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ORDINARY CLT AND WLLN VERSIONS OF L = XW*t 

PETER W. GLYNN* AND WARD WHITT? 

The familiar queueing principle expressed by the formula L = XW (Little's law) can be 
interpreted as a relation among strong laws of large numbers (SLLNs). Here we prove 
central-limit-theorem (CLT) and weak-law-of-large-numbers (WLLN) versions of L = XW. 
For example, if the sequence of ordered pairs of interarrival times and waiting times is strictly 
stationary and satisfies a joint CLT, then the queue-length process also obeys a CLT with a 
related limiting distribution. In a previous paper we proved a functional-central-limit-theorem 
version of L = XW, without stationarity, by very different arguments. The two papers highlight 
the differences between establishing ordinary limit theorems and their functional-limit-theorem 
counterparts. 

1. Introduction and summary. In [7] we established a functional-central-limit- 
theorem (FCLT) version of the fundamental queueing formula L = XW [12], [14]. We 
showed that the time-average of the queue-length process obeys a FCLT if the 
customer-average waiting time obeys a FCLT jointly with the customer-average 
interarrival time, and we described the limits. This was accomplished using the 
continuous mapping theorem and related arguments in the setting of weak convergence 
on the function space D[O, oo), as in [1] and [16]. Since FCLTs tend to hold in all the 
standard situations in which ordinary central limit theorems (CLTs) hold, the FCLTs 
in [7] seem quite satisfactory for practical purposes (e.g., applications to queueing 
parameter estimation; see [7]-[9]). Nevertheless, it is natural to ask if it is possible to 
establish corresponding relations among the associated CLTs; here we show that it is 
possible, provided that we add the extra condition of stationarity. 

In addition to the extending the queueing relation L = XW, the results here have 
general probabilistic interest. In particular, we establish new asymptotic results for 
random sums and inverse processes. This paper complements [16], in which it is shown 
that functional limit theorems are preserved under various mappings on the function 
spaces D[0, oo) and D[0, oo) x D[0, oo) such as composition and inverse. Here similar 
results are obtained for ordinary limit theorems. For example, for inverse processes, ?3 
here is an analog of ?7 of [16]. 

The importance of this paper given [7] hinges on the relation between ordinary limit 
theorems (CLTs, SLLNs and WLLNs) and their functional-limit-theorem counterparts 
(FCLTs, FSLLNs and FWLLNs). Consequently, we also address this issue here 
(?2 and 6). We show that a CLT plus stationarity need not imply a SLLN or a 
FWLLN (Example 1 in ?6). As a consequence, a WLLN need not imply a FWLLN, 
and a CLT need not imply a FCLT. On the other hand we show that SLLNs and 
FSLLNs are equivalent (Theorem 4). We also show that a FCLT need not imply a 
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SLLN (Example 2 in ?6). As a consequence, we obtain the well-known result that a 
WLLN need not imply a SLLN. However, as an important tool for establishing our 
queueing results, we show that a WLLN does imply a SLLN under the extra conditions 
of stationarity, nonnegativity and finite mean (Theorem 5). Obviously much of this 
background has been discovered before, e.g., Theorem 4, but the importance makes a 
brief explicit treatment worthwhile. 

As in [7], we use the standard L = XW framework involving the sequence of ordered 
pairs of random variables {(Ak, Dk): k > 1}, where 0 < Ak < Ak+l and Ak < Dk for 
all k. This framework is obviously very general, so that there are many applications. In 
queueing, we interpret Ak and Dk as the arrival and departure epochs of the kth 
arriving customer, where arrival and departure are understood to be with respect to the 
system under consideration. For example, if we are interested in the waiting time 
before beginning service, then the relevant system is the waiting room or queue, not 
counting the servers, and the departure epochs Dk refer to the instants customers leave 
the queue and begin service. 

Let the associated interarrival times be Uk = Ak - Ak_1 for k > 2 and U1 = A1. Let 
the queue length at time t, Q(t), be the number of k with Ak < t < Dk and let the 
waiting time of the kth customer be Wk = Dk - Ak. Let N(t) and O(t) count the 
number of arrivals and departures, respectively, in the interval [0, t]. Let > denote 
convergence in distribution, i.e., weak convergence [1]. We omit "as t -, oo" when that 
is obvious. 

