~-1. 

The extra n -1 in Xnl(t) above is asymptotically negligible; it can be neglected by 
theorem 4.1 of [1 ].  

From theorem l(b), Sn(t ) <~ (R n o On) (t) and Rn(t  ) <~ (S n o Tn)( t  ) for all 
t, where o denotes the composition map, i.e. (x o y) ( t )  = x(y( t ) ) ,  t >t O. Hence, if 
either R n = >  e or S n = >  8 ,  then both do. To justify this, apply theorem 4.4 of [1] 
to get joint convergence (R n, On) = >  ( 8 ,  X-Xe) or (Sn, Tn)  = >  (8 ,  ~.e) and then 
apply the continuous mapping theorem with composition, theorem 3.1 of [14]. Since 
R n = >  6 or S n = >  e by hypothesis, both do and we can ignore the remainder term in 
the convergence; we invoke theorem 4.1 of [1 ]. 

To treat the random sums (lCN)n and (QA)n, we apply theorem 5.10) of  [14] 
twice. (Note that there part (ii) does not apply because O n and T n in (3.3) do not have 
continuous paths and part (iii) involves a complicated condition on the fluctuations 
via the function F(x  n, Yn; a, b).) For the details, first suppose that we start with 
(IOn, An) => (W, A) or (Wn, Nn) => (Ir iV). Then, using the inverse map as 
described at the beginning of this proof and theorem 4.4 of [1], we obtain 
(Wn, An, Nn, ~ln) => (W, A,  N, Xe) in D 4. We then get 

(lCn, A n , N  , ~n,(lCN)n) => ( I r  Xe, Q) in D s 

from theorem 5.1(i) of  [14]. To make the translation, let 

[nt] 
x ( t )  = w-in-112 Z Wk" c = n112, 

k = 0  

b = X, x ( t )  = w - '  W(t),  z ( t )  = N(O.  
n 

Yn(t) = Tn(t  ), y ( t )  = •t, (3.4) 
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Afterwards, multiply by w in (3.4) to get the limit for ( lCN)n in (3.1). Since R n => O, 
p(Q~, (lCN)n) = >  0, where p is a metric on D inducing uniform convergence on com- 
pact subsets, so that Qn => Ir o he+ w N b y  theorem 4.1 of [1]. More generally, 

p((Wn,An,Nn, Tn,(WN)n),(Wn,An,Nn, Tn, On))=> O, 

where p is a corresponding metric on D s inducing the product topology. Hence, we 
have the claimed joint convergence. The argument is essentially the same starting with 
(On, An) => (O, A) or (On, Nn) => (O, N). 

To check consistency of the limits in (3.2), observe that 

Ir = Q o k-l e+ qA 

= [ W o ~ e + w N ]  o X - l e + q A  = W o X e o ; ~ - * e + w N o ? C * e + q A  

= W + w [ - k A O ~ e ]  o X - l e + q A  = W - X w A  + q A  = W. (3.5) 

Finally, to verify the equality of distribution in (3.2), just change the time 
scale in (3.1): If W n = >  It, then ICon = >  lC and Ir n o c e = >  lr O ce, but Wen 
= c" 112 ir n o ce, so that indeed tr a= c- 1/2 W o ce. [] 

COROLLARY3.1 

If, in addition to the assumptions of  theorem 3, the limit processes It(t)  and 
Q(t) have no jumps at t = 1 w.p.1, then there is the ordinary CLT 

(Wn(1), Qn (1), An(1 ), N(1),  (OA)n (1), (WN)n(1), Rn(1 ), Sn (1)) 

= >  (W(1), Q(1), A (1), N(1), W(1), Q ( 1 ) , 0 , 0 ) i n  R s. 

