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ABSTRACT 

The likelihood ratio method for gradient estimation is brief- 

ly surveyed. Two applications settings are described, namely 

Monte Carlo optimization and statistical analysis of complex 

stochastic systems. Steady-state gradient estimation is empha- 

sized, and both regenerative and non-regenerative approaches 

are given. The paper also indicates how these methods apply 

to general discrete-event simulations; the idea is to view such 

systems as general state space Markov chains. 

1. INTRODUCTION 

Consider a single-server queue in which the service rate B is 

a decision variable. Given that o(0) is the steady-state cost of 

running the queue at parameter level 8, one is frequently inter- 

ested in minimizing a(e) over a suitable constraint set. Since a(.) 

is often difficult to evaluate analytically, Monte Carlo optimiza- 

tion is an attractive methodology. By analogy with determinis- 

tic mathematical programming, efficient Monte Carlo gradient 

estimation is typically an important ingredient of simulation 

based optimization algorithms. As a consequence, gradient es- 

timation has recently attracted considerable attention in the 

simulation community. It is our goal, in this paper, to describe 

one such method for estimating gradients in the Monte Carlo 

setting, namely the likelihood ratio method. 

In Section 2, we describe two important problems which 

motivate our study of efficient gradient estimation algorithms. 

Section 3 is devoted to the derivation of the likelihood ratio gra- 

dient estimate for transient estimation problems in a discrete- 

time Markov chain setting. Section 4 extends the methodol- 

ogy to steady-state gradient estimation by using regenerative 

structure; in Section 5, a technique for non-regenerative sys- 

tems is explored. Section 6 describes the specialization of these 

techniques to the Markov chains associated with discrete-event 

simulations, while Section 7 states some conclusions. 

2. EFFICIENT GRADIENT ESTIMATION: MOTI- 
VATING APPLICATIONS 

As indicated in the Introduction, one motivation for study- 

ing Monte Carlo gradient estimation is for the purpose of opti- 

mizing complex stochastic systems. More precisely, consider a 

stochastic system depending on d decision variables el, &, . . , Bd, 

Let a(S) (0 = (B1,, . . , @d)) be the expected “cost” of running the 

system at parameter choice e. 

A powerful method for computing the value 8’ which min- 

imizes a(.) is the Robbins-Monro algorithm. This technique 

recognizes t,hat, under suitable regularity on a(.), e* must be a 

e-root of the equation 

va(e) = 0, (2.1) 

where va(e) is the gradient of IX(.) evaluated at e. The idea then 

is to construct a stochastic recursion which has the root 8’ as 

its limit point. 

This approach is most clearly illustrated when d = 1. In this 

case, such a recursion is given by 

e 
a 

n+l = 0, - ,v,+~ (2.21 

(U z O) where the V,,‘s mimic a’(.) in expecta.tion. More precisely, 

one is required to compute V,,‘s with the property that 

E{K,+1l~,ch..., v,,e=) = d(k) a.s. (2.3) 

Under appropriate additional hypotheses, it then follows that 

there exists finite g such that 

em -+ 8’ a.~. a.3 n 4 00 . 

d/2(8, - e’) =k- oN(O,l) 
(2.4) 

where N(o, 1) is a standard normal r.v. The key result in (2.4) 

is the central limit theorem which asserts that 8, converges to 

8’ at rate O,(n-i/2). (A stochastic sequence {H,, : n 10) is said 

to be O,(a,) if {a;‘H,, : n 2 0) is tight.) Since a convergence 

rate O,(n-‘p) is typically the best that one can expect of a 

Monte Carlo algorithm (because of central limit effects), this 

suggests that recursive algorithms of the form (2.2) should lead 
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to reasonably efficient procedures for calculating 6*. Of course, 

the critical component of such an algorithm is the sequence of 

gradient estimates (derivative estimates when d = 1) {V,, : n 2 0) 

appearing in (2.3). Thus, efficient stochastic optimization is 

one setting which requires gradient estimation. 