Our CLT version of L = AW can be viewed as an analog of Theorem 4 in [7], but 
this paper can be read independently of [7]. The starting point here is an (ordinary) 
joint CLT for (U,, W,), i.e., 

(1.1) n1/2 
( 

Uk - X-, E W- wn (U, W), 
k=l k=1 

where 0 < < oo, w < oo and (U, W) is an arbitrary random vector in R2. (Note that 
Ek=lUk = Ak in (1.1). Also note that we do not assume that the limit (U, W) is 
normally distributed, although that is what typically occurs [8].) The object is to obtain 
a CLT for the cumulative process foQ(s) ds and, if possible, a CLT jointly with other 
related processes of interest. We obtain such a result here, but unlike [7], we have to 
add an extra condition. We obtain positive results under the extra condition of 
stationarity (by which we always mean strict stationarity), a condition which appears 
in many treatments of L = XW; cf. [3], [6], [12], [15]. We rely heavily on stationarity, 
but we have yet to establish that it is necessary. We also exploit the fact that Wk and 
Uk = Ak - Ak_ are nonnegative. Here is our main result. 

THEOREM 1. If {(Uk, Wk): k > 1) is a stationary sequence of nonnegative random 
vectors satisfying the joint CLT (1.1), then EUk = X-1, EWk = w, and 

[At] 

(1.2) t-1/2 A[Xi]- t, N(t) - Xt, (t)- Xt, Wk- Xwt, 
k=l 

[Xt] N(t) 0(t) 

E (Wk - wUk), E Wk - wt, E Wk - Xwt, Q(s) ds - Xwt 
k=l k=l k=l 

(l/2U, - 3/2U, _-3/ 2U, X/2W, Xl/2( W - wU), 

1/2(W - wU), 1/2(W 
- 

wU), Xl/2(W 
- 

wU)) in R8. 
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We prove Theorem 1 and the other two theorems stated in the introduction in ?5. 
Example 3 in ?6 shows that the conditions of Theorem 1 need not imply a FCLT 
version of (1.1), so that Theorem 1 cannot be deduced from [7]. The formula L = AW 
appears in Theorem 1 in the translation terms. To follow the convention of having 
random variables represented by capital letters and nonrandom real numbers by lower 
case letters, we change the notation: we replace W by w and L by q. The translation 
terms for foQ(s) ds, N(t) and EY=lWk in (1.2) are then q, X and w, respectively, where 
q = Xw. 

In queueing applications, the cumulative process foQ(s) ds is of primary interest, 
but the random sum EN(_)Wk is also of interest outside of queueing. Among the many 
CLTs for random sums, we know of nothing containing the limit of the sixth 
component in (1.2); cf. ?17 of [1], [13], ?5 of [16] and references cited there. Example 4 
in ?6 shows that this CLT for the random sum is not valid without the stationarity and 
the nonnegativity of Wk. The CLT for N(t) alone (Theorem 6), which does not require 
stationarity, is also of general interest. 

The limiting random vector (U, W) in (1.1) will typically have a bivariate normal 
distribution, in which case the limit in (1.2) has a multivariate normal distribution. 
(The distribution on R8 of the limit in (1.2) is obviously degenerate.) See Corollary 3.1 
and Remarks 3.4 and 3.6 in [7] for descriptions of the variances and covariances plus 
further discussion. Example 1 of [9] describes the M/M/1 special case. 

In the process of proving Theorem 1, we establish several other useful weak 
convergence results, which we now summarize. To interpret the results, recall that 
convergence in distribution (weak convergence) to a nonrandom element is equivalent 
to convergence in probability; see p. 25 of [1]. It is easy to apply Theorem 2 to prove 
Theorem 1. The rest of this paper is primarily devoted to proving Theorem 2. 

THEOREM 2. Under the assumptions of Theorem 1, 
(a) t-1/2(N(t) - At) = -X3/2U, 

(b) t- /2(N(t)- O(t)) = t-/2Q(t) 0, 

(c) t-/22(N(t)( - x- 1) - l [Xt] - -1)) ()t k=1k - - ( k=1 k - X, ) =O 

(d) t-1/2N(t) ( Wk - XwUk) - [xt] (Wk 
- AwUk)) O, 

(e) t 12(kN(t)W - EOt ) o, 

(f) t-1/2( dQ(s) ds - 'N(t)W) , 

(g) t -/.ZN(t)(Wk 
- XwUk) - ( _N()Wk 

- Xwt)) = Awt 1/2(t 
- 

AN(t)) 
= 0, 

(h) t- /2((A[ - t) - (t- A-N(t))) = 
0O. 