Furthermore, the joint limit (A(1), W(1)) has a bivariate normal distribution with 
zero means and covariance matrix ~ if and only if (N(1), Q(1)) has a bivariate normal 
distribution with zero means and covariance matrix ~ where 

, and 

" 2  3 2 
0" 1 = ~ 0" 1 

= 

a 2 = k(q 2a  1 - 2 q 0 1 2  

(3.6) 
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in which case (A (1), W(1), N(1), Q(1)) has a multivariate normal distribution with 

Cov (A(1), N(1)) = - (X /x 1) Xo 2, 

2 + Coy (A(1), 0(1))  = (X /x 1) (q2oa - 2 q 0 1 2  

Coy (W(1), N(1)) = - (X m 1) Xo12, and 

Cov (W(1), Q(1)) = (X/' ,  1) (a~ - qo12) ,  (3.7) 

where X/x 1 = min{ X, 1}. 

Proof  

Apply the continuous mapping theorem with the projection map 7r I : D s _~ R s ,  

defined by 7r 1 ((x 1 . . . . .  XS ))  = (X 1 ( 1 ) ' . . . ,  x s (1)). [] 

COROLLARY 3.2 

Under the assumptions of theorem 3, there is convergence in probability: 

n - l A  P X -1 as n--> ~ ,  t - a N ( t )  v__> X as t -+  ~,  
n 

t 
n p [ P 

n -a ~" Wi -+ w as n -~oo ,  t -1 JQ(s) ds -+ q as t - * o o ,  

j = l  0 

N( t) An 

t -~ ~ Wj --, q as t --, ~ ,  n -1 Q(s)  ds --, w as n --, ~ ,  

j = l  0 

t - a R ( t )  P 0 as t ~ o o  and n - lSn  ~ 0 as n ~ o o .  

Remarks 

(3.1) The relations/a = X -a and q = Xw have been assumed in theorem 3. By 
the convergence-of-types theorem, ([3] ,  p. 253), no other translation constants can 
be used. 
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(3.2) Neither the almost-sure convergence in theorem 2 nor the weak con- 
vergence in theorem 3 and corollary 3.1 directly imply the other. Of course, theorem 2 
yields corollary 3.2 too. 

(3.3) As explained in [14], even though the FCLT statements are expressed in 
terms of weak convergence, both the statements and the proofs can be expressed in 
terms of limits for individual sample paths. Thus, the FCLT relations can be regarded 
as natural extensions of the sample-path analysis underlying sect. 2. 

(3.4) Despite the fact that (A k, lek) represents a discrete-time process while 
(N(t), Q(t)) represents a continuous-time process, there is a natural symmetry be- 
tween the two, as far as the asymptotic behavior is concerned. In particular, let f be 
the function mapping the basic parameter five-tuple (~-1, w, a~, o 2, a12) associated 
with the asymptotic behavior of (An, Wn)into the corresponding parameter five-tuple 
(k ,  q, o~, t ~ ,  t~12 ) associated with the asymptotic behavior of (N n, Qn)" From (3.6), 
it is easy to see that f is invertible and f -1  = f provided that 0 < h < oo; i.e. f o f i s  
the identity map. From (3.2) we see that this is also true for the function taking 
(~-1, w, A, tr into (~., q, N, Q). 

(3.5) Theorem 3 is an FCLT analog of  part of theorem 2. The corresponding 
w.p.1 statement is: Suppose that either limit (x) or limit (xi) in (2.8) holds. Also 
suppose that either limit (i) or limit (ii) holds. Then limit (viii) there holds if and 
only if limit (ix) holds. This statement is a corollary to theorem 2. Theorem 4 in 
sect. 4 is an FCLT analog to the rest of theorem 2. 

(3.6) As with classical CLTs, convergence in distribution may hold for the 
cumulative processes of  14/k and Q(t) with different normalization; e.g. they may 
converge to a stable law other than the normal distribution (as often occurs when the 
second moments are not  finite). Instead of  (3.1), we could have the random functions 

[[7 t 1 In/ t 1 W'(t)  = n -a  - = n W k wn and Q'n(t) n -~ Q(s) d s - q n  , (3.8) 
= 1  0 

where 0 < a < 2. Theorem 3 remains valid with (W' ,  Q'n) in (3.8) substituted for 
(ten, Qn) in (3.1), but  now the limit processes are related by Q(t) = l~(kt),  t />  0. 
The special case of a = 1 in (3.8) also can be used to establish the relation between 
the  FWLLNs (functional weak laws of large numbers) paralleling the relation be- 
tween t h e  CLTs in theorem 3. Then the limit processes W, A, N and Q are 
a l lO= 0 ( t )=O,  t~> 0. 