A second problem context which leads naturally to gradi- 

ent estimation is statistical estimation for complex stochastic 

systems. As an example, consider a single-server infinite ca- 

pacity queue in which the inter-arrival distribution F, and ser- 

vice distribution F. are unknown. Suppose that one is given 

data X1, X2,. . . , X, for the inter-arrival times and observations 

Y1,. , , Y, for the service times, with the goal of estimating the 

steady-state queue-length a. The parameter CI may then be 

regarded as a function of the inter-arrival and service time dis- 

tributions i.e. a = a(&, F.). If F; and F,’ are respectively the 

“true” inter-arrival and service time distributions, our goal here 

is to estimate a’ = a(Fa,F:) from the data. 

Assume that F,‘,F,’ are elements of one parameter fam- 

ilies of distributions {Fa(B1)}, {Fa(Bz)}, respectively, such that 

F,’ = F,(Bi), F,’ = F.(B;). We can then reduce the problem of 

estimating a* to that of determining a(s;,ti;), when B(B,,B,) = 

a(F,(B1), F,(&)). For example, if Fa(B1) and F.(e,) are both expo- 

nential, the resulting system is an M/M/l queue with (B can 

be calculated analytically here) 

On the other hand, if Fa[.) and F,(,) are uniform on l0,6,] and 

(o,&] respectively, & is not available in closed form, and Monte 

Carlo evaluation may be necessary. 

The natural estimate for a* is 8 = h(s^,,&), where s^, is an 

estimate for 6; calculated from X1,. .,X, and s^, is an estimate 

for e; derived from YL,. ,Y,; g(.) is a Monte Carlo estimate of 

8(.). To calculate the error in & as an estimate of a*, note that 

(2.5) 

The first term on the right-hand side of (2.5) is error incurred 

from the Monte Carlo estimation of b(B^,,&); the second term, 

which is (conditionally) independent of the first, reflects the 

intrinsic error in o* due to uncertainty in the data sets. The 

error in the first term can be estimated from conventional out- 

put analysis procedures. For the second, note that if a(.) is 

differentiable, then 

a(&, Q - cqs;, 8;) ij; V&(B’)(B^ - 8’). 

Likelihood Ratio Gradient Estimation: An Overview 

Typically, the vector s^- 8’ will be a mean zero multivariate 

normal, with a covariance matrix that can be easily estimated 

from the data sets. (This occurs, for example, if the h’s are 

maximum likelihood estimators for the 8;‘s.) To calculate the 

distribution of the second term, it therefore remains to compute 

V&(P) or, more precisely, its estimator V&(g). For analytically 

intractable models (such as the single-server infinite capacity 

queue with uniform inter-arrival and service time distributions), 

this entails calculating a gradient via Monte Carlo simulation. 

The situation described above in the single-server queueing 

context is typical of many statistical problems that arise in the 

analysis of complex stochastic systems. To fully resolve the 

statistical error then generally requires Monte Carlo estimation 

of an appropriate gradient. 

3. DERIVATION OF LIKELIHOOD RATIOS FOR 
MARKOY CHAINS 

In this section, we derive likelihood ratio gradient estima- 

tors for discrete-time Markov chains. Our view is that discrete- 

event simulations can be characterized probabilistically as 

discrete-time Markov chains. In particular, suppose that one 

views the “state” as incorporating all that information about 

the discrete-event system which needs to be computationally 

updated on every transition of the process (e.g. event list, clock 

times, and physical state). Thus, one can view a computer pro- 

gram for a discrete-event simulation as an implementation of 

the recursion 

X n+1= L(L,rln+1) (3.4 

where X, is the “state” of the system at the n’th transition, and 

v,+~ is a vector incorporating all new random variables which 

need to be computed in order to calculate X,,+1 from x,,. The 

mappings f,, are complicated functions which are rarely consid- 

ered explicitly by the simulator, but which are mathematical 

representations of the computational algorithm used to obtain 

X,,+1 from X,, and v,,+~. We will return to this point in Section 

6 when we consider generalized semi-Markov processes. In any 

case, any sequence (X,, : n 2 0} satisfying (3.1) is Markov, since 

P{X,,I s. IX~,...,X,,} = ~(f,(x,.,~n+~)~~ IX,) = Qn(Xn,.) 

where Q,,(z, .) = P{~,,(z, T,,+,)E.}. The above equality follows from 

the fact that the new r.v.‘s which are generated at the (n + l)‘st 

transition are independent of everything previously generated. 