As in [7], we can also go the other way, starting with a joint CLT for 
(N(t), fJQ(s) ds), but the situation is not symmetric; see Example 1 in [7]. If 

(N(t), foQ(s) ds) has stationary increments and 

(1.3) t-/ (N(t) - Xt, Q(s) ds - qt) (N, Q), 

then, by essentially the same argument, 

(1.4) n -(/2 nQ(s) ds - wn X 1/2(Q - wN). 

Under the extra condition 

(1.5) n 1/2 W, AnQ(s) ds) O, 

we also obtain (1.2) with U = - 2N. (We omit the proof 
we also obtain (1.2) with U = -X-3/2N. (We omit the proof.) 
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In the same spirit as Theorem 1, we also establish the following weak-law-of-large- 
numbers (WLLN) version of L = XW. Here we do not need the stationarity and the 
proof is much easier. Previous WLLN-versions of L = XW and the generalization 
H = XG appear in Theorems 3 and 4 of Brumelle [3]. The statement here has appeal 
because of its simplicity. The joint convergence in Theorem 3 is equivalent to the 
converge of the components separately; see Theorem 4.4 of [1]. 

THEOREM 3. If n- 1A = X 1, 0 < X 
1 

< oo, and n - = lWk w, then 

N(t) O(t) 

(1.6) t1 N(t), E Wk, Q(s) ds, Wk, O(t) 
k=1 ? k=l / 

- (X, Xw, Xw, Xw, X) in Rs. 

Here is how the rest of this paper is organized. In ?2 we give background on the 
basic limit theorems (LLNs, CLTs and their functional counterparts). We do this to 
put these theorems in perspective and also to provide some key tools for proving 
Theorem 2. In ?3 we discuss the relation between ordinary limit theorems for partial 
sums and associated counting (inverse) processes, and prove Theorem 2(a). As a 
further basis for proving Theorem 2, in ?4 we prove a theorem establishing conditions 
for certain fluctuations of random sums to be asymptotically negligible. We bring 
everything together in ?5 and prove Theorems 1-3. In ?6 we give the four examples 
mentioned above. 

An important open problem is whether the condition of stationarity in Theorem 1 is 
necessary. We conjecture that the condition cannot be simply deleted. However, we 
have succeeded in extending Theorem 1 to a large class of nonstationary processes 
(paper in preparation). Theorem 1 here plays a vital role in this extension; we establish 
an equivalence for CLTs, showing that certain processes obey a CLT if and only if an 
associated stationary version also does. 

We have also written other related papers. We present sufficient conditions for 
FCLT versions of (1.1), and thus (1.1) itself, in terms of regenerative structure in [8]; 
we discuss statistical issues related to indirect estimation using L = XW in [9]; we 

prove an ordinary law-of-the-interated-logarithm (LIL) version of L = XW in [10]; and 
we generalize H = XG and establish FCLT versions of it in [11]. 

2. Background on the basic limit theorems. Let (X,: n > 1} be a sequence of 
real-valued random variables and let (S: n > 0} be the associated sequence of partial 
sums, defined by Sn = X1 + * * + X,, n > 1, SO = 0. We say that the sequence { X } 
obeys a WLLN if n-S, => ! for some finite real number /i, and a SLLN if this limit 
holds w.p.1. We say that the sequence Xn} obeys a CLT if n-1/2(Sn - nit) = Z for 
some proper (finite w.p.1) random variable Z. Usually Z has a normal distribution, 
but we do not require it. (No conditions relating to finite moments, stationarity or 
independence have been imposed on { X}.) For the CLT, we could also consider 
normalizations other than n-1/2, but we do not. Both the CLT and the SLLN imply 
the WLLN, but neither the CLT nor the SLLN implies the other; we give examples 
in ?6. 

We now discuss functional limit theorems in D D[0, oo). Let the space D be 
endowed with the usual Skorohod J1 topology, which reduces to uniform convergence 
on compact subsets for continuous limit functions; see [1] and [16]. Let Xn and Sn be 
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FSLLN 

FCLT b 

(a) / < \SLLN 

CLT FWLLN 

WLLN 
FIGURE 1. Relations among the limit theorems. 