(3.7) If  we wish to keep the standard Skorohod J1 topology on D, then the 
condition P(N E C) = 1 (equivalently, P(A E C) = 1) in theorem 3 is necessary; see 
theorem 7.4 of  [14]. I f  we wish to treat limits N and A with discontinuous paths, 
then we can do so wi th the  Skorohod M 1 topology; see theorem 7.5 of  [14]. (Theorem 
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5.1(i) of [14] does extend to the M l topology, but to apply theorem 5.1(i) we need 
to have some control of the discontinuities in the limit processes, just as with the J 
topologies; the condition is just as specified for J1 in [14] .) 

4. Knock ing  out  the remainder  term 

Paralleling theorem 2, the mere existence of a weak convergence limit for one 
pair of processes, either (Nn, IOn) or (A n , Wn), is enough by itself to knock out the 
remainder terms R n and S n and yield the desired joint convergence in theorem 3. 
For this step we assume that the limit process W also has continuous paths, i.e. 
? ( W E  C)= 1. 

We now introduce the following additional random functions: 

I Dn(t) = n -1/2 [Dtnt] - X-Xnt], D~(t) = n -1/2 [D[nt] - ~.-lnt], 

On(t ) = n - l / 2 [ O ( n t ) -  Xnt], Wn(t) = n-1/2W[m], Qn(t ) = n-ll2Q(nt) (4.1) 

(WO)n(t) = n -x/2 W k - X w n  , (QD')n(t)=n-1/2 Q ( s ) d s - • l q n  
L.k=l 

fort~> 0. 

The random functions (4.1) and (3.1) together correspond to the different 
limits in (2.3). The following result is the FCLT-analog of theorem 2. As before, 
part (e) is of primary interest. It produces a statement of the FCLT refinement of 
L = X W that is nearly symmetric. 

THEOREM4 

(a) A n => A with P(A E C)= 1 if and on ly i fN  n --> N w i t h P ( N E  C) = 1, 
in which case (An, Nn) => (A, N), where A and N are related as in (3.2). Henceforth, 
assume that these limits hold. 

(b) The limits (an, Dn) => (A, A), (An, W-n) 7> (A, 0 ) and (An, Dn) 
= >  (A, A) are all equivalent, in which case (A n , Dn, Wn, Dn) => (A, A, 0 ,  A). 

(c) The limits (Nn, On) => (N, N)  and (Nn, ~)n)=> (N, e )a re  equivalent, 
in which case (N n , On, On) => (N, N,0)  in D 3 . 

(d) The limit (An, Dn) => (A, A) implies (An, Dn, Wn, Dn, Nn, On, On) 
=> (A, A, 0 ,  A, N, N, 6 ), but the limit (Nn, On) => (N, N) does not imply that 
Wn=> O. 
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(e) The limit (An, IOn) = >  (A, Ir with P(Ir E C) = 1 holds if and only 
if the limit (An, Dn, Qn) = >  (A, A, Q) holds with P(Q E c )  = 1, in which case 

V .  - -  ,' - -  t ( n, Dn, Wn, Dn, On, Qn,(WO)n,(QD)n)=>(V,A,  O,A,N,  O, Q, W ) i n D  is 
where V n and V are the processes in D s in theorem 3. 