In most discrete-event simulations, the transition mechanism is 

time-homogeneous, so that f,, = f and rl,+lEq; the Markov chain 
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{Xi : n 2 O) is then itself time-homogeneous so that Q,, z Q. 

Note that for m.ost discrete-event systems, the Markov 

chain X = (X,, : n 2 0) defined by (3.1) has both a complicated 

state space and complex transition rule. To simplify our ex- 

position here, we therefore start by considering likelihood ratio 

gradient estimates for discrete state space Markov chains. For 

each e in some open set, suppose that ~(8) is the transition ma- 

trix associated with the choice B of the parameter value. We 

further assume that a cost g(l,&,. . ,i,,) is incurred when the 

sample sequence (X0,. . , X,) takes on the values (iO,. . ,i,,). In 

this case, the expected “cost” of running the chain X at param- 

eter value B takes the form 

a(R) = Eeg(R, Xo,. . . ,-L) (3.2) 

where EB(.) reflects the fact that the probabilistic dynamics of 

X are governed by P(0). 

If EB(.) were independent of 8, our solution to the Monte 

Carlo gradient estimation problem would be trivial, namely to 

simulate i.i.d. replicates of the random vector Vg(B,Xa, . . ,X,,). 

The trick is therefore to transform (3.2) into a representation 

where the expectation operator & independent of R. To accom- 

plish this, observe that 

n--l 
a(@) = C s@,kb.. ,k)r(Q,G) fl P(e,ik,ik+~) 

io,...,i, k=0 
n-1 

= 2 g(8,io,. . ,i*)L(B, io,. . ,i,)p(Bo,io) n P(60, i*,i,k+J 
io.....,,, kc0 

(3.3) 

where 

fore obtains that VU(~) = Es,,VG(S). Specifically, one has the 

relatilon 

where 

and 

Thus, by simulating X0,. . , X, under initial distribution p(e,) 

and transition matrix P(&,), we can calculate a;(#)/a& and there- 

by estimate V~Z(B). Observe that the estimator VG(e)/Ni con- 

tains the product terms 

We claim that the choice &, = 0’ is particularly convenient 

for evaluating VCX(O’). In this case, L,,(8’) = 1 so that the com- 

putation involved in calculating the estimator V;(P) is reduced. 

Furthermore, for large n, this choice substantially reduces the 

variance of V;(P). To see this, note that &,L,(B’) = 1, so that 

vare,L,(B’) = Eo,L2,(8’) - 1. 

(3.4) Assuming tha.t P(&) is positive recurrent with stationary prob- 

abilities x(e0), 
We assume here implicitly (as throughout this paper) that ap- 

propriate positivity conditions are in force so as to guarantee 

that no divisions by zero occur in (3.4). 

Returning to (3.4), we can easily verify that 

(3.5) 

where 

we) = L,(e,xo ,..., x4. 

The crucial point in (3.5) is that the expectation operator ap- 

pearing on the right-hand side is independent of 8. One there- so that, by Jensen’s inequality, 
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for n sufficiently large. Since J!&L~(B’) 2 (.?&,J~,(B’))~ = 1, it fol- 

lows that (O 2 o (with strict inequality holding when L,(B’) is 

non-deterministic). We conclude that if 00 # B’, the variance of 

L,(V) generally grows exponentially fast in n. One would expect 

this exponential growth to significantly impact the variance of 

V;(P) for large IZ. 

We turn now to the generalization of this approach to 

Markov chains having a general state space; this generaliza- 

tion is necessary in order to apply this methodology to Markov 

chains of the type arising in discrete-event simulation. The ana- 

log of the initial distribution vector ~(8) is an initial probability 

distribution 

whereas the transition matrix P(B) is replaced by the transition 

kernel 

We require that G(e), P(B) have densities, in the sense that 

~(8, A) = J 48, YMdy) A 
J 

(3.6) 
P(8, z, A) = p(@,=, Y)p(z,dY), 

A 

for some (u-finite) measures F,P(z;). It is easily verified that 

a(@) = &s(S,Xo, . . I Xn) 

=E~~s(~,x~,...,x~)L,(~) 

where 

and EB(.) is the expectation operator corresponding to the 

probability measure Pe(Xosdzo, ,X,,Edz,} = ~(0, dzo). 