Notes: (a) Requires continuity of projection map. 
(b) SLLN -- FSLLN covered by Theorem 4. 

random functions in D defined by 

(2.1) X,(t) = 
n-'S[,,7 and S,(t) = n- 1/2(S [ - tnt), t > 0, 

where [x] is the greatest integer less than or equal to x. Let e be the identity map on 
[0, oo), defined by e(t) = t, t > 0. The sequence { X} obeys a FWLLN if X, =y 4e in 
D and a FSLLN if this limit holds w.p.l. (We could initially allow a more general limit 
for X, in the FWLLN or the FSLLN, but the limit will necessarily be ,e provided that 
{ X} obeys a WLLN, because n-ln = implies that Xn(t) = It for each t as 
n -> oc.) By the definition of the topology on D, the FSLLN is equivalent to 

(2.2) lim sup {In-'S1nt1- ti} = 0 w.p.1 for all T > 0. 
n- oc O<t<T 

The sequence { X) obeys a FCLT if Sn, S in D for Sn in (2.1) and some random 
element S in D. If S(t) is continuous at t = 1 w.p.l., then the FCLT implies the CLT 
and Z is distributed as S(1). Figure 1 describes the relations among these limit 
theorems; there is no implication where there is no arrow. (Implications extend by 
transitivity of course.) Three examples suffice to establish all nonimplications: (1) 
SLLN -t CLT, (2) CLT -+ FWLLN and (3) FCLT -+ SLLN. It is trivial that a SLLN 
does not imply a CLT; e.g., just let S, = n3/4. The two nontrivial examples are given in 
?6. All positive implications in Figure 1 are immediate except for one. We verify it 
now. 

THEOREM 4. The SLLN and the FSLLN are equivalent. 

PROOF. The implication FSLLN -, SLLN is immediate using the continuous map- 
ping theorem with the projection map. To go the other way, suppose that the SLLN 
holds: n-S,1 --> M w.p.l. Let c > 0 and T be given. By the SLLN, there is a to(E) such 
that supt>to(E) It-S[t 

- MI < e/2T, so that 

(2.3) sup { (nt) lS[n,tl-- < E/2T and 
n, t 

t> to(E)/n 

sup (n- S[n 
- 

till} < /2. 
n, t 

T> t> to(()/n 
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However, we can also treat t < to(E)/n by bounding as 

sup ({n -S[ntl - t < n- sup S[tl} + to (C) 
n,t t<to 

t < to()/n 

which converges to 0 as n -* oc w.p.1. Given e and to(), choose no(E) so that 

(2.4) n -l(sup{IS[t | + gto(E)) < E/2 
t< to 

for n > no(E). From (2.3) and (2.4), 

sup sup (In1S[ntI - l 
n t 

n no(e) O<t<T < 

sup sup n 
lS[nt] 

- t|} + sup {Inl S[-t 
- 

tl} = E. 
n t n, t 

n > no(?) t to(c) T> t > to(E) 

It is significant that the analog of Theorem 4 for the WLLN is not true. Since the 
CLT does not imply the FWLLN (Example 1), neither does the WLLN. 

In Theorem 1, we start with the CLT in (1.1). We prove Theorem 1 by exploiting the 
FSLLN, but since even a FCLT does not imply a SLLN (Example 2), we obviously 
need something extra to get the FSLLN. We get the desired FSLLN from the CLT by 
combining Theorem 4 with the following result, after adding two extra conditions: 
stationarity and nonnegativity. 

THEOREM 5. If a stationary sequence of nonnegative random variables { X, obeys a 
WLLN, then EXn = ji < oo and it obeys a SLLN. 

PROOF. We apply Birkhoffs ergodic theorem (Chapter 6 of [2]) twice, first to prove 
that EX, < oo and second to establish convergence w.p.1. Let Xk = min{Xk, m}. 
Since 0 < Xk < m, EXk < oo. Since { Xt: k > 1} is also stationary, we can apply 
Birkhoffs ergodic theorem to get n-l'nlX -- E(Xl I Im) w.p.1 as n -> oo, where 
Im is the invariant a-field for { Xk) . Since n - l X n -E lX for all n and 

n-lE' =lXk m by the assumed WLLN, E(X' I Im) < ,u w.p.1 and thus also E(Xlm) 
< I/ for all m. By the monotone convergence theorem, EX1 < tu. We now can apply 
the ergodic theorem again to the original sequence { Xn } to get n - 1E=lXk -- E( X1 I I) 
w.p.1, where I is the invariant a-field for { Xk), but the assumed WLLN implies that 
E(X1 I I) = j w.p.1, which in turn implies that EX1 = JL. * 