Proof 

As noted in the proof  of theorem 3, (a) follows from section 7 of  [14]. For 
(b), limits for D n and ~n are equivalent because Wn = An-Dn" Since An(t)<<, Dn(t ) 
<~ D'(t) for all n and t, the limit for (A n, D') implies the others. The hard case, ob- 
taining the limit for D n from the limit for D n, is obtained from theorem 6.2(ii) of 
[14]. (The proof  there is not unlike the corresponding part of the proof  of theorem 2 
here.) For [14],  make the translation Xn(t ) = n-1/2D[nt] and c n = X-in 1/2. The 
joint convergence is obtained too because [14] is applied via the w.p.1 representation 
of  weak convergence; i.e. starting with the weak convergence (An, Dn) = >  (A, A), we 
apply the Skorohod representation theorem ([14],  p. 68) to obtain the w.p. 1 convergent 
version (An, Dn) ~ (A,= A)  from which we get (An, Dn, ( / 9 , ) )  ~ (A, A, A ) 
w.p.1 by applying theorem 6.2(ii) of  [14]. Since (A~n, D"n, (D~n")') is distributed as 
(An,Dn,Dn),(An,Dn,Dn)=> (A,A,A) .  

Part (c) is immediate since Qn = Nn - On" They key to part (d) is the fact 
that O(t) is sandwiched between the inverse processes of A n and D n . Let M(t) 

? 

= max { k t> 0: D~ < t }, t ~> 0, where we understand D O = 0 without having a Oth 
customer. It is easy to see that M(t) ~ O(t) <<. N(t) for all t. The FCLT for M(t) is 
obtained from the FCLT for ' " D k just as the FCLT for N(t) is obtained from the FCLT 
for Ak, from the inverse mapping in section 7 of  [14]. Since M(t)<~ O(t)<<, N(t) for 

t t all , (An, Nn, Dn, On) = >  (A, N, A, N)  and the more general joint convergence in 
(d) holds if (An, D') = >  (A, A). Example 1 in sect. 2 yields (Nn, On) = >  (N, N),  
where N = 0 without having W n = >  0. 

(e) Suppose that (An, Wn) = >  (A, W), where P(W E C) = 1. Then we have 
Ir n = >  0 by an application of the continuous mapping theorem with the maximum 

jump functional 

JT(x) = sup {Ix(t) -- x(t--)l} 
O ~ t < ~ T  

for any T, which is measurable on D and continuous at any x E C. By theorem 4.4 of 
[1], we have (An, tr ~n) = >  (A, W e, 0). By (a ) - (d) ,  we have 

( A n , N , D ,  Wn,D' , , , n,O,Q.n IOn)=> (A N,A,O A , N , O , W ) i n D  s. 
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We then add on the limits (lCN)n = >  Q for (lCN)n in (3.1) and (lr = >  Q for 
(Ir n in (4.1) by applying theorem 5.1(i) of [14], as in the proof of theorem 3. The 
final joint convergence in D is is obtained by applying theorem l(a) here and theorem 
4.1 of [11. 

Example 1 in sect. 2 shows that we can not obtain the desired joint convergence 
in D 15 starting with (An, Qn) = >  (A, Q). Since P(Q E C) = 1, we can apply the 
continuous mapping theorem again with the maximum jump functional in (4.3) to 
get On = >  O, but we do not get D n = >  A. However, if we start with (A n, Dn, On) 
= >  (A,A, O),thenweget (An,Nn,Dn,D n, W n, On, On,On) = >  (A,N,A,A,O, O,N,O) 
in D a from (a ) - (c )  and the maximum jump functional. We then get the rest. from 
theorem l(a). [] 

5. Statistical estimation 

We evaluate estimators here in terms of their asymptotic efficiency. For each 
j, let Q.i(t ) be an estimator for a parameter q based on data from the interval [0, t ] .  
We assume that Qj(t) obeys a CLT, i.e. t 1/2 (Q.](t) - q) = >  Qj in R at t --> ~ ,  where 
EQj = 0 and Var(Qj) = E(Q 2) = c~. Of course' usually the limiting random variable 
Qj will be normally distributed, but we do not require it. We call c~ the efficiency 
parameter of the estimator Qj(t). We say that one estimator of q, Ql(t) ,  is a more 

2 <  2 (asymptotically) efficient estimator than another, Q2(t), if c 1 c 2. 