n;;A P(B,z~,~Q+~). As in the discrete state space case, choos- 

ing BO = 6’ makes sense in evaluating Vn(O’) via Monte Carlo 

simulation. In this case, we obtain v~(o’) = &,VPj(B’), where 

GE(#) = h(B’, x,)/as; u(8, x,) (3.3) 

Thus, under the density hypothesis (3.6), it is straightfor- 

ward to calculate an unbiased estimator for Vn(0’): 

1. Generate X0,. ,X, under p(F) and P(P). 

2. Calculate the r.v.‘s ajr(e)pei and aL,(s’)/asi from (3.6) 

and (3.7) and the sample path X0,. ,X,, generated in 

By replicating steps 1 and 2, one can easily construct an es- 

timator (just use the sample mean) which converges to vn(e’) 
at rate 0,(t-1/2) (use the multivariate central limit theorem) in 

the computational effort t. We have therefore obtained a gradi- 

ent estimator which converges at the best possible Monte Carlo 

convergence rate, namely OP(t-‘/2). 

Variants of the gradient estimator algorithm described 

above have been analyzed in Glynn (1986a), Reiman and Weiss 

(1986), and Rubinstein (1986). 

4. STEADY-STATE GRADIENT ESTIMATORS: 
REGENERATIVE ANALYSIS 

The method outlined in Section 3 was valid for cost func- 

tionals g(e, X0,. . , X,,) which depend on the chain X up to a de- 

terministic finite time horizon n. In fact, the method is equally 

valid for functionals g(ti, x,, . , xT) depending on the chain up 

to a stopping time T. To be precise, suppose that 

a(B) = Eeg(8, x0,. , XT), 

where Ee(.) is the expectation on the path-space of X = {X, : 

n 2 0} corresponding to initial distribution ~(8) and transition 

kernel P(B). Then, Va(O’) = &Vy(O’) where 

+ s(S’, x0,. I XT) 
&(B’, X”)/cwi =--l ap(e’,Xj,Xj+l)/a8i 

48’2 X0) +c 
j=O P(~'~XisXj+l) 

(4.1) 

An alternative estimator can be developed when g(S, XO, . . , XT) 

is an additive functional of the form 

g(e, x0,. ,x,1 = 2 v,x,). 

g(8) = gv, x0,. . . ,X) + 9(@‘,Xo,. ..xn)-&&(B’) 

jzo 

(3.7) , , In this case, we can use the fact that 

(4.2) 

and 
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so that 

Ee 
4 

w, xj,Xj+l)la@i 
P(o’,Xj, Xj+l) 

/X03.. . , Xj] = 0. (4.3) 

By conditioning in (4.1) and using relations (4.2) and (4.3), we 

find that 

where 

A(h, 8’) = 2 Lh(8’,Xj) + 5 h(B’,Xj) 
j=. ah j=O 

(4.4) 

(4.5) 

Relations (4.3) and (4.5) will prove useful in our regenerative 

analysis of steady-state gradient estimation. 

Consider a family of transition kernels ~(0) having unique 

stationary distributions r(e), and suppose that we wish to cal- 

culate the gradient of 

a(B) = I *(8, dz)h(B, 2). 

Of course, o(0) may generally be regarded as the expected cost, 

under PO(.), of the functional 

g(O,Xo,. .) = hyizf i ne h(8, X,). 
k=O 

Note that 

when 

We can try to approximate VU(C) via E,tVjl,(P), where 

n--l ap(sl,xj,Xj+,)lae; 
(4.6) 

+c 
3 =o P(@‘, Xi, X,+1) 

The first sum in (4.6) satisfies a strong law, and therefore 

converges. The second quantity on the right-hand side is a 

product of two factors, the first of which satisfies a strong law 

with limit n(V). The second factor, which involves a sum of 

terms of the form $(8’, Xi, Xi+l)/p(@‘, Xi, Xj+>), can be analyzed 

via the central limit theorem (use (4.3))) yielding 

n-- If2 ~-l ap(tY X, Xj+~)/i%i 
c ----L-c- =+ uN(0, 1) 
j=o P(O’a Xjvxj+l) 

(4.7) 

for some constant c. By squaring both sides of (4.7) and taking 

expectations, we find that 

*--l “argl 
i 

c 
ap(~‘,xj,xj+~)lW 

I 
- &a, 

j=o P(o’, xj9xj+l) 

This suggests that 

as n --f 03. We conclude that we can expect the variance of 

a&,(s')/a& to increase linearly with r~. Thus, in trying to ap- 

proximate a steady-state gradient, the approximants become 

increasingly less stable. This conclusion, which was previously 

observed by Reiman and Weiss (1986), leads one to look for 

alternative approaches. 