3. Inverse processes. The processes {A,: n > 1} and {N(t): t > 0) are inverse 
processes in the sense that A, < t if and only if N(t) > n. As a consequence, under 
mild regularity conditions, we have a limit theorem for N(t) if and only if the 
corresponding limit theorem holds for A,. For example, this equivalence is elementary 
for. the WLLN and SLLN (e.g., see the proof of Theorem 3 in ?5). This equivalence for 
FCLTs is discussed in ?7 of [16] and applied in [7]. Here we establish the equivalence 
for ordinary CLTs. No stationarity is assumed here. Part of the interest lies in allowing 
limits without continuous cdfs. 

THEOREM 6. Let A be a proper random variable and assume that 0 < X < oo. Then 
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PROOF. By the basic inverse relation, 

P(n -/2(A - nX-~) < x) = P(A, < nX-1 + xnl/2) 

= P(N(tj) > n) for t,, = nX-1 + xn1/2 

= P(-3/2tl/2(N(t) - Xt) > X-3/2t1/2(n - Xtn)) 

= P(-3/2t -/2(N(tn) - At) > x), where 

(3.1) x, 
- -3/2t- l/2(n - Xt,) = X-3/2(nX-1 + xnl/2)-l/2( xnl/2) x 

as n -x oo. 
First suppose that A has a continuous cdf and the limit for An holds. Then 

X-3/2t -/2(N(tn) - Xt.) -A as n -o oo. (Suppose that Fn and F are cdfs with F 
being continuous. It is not difficult to see that Fn(x) -, F(x) as n -- oo provided that 

F(xn) -- F(x) for some sequence {x,} with x, -o x.) Since it is always possible to 
choose n(t) and x(t) as functions of t so that n(t) > oo, x(t) -o x and (3.1) holds as 
t -> oo (let n and t satisfy n-1/2(t - n,) -- x), we also have X-3/2t-1/2(N(t) - Xt) 

-A as t - oo. A similar argument applies in the other direction, assuming that A 
has a continuous cdf. 

Now we treat the general case by letting an arbitrary random variable A be the 
weak-convergence limit as E -o 0 of random variables A, with continuous cdfs. In 
particular, let X be a random variable uniformly distributed on the interval [0,1] that 
is independent of the original basic sequence {(A) and let A, = An + cEnX, n > 1. 
Obviously n-1/2(Al X- -1n) = A + EX where X is independent of A, so that A + EX 
has a continuous cdf for each e. Moreover, since A' > A, for all n and E, N'(t) < N(t) 
for all t and E, where N'(t) is the counting process associated with (A' }. 

To construct a bound on the other side, let An = A[n-^_Xnl/2] n > 1. (The index 
is positive for all sufficiently large n.) It is easy to see that n /2(A6 - nX-1) 
(A - AX). Moreover, since AB < An for all n and 6, NB(t) > N(t) for all t and 8. 

The bounds imply that 

(3.2) t- 2(N'(t) - Xt) < t-1/2(N(t) - Xt) < t-1/2(p^8(t) - Xt) 

for all t, E and 6. The first part of the proof implies that 

(3.3) t-1/2(N'(t) - Xt) ; -X3/2(A + EX) and 

t-1/2(iV(t) - Xt) -X3/2(A - 8X). 

By letting E -- 0 and 8 -> 0, we obtain the desired results from (3.2) and (3.3). A 
similar argument applies in the other direction. ? 

4. Fluctuations of random sums. As a basis for proving Theorem 2, we present 
some preliminary results on the fluctuations of random sums. Again we rely heavily on 
stationarity. To prove parts (b) and (c), we need the following preliminary result 
(which does not require stationarity). 