Remark 

(5.1) When the limiting random variables Q1 and Q2 need not be normally distributed 
with mean zero, we might compare asymptotic efficiency by using a variability^partial 
ordering; see [11] and references therein. For example, we could say that Ql(t) is 
more efficient than Q2(t) if El(Q1 ) <~ El(Q2 ) for all convex real-valued functions f. 
This stronger partial ordering is equivalent to the above def'mition in the special case 
of normal random variables with mean zero. 

Now suppose that the parameter of  interest q is in fact the limiting time- 
average queue length in the general framework of sect. 2, obtained via (ix) in (2.3). 
(Similar results hold for w, but we only discuss q in detail; see remark 5.6.) The natural 
estimator of q is 

t 

Ql( t  ) = t-1 IO(s) ds. 
m e  

0 

However, we can also use L = ~ Ir to obtain other estimators for q. There are two 
important cases: (i) when the arrival rate ?~ is estimated, and (ii) when the arrival rate 
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is known and used directly. We might elect to estimate X even when X is known, or we 
might be forced to estimate )~ because it is unknown. For an open network of  queues, 
)~ is typically known when we estimate from simulation but not  when we estimate 
from system measurements. For a closed network of queues, )~ is typically unknown 
even when we estimate from simulation. 

When )~ is estimated, the standard estimator based on data from the interval 
[0, t] is /kl (t) = t ' lN(t) .  Alternative estimators of  X based on data from [0,t] are, 
for example, A2(t  ) = t -x O(t) and /k3( t )  = N(t)/AN(t). Obviously, all the estimators 
/~.(t) converge to X as t ~ ~ if the limits in (2.3) hold. 

Associated with each of  the two above cases are alternative estimators of  q 
using estimators of  w based on data over the interval [0, t] : 

(i) Q.ik(t) = fi, i(t)~Ck(t) and (ii) 0 k + , ( t ) =  ),lCk(t ) , (5.1) 

where fk/(t) is an estimator of  2, and l~k(t) is an estimator of w, both using data over 
the interval [0, t ] .  Standard estimators of w using data in [0, t] are 

N(t) O(t) 
Wl(t) = (N(t))-' Z IVk' Ir = (O(t))-* ~ IVk and 

k = l  k = l  

o(t) 
Ir = (N(t)l-a ~ IVk" 

k = l  

We might be forced to use W2(t) or W3(t) instead of  Ir because Wtr may not be 
observable before the customer departs. 

We call estimators of  the form (i) and (ii) in (5.1), respectively, direct esti- 
mators and indirect estimators of q via L = X IV. The CLTs provide a basis for com- 
paring the asymptotic efficiency of  the indirect and direct estimators in (5.1) with the 
natural estimator Q1 (t). 

FCLTs for these estimators and related ones follow from the FCLT for IVn or 
Qn in (3.1) and an FCLT for random sums, which is a variant of theorem 17.1 of  [1 ]. 
To state this result, let T n (t) and U n (t) be arbitrary random elements of  D and let 

Tn(t) = n -x T ( t ) ,  U ( t )  = n 1/2 [Un(t ) - 7] , 

(t) = n 1/2 U ( t )  [ ( T  (t)) -1 

Qn(t ) = nl/2 Un(t ) [ ( T ( t ) )  -1 

Tn(t) 
Z W k - w ] ,  

k = l  
Tn( t) 

a(s) ds -q] 

0 

and 

(5.2) 
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for t />  0. Let T n (t) be non-negative and nondecreasing and let 7 and r be positive 
constants. For the following result, I4' k and Q(s) need not be non-negative. 

LEMMA 1 

(a) If W n = >  W, Tn = >  re and U n = >  0, then lip n = >  liP= 7r  -1 (W o re). 

(b) If Qn => Q, Tn => re  and U n => O, then Qn = >  0 = 7T -1 (Q o 7e). 