One way to do this is to assume that the sequence X = 

{X, : n 1 0} possesses readily identifiabie regenerative structure. 

In this case, assuming that p is a regenerative initial condition 

with T its associated regeneration time, the ratio formula of 

regenerative analysis shows that 

Then 

= &Ea c ~(6, Xr),'EeT 
k=O 

g,(s,Xo ,...I X,-l) = $&+‘,X.d 
k=O 
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where W(S, Z) = h(6, Z) - or(P). It remains to evaluate the above 

partial derivative in terms of a quantity amenable to Monte 

Carlo estimation. 

By applying (4.1), we find that 

&&%6,X*) = y &h(B',XJ 

k=0 j=O 

Hence, Va(S’) can be estimated by using the following algo- 

rithm. 

ALGORITHM A: 

1. Choose a sample size n 2 1, where n corresponds to the 

number of regenerative cycles to be simulated. 

2. Generate a sample path X,,, . , XT-, (i.e. generate X over a 

regenerative cycle) under P(B’). 

3. Calculate the quantities: 

QII = T 
T-1 

QIZ = C h(fl’t Xj) 
i=o 

4. Replicate steps 2 and 3 n times, thereby obtaining Qij,l < 

i<n,ISj<5. 

5. Calculate 

where Q;(n) = CT=, Q+/n(l _< i < 5); this estimator converges 

to aa(6')/aoi a.5 n+ oo. 

A second regenerative estimator for Va(O’) uses (4.3) and (4.5). 

It is easily shown that 

-&“(@I I 
1 

= - .& 
EesT 1 

+ &EB, y a,(,,, Xi). ,=. ak 
(4.8) 

This gives rise to a second algorithm for estimating Vol(B’). 

ALGORITHM B: 

1. 

2. 

3. 

4. 

5. 

Choose a sample size n > I, where n corresponds to the 

number of regenerative cycles to be simulated. 

Generate a sample path X,, . . . , XT-, (i.e. generate X over a 

regenerative cycle) under ~(8’) 

Calculate the quantities: 

RI, = T 
T--l 

Rn = c h(@, Xj) 
j=o 
T--l 

1213 = C ah(O’,.Xj) 
j=. at+ 

T--2 app,x,,xj+,)/ae, RN = c 
j=o P(B’,x~,xj+l) 

.(T-1-j) 

T-' ap(v,xi, x,+,)/asi *--l 
R15 = c c h(@,Xt) 

;=o de', Xj, xj+l) !=;+I 

Replicate steps 2 and 3 n times, thereby obtaining Rij,l 5 

i 5 11, 1 _< j _< 5. 

Calculate 

R,(n) R,(n) h(n) a(n) 
aGs2(e’) = Bl(n) + Rl(n) - Rl(n) R,(n) 

where R(n) = CyEt=, Rji/n(l _< i 5 5); this estimator converges to 

&2(B’)/iwi as n -t co. 

It is easily verified, via standard arguments, that the estima- 

tors described in Algorithms A and B converge at rate 0,(t-1/2) 

in the computational effort t. 

5. NON-REGENERATIVE STEADY-STATE GRA- 
DIENT ESTIMATORS 

we turn now to the case where the sequence X = {X,, : n 2 0) 

exhibits no obvious regenerative structure. The regenerative 

results of Section 4 actually provide the key to the analysis. 

Turning to (4.8), we note that the second sum can be ex- 

pressed as a steady-state expectation i.e. 

-&EB’ =c +,h(C xi) = 
j=O ’ 

where &W is the expectation on the path-space of X associated 

with transition kernel P(P) and initial distribution ~(0’). For 

the first term, a more intricate analysis is necessary. 

Let rkX = (Xk,Xk+l,...). For a function f defined on the 

infinite product space, an easy extension of the regenerative 

ratio formula proves that 
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&Ep Tg j(riX) = &f(X) 
j=o 

Applying this formula to 

we obtain the relation 

Let r,, I’,, . be t,he successive regeneration times for X. By the 

ratio formula for regenerative processes 

and hence 

T*+,--1 
&, jg {h(V,Xj) - 40) = O. 