680 



ORDINARY CLT AND WLLN VERSIONS OF L = XW 

LEMMA 1. If n lE_,Xk - k w.p.1, then, for any a > 0, 

| k+m \ 

lim n-' max { k (X - ) } =0 w.p.l, 
n-, >oo a1 6kn j= k 

(k+m 
lim n-1 max E Xj )< alIlI w.p.l. 

n--oo 1<k<n j=k l < man j\ 

PROOF. Apply the triangle inequality to get 

k+m k+m k 

E (X - ) < E (Xj - ) + E (X - ) 
j=k j=1 j=1 

so that 

k+m 

n-1 max E (Xj- O < 2n-1 
l1 k<n j=k 1 < m < an 

max E (X - /) 
1 kA<n(l +a) j-=1 

which converges to 0 as n - oo by the FSLLN (Theorem 4). The second conclusion is 
an easy consequence because for any k and m, with 1 < m < na, 

k+m k+m 

E Xj -anll E (Xj-t) . * 
j=k j=k 

THEOREM 7. Let {Xk: k > 1} be a stationary sequence such that n-1k=lX -k 
k 

w. p.1; let Y be a proper random variable, and let Y(t) be an integer-valued process such 
that 

t-1/2(Y(t) - yt) = Y. 

(a) If EXk = 0, then t- 12(k) Xk - - kt't]k) = 0. 

(b) If Z(t) is any nonnegative process such that t-1/2(y(t) - Z(t)) = 0, then 

Y(t) [Z(t) 

t-/2 E Xk- Xk > o. 
k=l k=l1 

(c) Without additional assumptions, 

Y(t) +[yt1/2] 
t-l/2 E 

k=l 

Y(t) 

Xk- E Xk- Y 
k=l 

f Y(t)+m m 

< t-1/2 max E (Xk -/) = 0. 
1 m<([ytl/2]+ 1) k = Y(t)+ 1 

so that 

(4.1) 
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REMARK. In Theorem 7(b), we do not assume that EXk = 0. If EXk = 0, then (b) 
follows from (a). 

PROOF. (a) Let C,(E) be the event of interest, namely, 

C()= t 1/2 - 
EXk Xk > 

k=l k=l 

We shall show that for any positive E and 8 there exists to such that P(Ct(c)) < 8 for 
t > to. 

Let 4 be a strictly positive function of q for qT > 0 such that P(IYI > 0(,1)/2) < 7j/2 
for all , > O, which exists because P(IY| < oo) = 1. Let Bt(7q) be the event 

(4.2) Bt,(r) = {t- /2lY(t)- [yt] I q()}. 

Thus, for any r7, P(Bf('q)) < , for all sufficiently large t, wher Bf(rv) is the comple- 
ment of Bt(qr). Next 

( k k 

C,(E)Bt(7) c t-1/2 max E XYtL]([I,(i)t12+)+j > c/2 
k<2([(rn)tl/2]+1) j=0 

so that, by stationarity, 

k 

P(Ct(c)Bt(7)) < P t-1/2 max E Xj > E/2 
k<2([bp(t)t1/2]+1) j=O 

which converges to 0 as t -> oo for every positive , by the FSLLN (Theorem 4). For 
given positive E and 8, first choose q < 8/2 and then choose to so that P(Ct(E)Bt(q)) 
< 8/2 for all t > to. Then P(C,(E)) < P(C,(E)Bt(q,)) + P(Bf(ir)) < 8 for all t > to. 

(b) Again let C,(E) be the event of interest, here 

Y(t) [Z(t)] 

C(E)= t-1/2 EXk - E > ; 
k=l k=l 

let Bt(q) be as in (4.2); and let D,(y) = {t- /2lY(t) - [Z(t)]l < y). Then 

C,(?)B,(q)D,(y) c t-1/2 max I Xt > C 
k, m | [Y./ ] } 

where the maximum is over the set S(y, ,, t) of indices (k, m) defined by 

S(y, q, t) = {(k, m): 1 < m < yt1/2 and Ikl < ([p(q7)t1/2] + 1) + Yt1/2}. 

By stationarity, 

k+m 

P(Ct(E)Bt(q)D,(y)) < P t-1/2 max Xj > , 
k, m j=k 
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where the maximum is over the set 

S(y, , t) = {(k, m): 1 < m < yt1/2 and 1 < k < 2[((r,) + y)t1/2 + 1]}. 

Now, for positive e and 6 given, choose q1 < 8/3 and y < E?z. Then choose to so that 
P(Bt'(,)) < X, P(DtC(8)) < 8/3 and P(C,(E)Bt(,7)Dt(y)) < 8/3 for all t > to, invok- 
ing Lemma 1 for the last inequality. Then, for t > to, 

P(C,(e)) < P(C,(E)Bt(q)Dt(y)) + P(Btc(q)) + P(Dt'(8)) < 8. 