Proof 

We only prove (a) because (b) is similar. By theorem 4.4 of [1], (Wn, Un, Tn) 
= >  (W, U, T) in D 3 . From the definition of IiJ n in (5.2), 

l~n (t ) = nl /27[(Tn( t ) ) -x  

Tn(t) Tn(t) 
7.  (Wk-w) ]  + Un(t)[(Tn(t))-~ ~ (Wk-w) ]  

k = l  k = l  

= ( T ( t ) )  -I 3" (W n o T ) ( t )  + (Tn(t))-I U ( t )  (W n o Tn)(t) ,  

so that O n => r -1 3,( I~ o re)  + r - 1 0 ( W  o re) = r -1 7(W o re). [] 

Remarks 

(5.2) If I41 is Brownian motion in lemma 1, then lip is distributed as 3'r- 1/2 W, 
and similarly for 1~. 

(5.3) In contrast to the limits for random sums in theorems 3 and 4, e.g. 
(ION)n, the random index Tn(t ) affects the limits lip and Q in lemma 1 only via the 
parameter r ;  i.e. the limits W and Q are unchanged if we let T n (t) be deterministic: 
T n (t) = rnt .  Correspondingly, in lemma 1 we only assume a functional weak law of 
large numbers (FWLLN) for T n (t) instead of an FCLT. 

Our next result shows that there is no advantage or disadvantage to direct 
estimation of q via (i) in (5.1) compared with the natural estimation by Ql(t)  as far 
as asymptotic efficiency is concerned when X is estimated. Let c~. k be the efficiency 
parameter associated with Q/k (t) in (5.1). Let Q~k be the associated random function 
in D, defined by 

Q ~ ( t )  = n 1/2 [Q/k(n t )  - q n t ] ,  t >~ O. (5.3) 
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THEOREM5 

If (An, Ifn) => (A, If) with P((A,  If) E C 2) = 1, so that the joint con- 
vergence in theorem 4(e) holds, then QTk = >  Q in D, so that Qjk(t) obeys a CLT 
with c2k = c~ for j = 1,2,  3 and k = 1,2,  3. 

Proof 

The CLTs follow from the associated FCLTs by applying the continuous 
mapping theorem with the projection map, as in corollary 3.1. The FCLTs in turn 
follow either directly from theorem 4 or by lemma 1. For example, the FCLTs associ- 
ated with {~ll(t) and {~22(t) in (5.1) correspond exactly to the FCLTs for (WN) n in 
(3.1) and (ifO)n in (4.1), respectively. The FCLT for Qlz(t)  follows from lemma 1 by 
letting Tn(t ) = O(nt) and Un(t ) = O(nt)/N(nt). Since ( O n , N n ) = >  (N, N ) b y  
virtue of theorem 4, Un(t ) = nUZ(U(nt) - 1) = Y n l ( t )  [On(t) - Nn(t) ] , so that 
U n "~> ~k -1 e ( N - N )  = O. [] 

The more interesting and difficult case is when ?, is known and is applied in 
the indirect estimation, so that we compare the direct efficiency parameter c 2 with the 
indirect efficiency parameters c~ § 1 associated with Ok + 1 (t) in (5.1) for k = 1,2,  3. 
The following theorem gives necessary and sufficient conditions for the indirect 
estimators of q to be more efficient than the direct estimator. The efficiency para- 
meters are easy to identify, but difficult to evaluate in detail because they involve a 
complicated covariance in a two-dimensional limit vector. Let Q~ + 1 be the random 
function 

An = IQ § 
Qk§ 1 (t) n 1/2 (nt) - qnt], t >10. (5.4) 

THEOREM6 

(a) If (A n, Ifn) = >  (A, W) with P((A,  If) E C 2) = 1, so that all the limits 
in theorem 4(e) hold, then Q~ + 1 = >  W o ?~e and Qk + l( t)  obeys a CLT with 
c~ § = Var (if(X)), k = 1,2,  3. 