By the independence of regenerative cycles, we get 

Let n - CO and we obtain 

((4.3) was used in the last equatity). The important point is 

that expression (5.1), while derived from a regenerative argu- 

ment, is independent of regenerative structure. 

The same expression can be found via a totally different 

argument. Recall that the stationary distribution ~(0) satisfies 

?r(S, .) = I P(~,=,~)d@,4, (5.21 
s 

where s is the state space of X. Then, it is reasonable to azisume 

that I=(.) can be expanded as 

P(e’ + hei) = P(O’:I + hQ;(O’) + o(h) (5.3) 

\vhere e, is the i’th unit vector. If n(P+ hei) is (formallY) differ- 

entiable at h = 0, there exists a measure ~(0’) such that 

~(0’ -t he<) = ~(6’) + hq,(O’) f o(h). (5.4) 

Plugging (5.4) and (5.3) into the stationarity equation (5.2) 

and collecting terms in h yields 

rli(J’, .) - 
I 

%(S’,dZ)P(@‘,Z,~) 
s 

= 
I 

r(B’, ds)Qi(B’, z, .). 
s 

In operator form, this can be written as 

s;(S’)(I - P(P)) = +qQi(6’). (5.5) 

We wish to solve for a(~‘). Let ~(P,z,.) = r(~,.) for all ES. 

Observe that (5.4) implies that, q,{P, S) = o (just divide by h and 

let h -+ o), and hence 

/ 
Q(8’, dz)rr(B’, z, .) = 0. (5.61 s 

Substituting (5.6) into (5.5) provides 

qi(O’)(I - P(v) + II&“)) = +')Qi(O'). 

Now, for many Markov chains (in particular, aperiodic positive 

recurrent Harris chains), P(P,z,.) - ~(6’,.) for all Z&S, and it 

therefore makes sense to assume that 

(I -- P(P) +rI(s’))-1 = I + T(P”(8’) - II(P)) 
CZl 

exists. (Just use the identity Pi = II(P) = II(B’) 

Thus, 

vi(6’) = 2 +')Q;(B')f-'"(@') (5.7) 
k=0 

(use (5.6) again). Recall that 
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hgy’) x4 ?r(B’ + he;)h(8’+ hei) - T(f?‘)h(#) 
* 

a hqi(e’)h(s’) f x(o’)$h(8’)h 
(5.8) 

(Expand and collect terms in h again.) Substituting (5.7) into 

(5.8), we get 

We now identify Q;(0’, I, dy) in our current framework. Note that 

(see(3.5)) 

P(0’ + he;,z,A) = P(B’,z,A) + h 

SO 

Substituting into (5.9) yields (5.1). Formula (5.1) is the funda- 

mental relation for non-regenerative stochastic systems. Notice 

that the first term on the right-hand side of (5.1) can be con- 

sistently estimated via 

Likelihood Ratio Gradient Estimation: An Overview 

the infinite sum (5.1). This approach appeared previously in 

Glynn (1986b). 

6. LIKELIHOOD RATIO GRADIENT ESTIMA- 
TION FOR DISCRETE-EVENT SIMULATIONS 

As indicated in Section 3, discrete-event simulations can be 

viewed as Markov chains living on a general state space. To 

be precise, discrete-event simulations can be viewed mathemat- 

ically as a “generalized semi-Markov process’ (GSMP). Such a 

process is characterized by: 

S: a “physical” state space which is countable (e.g. S 

might be the set of all possible queue-length vectors for 

a queueing simulation). 

E: a set of events to be scheduled (e.g. for each station 

in a closed queueing network, one needs to schedule an 

“end of service” event). 