(b) If, in addition, (A, W) is Brownian motion with zero drift and diffusion 
coefficient matrix N in (3.6), then 

2 (5.5) C2k+1 = kO22 = C12 + 2~,q012 _ kq2 01 

f o r k = l , 2 , 3 , s o t h a t c k + 2  1 < c ~ i f a n d ~ 1 7 6  
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Proof 

We consider only the case k = 1; the other cases can be treated similarly. 
For part (a), apply lemma 1 with Tn(t ) = N(nt)  and Un(t ) = 3' = X, so that 
Q~ = >  XX -1 (W o Xe) = W 0 Xe. For part (b) under the additional assumption, 
{ W(Xt), t / >  0 } is equal in distribution to { X 1/2 It(t), t />  0 }, so that Var (It(X)) 
= X Var (W(1)) = Xo~. [] 

The following corollary to theorem 6 extends the GI/G/s estimator com- 
parison in theorem 5 by Carson and Law [2]. We show that in considerable generality, 
it is more efficient to estimate q indirectly using known X and a direct estimator for w. 

COROLLARY6.1 

Suppose that (An, Wn) = >  (A, Ir with P((A, Ir E C 2) = 1 and 

a12 = lira Coy (An(l), W(1)). 
/,l ---~ oo 

If Cov (Wk, U]) ~< 0 for all ] and k, where U] = A ] - A ] _ I ,  then a12 ~< 0 and 
c~ + 1 ~< c~, so that the indirect estimators of  q are more efficient than the direct 
estimator. 

Proof 

Note that 

Coy (An(1), Wn(1)) = n - l  
n n 

k = l  j = l  

and apply theorem 6. [] 

Remarks 

(5.4) Given the convergence of (An(l) ,  IOn(l)), the covariance of the limit 
o12 is indeed the limit of the covariances as assumed in corollary 6.1 under appro- 
priate uniform integrability conditions ([1] ,  p. 32). It suffices for E(IAn(1)t 2 +8) 
and E(I lCn(1)l 2 + 8) to be uniformly bounded. By H61der's inequality, 

E(IAn(1) IOn(l)[ 1 + 8/2) < E(IAn(1)I2+8) 112 E([ Ir U2 . 
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(5.5) By essentially the same reasoning as in corollary 6.1, we can obtain a 
^ 2 sufficient condition for o12 ~ 0, which implies that c~ ~< c k + 1, so that the natural 

estimator of q is more efficient than the indirect estimator. Assuming that 

(~12 = lim C o v ( N ( 1 ) ,  Qn(1)),  
n - - r  

it suffices to have Cov (N(t2) - N(tl) , Q(t)) <~ 0 for all t and all t 1 < /2" However, 
it seems that o12 ~< 0 is much more likely than a12 ~< 0 in actual applications. 

(5.6) Results paralleling theorems 5 and 6 hold for estimators of w based on 
data over the interval [0, An] or one of the related intervals [0, Dn] and [0, D ' ] .  
The direct estimator for w is obviously n - 1  ~ =  1 lYk" An indirect estimator of w 
paralleling 011 (t) in (5.1) is 

n - 1  

A n A n 

J Q(s)ds = (n-lAn)(An)-I J Q(s) ds. 

0 0 

As in theorem 5, there is no advantage or disadvantage to using Little's law in the esti- 
mation of  w when X or X- 1 is to be estimated too. In the setting of theorem 6(a), the 
indirect estimators of  w have efficiency parameters Var (Q(X -x)). In the setting of 
theorem 6(b) with X known, the direct estimator has efficiency parameter 022 , while 
the indirect estimator has efficiency parameter X -1 a~ = (02 -2qo12 + q2 o~), so that 
the natural estimator of w is more efficient than the indirect estimator if and only if 
the indirect estimator of  q is more efficient than the natural estimator, i.e. if and only 
if qo 2 -2o12 > 0. The issue is simply whether or not  the known value of X should be 
used if it is available. 

6. Functional laws o f  t he  i n t e g r a t e d  logarithm 

The functional-limit-theorem setting is convenient because virtually identical 
arguments yield FSLLNs, FWLLNs and FLILs as well as FCLTs. We mentioned 
FWLLNs in remark (3.6). We have not  discussed FSLLNs because they are equivalent 
to ordinary SLLNs. Now we briefly discuss FLILs. 

The FLILs involve the random functions in (3.1) and (4.1) with a different normal- 
ization; we multiply by ~b(n) instead of  n-  I/2, where usually ~(n) = (2ri log log n)- 1/2, 
e.g. 

[nt]. tl 
w ( t )  = r  Z wk - w ,  , t t> o .  (6.1) 

k = l  
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We say that W n in (6.1) obeys an FLIL and write W n x/--> Kre ifw.p.1 the se- 
quence { Ir n : n />  3 } is relatively compact in D (if every subsequence has a convergent 
subsubsequence) and the set of  all limit points is the compact set K W . The specific 
structure of the compact limit sets is not of  major concern here, but we describe what 
usually occurs. Let I- I be the Euclidean norm in R k. When we consider the product 
space D k, we identify it with the space D [0, oo) in which the functions take values in 
R k. The standard compact limit sets in D k are the sets of all R'k-valued functions 
{x(t): t ~> 0} that are absolutely continuous with respect to Lebesgue measure with 
derivative x'( t )  satisfying fo~176 i 2 d t ~< ~i; see Strassen [12]. (A different compact 
limit set is defined and used by Wichura [15] .) These limit sets are convex as well as 
compact. Compactness in one of  the Skorohod topologies on D k reduces to com- 
pactness with the topology of  uniform convergence on compact subsets because all 
the functions are continuous. 

With this framework, theorems 3 and 4 here have obvious FLIL analogs by 
virtually identical proofs. We replace weak convergence W n = >  Ir by the relative 
compactness rr n x/--> Kre defined above and we use the normalization by q~(n) as in 
(6.1). For the analog of theorem 3 (theorem 4), we assume that the compact limit set 
K A (KAI e ) contains only continuous functions. We only state the analog of theorem 
4(e). 

THEOREM7 

Let the random functions be defined in (3.1) and (4.1)with the normalization 
by r If (An, Wn) ~ (K A re)in D 2 , where (K A re) C__ C 2 w.p.1, then 

(Vn, O ,  P.., (WO)., (O."')n) (KV, A,O,a,N, O,Q, re) in D 

Just as the limit process (A, W) in theorems 3 and 4 in general has a compli- 
cated joint distribution, so the compact limit set KAI e has a form not determinable 
by the marginal compact limit sets K A and K w separately. Even if the original se- 
quences { A n } and { W n } were independent, the compact limit set K A re associated with 
the FLIL would usually not be the product set K A • Kre. The separate sets K A and 
Kre are of course identifiable as projections of  the limit set K A r  e . 

Just as with the FCLTs, the FLIL-analogs of  theorems 3 and 4 establish that the 
limit sets are essentially two-dimensional. For example, the limit set (Kre 0 A N IV 0 0 o) 
m D for the FLIL version of theorem 3 is to be snterpreted as the two-dimensional 
subset { w, q, a, n, w, q, O, O) : (w, a) E (KreA ) } , where q(t) = w ( X t ) - q a ( X t ) ,  
n(t) = - Xa(Xt) and O(t) = 0 for all t t> 0. This arises because essentially we have a 
continuous mapping. We thus obtain interesting ordinary LILs in R k that are more 
descriptive than what is provided by the ordinary LILs directly. 
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COROLLARY 7.1 

Under the assumptions of theorem 7, 

A [x,,l j n) r  [Xn] - n, ~ W., - Xwn, g ( n ) -  Xn, Q(s) ds - q ~ Ka WNO 
] = 1  0 

in R 4 , 

where 

KAWNQ = { x e R  4" ( x 1 , x 2 ) e  ~I(KAw) ,  x 3 =--XX 1 and x 4 = x 2 - q x l }  

with r~ 1 "D 2 ~ R 2 the projection map, defined by 71" 1 ( X )  = X (1). 

Proof 

Apply theorem 7 to get (An, Wn, Nn, Qn) ~ KA ICNQ ill D 4 and then the 
continuous map f :D  4 ~ R 4 defined by f ( x )  = (xl(X), x2(X ), xa(1), x4(1)) for 
X = (Xl, X2, X3, X 4 ) E  D 4. 
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