PCS’, 5, e): the probability of jumping from s to 2, given 

that event e triggers the transition from 9 (e.g. c might 

correspond to station i completing service, in which case 

~(3’; s, e) might represent the probability of sending a cus- 

tomer from station i to station j; here S> = s - ei + ei). 

r.,: the rate at which clock e runs down to zero in state 

3 (e.g. in a queueing network, rbe might be unity except 

for events e which are “interrupted” in state s, in which 

case rae = 0). 

whereas the j’th term in the infinite sum appearing there can 

be estimated by using 

(5.11) 

(5.12) 

F(.; s’,e’, ,,e): the probability distribution which sched- 

ules event e’ in state 9’ , given that the previous state 

was s and the transition was triggered by e (e.g. these 

might be service time distributions in a closed queueing 

network) _ 

A standard device for estimating the entire infinite sum is to 

use an estimator which combines (5.11) and (5.12), namely to 

use 

In calculating gradients, we allow ~(9’; .T, C) and F(.; s’, e’, S, e) to de- 

pend on the decision parameter B; the likelihood ratio method is 

generally inapplicable to problems in which S, E, or r., depends 

on 6. We further require that E‘(B; .;s’, e’, S, e) have a density for 

which the support is independent of 8, so that 

F(0, dz; a’, 2, a,c) = f(#, z; s’, e’, s, e)p(dz) 

where e(n) is keyed to the sample size n in such a way that 

L(n) 4 co with e(n)/n -t O. The particular choice of e(n) effects 

a compromise between bias and variance effects in estimating 

where {Z : f(e, Z; s’, cl,.,,) > 0} is independent of 8. (This is the 

analogue of the positivity condition discussed in Section 3.) 

This density hypothesis rules out point mass distributions in 

which % controls the location of the points; the independent 

support condition does not permit uniform distributions with 

support on 10, e). 
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To make a discrete-event simulation Markov, we consider 

the state of the simulation at transition epochs. Specifically, 

set X,, = (s,,c,)I, where s,, is the “physical” state occupied at 

transition VJ and C, ‘is the state of the “clocks” on the event 

scheduling list at the n’th transition. Then, {X,, : n L 0) is 

a Markov chain with a complicated state space (inclusion of 

the clocks makes the state space uncountable). To study the 

ergodic behavior of a GSMP {Y(t) : t 2 0}, note that 

for t large, where C; is the time spent in the k’th state visited, 

and N(t) is the number of transitions by time t. (Note that C; 

is a simple function of c,, namely the minimal value of c&~/Q~,~ 

taken over all clocks c.) If the GSMP is well behaved, we can 

expect that 

1 t 
to J a(Y(s))ds -t &a(S,)C;/&C, P,.a.s. 

as t + co. The objective of calculating steady-state gradients 

for GSMP’s therefore reduces to estimating the gradients of 

&so(SO)C; and &C;. This can be done by the methods of Sec- 

tions 4 and 5 (apply to h(Xk) = a(&)~; and h(~~) = CL). It 

remains only to identify the analogue of 

~P(e’,Xr,Xj+l)lP(~f,X,,X,+lJ (6.1) 

for this particular class of Markov chains in which Xj = (sj, C,). 

Note that under parameter 0, Xj+l = (S,,,, Cj+r) is obtained 

from X, = (.s~, c~) by: 

a.) making a state transition from pi to s,+~ with a proba- 

bility ~(0,s. , +I; Sj, e;), where e; is the event that triggered 

the transition from s;. 

b.) certain clocks belonging to the (random) set Oj+l con- 

tinue to be scheduled in S,,, and run down determinis- 

tically there. 

c.) the remaining events er~~+~ active in Sj+l are scheduled 

according to the distributions F(B,.;Sj+l,e,Sj, ei), and set 

to new values CT;+,,,. 

The analogue of (6.1) can be easily verified to be 

P.W.Glynn 

a 1 -$l(B’, sj+1; s,, e;) )----- 
P(B ,s,+l;s,,e;) 

The algorithm discussed in Sections 4 and 5 can then be ap- 

plied to general ‘discrete-event simulations, by substituting (6.2) 

appropriately. 

7. CONCLUSION 

We have shown that gradient estimation plays an important 

role in the optimization of stochastic systems, as well as in 

their statistical analysis. The likelihood ratio method described 

here is easily applied to discrete-event simulations of arbitrary 

complexity (see Section 6), and does not require case-by-case 

analysis for implementation. On the other hand, this method is 

inapplicable to problems in which the settings of deterministic 

event times are decision variables. (See the density conditions in 

Section 6.) Such problems frequently arise in a manufacturing 

context. Nevertheless, we believe that the methods described 

here form a promising avenue for future research. 
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