(c) As before, let Ct(E) be the event of interest, here 

I Y(t)+m \ 

C,(E) t-1/2 max E (Xk-) >c , 
l <m<([y, t/2]+ l) k=Y(t)+l 

and let Bt(7) be as in (4.2). Then 

| k+m \ 

Ct(E)B t(q) C t-1/2 max E (X -/ ) >E , 
k,m j=k 

where the maximum is over the set 

T(y, 1r, t) = ((k, m): 1 < m < ([yt1/2] + 1) and Ik - [yt] | ( <()t/2 + 1}. 

By stationarity, 

/ k+m \ 

P(C,(e)B,(7)) < P t-l/2 max E (Xj 
- ) > , 

k, m j=k 

where the maximum is over the set 

T(y, ,/, t) = {(k, m): 1 < m < ([ytl/2] + 1) and 1 < k < 2([q(T/)t?/2 + 1])}. 

For positive E and 8 given, choose 71 < 8/2 and then to so that P(Ct(e)B,(,1)) < 8/2 
for all t > to, applying Lemma 1. Then, for all t > to, P(C,(e)) < P(C,(E)B,(q)) + 
P(Bt(Tq))< a. m 

5. Proofs of Theorems 1-3 

PROOF OF THEOREM 1. The finite moment conclusion follows from Theorem 5 in 

?2. The conditions of Theorem 1 plus the continuous mapping theorem, Theorem 5.1 
of [1], immediately yield the CLT 

, [ t] [ t] 

(5.1) t- 1/2 A[x,t - t, E Wk- Awt, (Wk - XWUk) 
( k=l k=l 1 

/2(U, W, w- XwU) 

in R3, i.e., components one, four and five in (1.2). Then the convergence-together 
theorem (Theorems 4.1 and 4.4 of [1]) combines with Theorem 2 to yield the rest: The 
second component of (1.2) is covered by (5.1) and (h); the third is covered by the 
second plus (b); the sixth is covered by (5.1) plus (d) and (g); the seventh is covered by 
the sixth and (e); finally the eighth is covered by the sixth and (f). The only unused 
parts of Theorem 2, (a) and (d), are used to prove (h). Part (a) is also used to establish 
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one of the conditions in Theorem 7, which is used for many of the other parts of 
Theorem 2. Part (a) does not require stationarity. ? 

Theorem 2(a) is covered by Theorem 6 in ?3 (without stationarity). The most 
difficult part of Theorem 2 is (b). Let I be the indicator function, i.e., I(A) = I(A)(x) 
= 1 if x E A and 0 otherwise. 

PROOF OF THEOREM 2(b). t /2(N(t) - O(t)) = 0. We provide the broad outline 
of the proof here and the supporting details in following lemmas. By Lemma 3, for any 
y > 0, 

N(t) 
0 < N(t) - O(t) < N(t) - N(t - yt/2) + E I(Wn > yAn/2). 

n=l 

For given E > 0, choose y < X-~E/2 and to so that, for all t > to, 

P(t/2(N(t) - N(t - ytl/2)) < Xy) > 1 - c/2, 

which can be done by Lemma 4, and 

N(t) 

P t-1/2 I(W > yA/2) > /2 < E/2 
n=l / 

by Lemma 5. . 

As a basis for Lemma 3, we need the following. 

LEMMA 2. IfA, t - yt1/2 for y > 0, then A, + yA'/2 < t. 

PROOF. Since the function x + yx1/2 is strictly increasing in x, the condition 
implies that 

An + yA'/2 < (t- yt1/2) + y(t - ytl/2)/2 < (t ytl/2) + ytl/2 = t. 

COROLLARY. NlI)(An + yA/2 < t) > N(t- ytl/2). 

PROOF. Apply Lemma 2 term by term, using 

N(t) 

N(t- yt'/2) = E I(An> t- ytl/2). 
n=l 

LEMMA 3. For positive t and y, N(t) > O(t) > N(t - yt1/2) - EN(t( > yl/2) 

PROOF. Note that 

N(t) oo N(t) 

O(t) = E I(Dn < t) = E I(An + Wn < t) > E I(An + W,n< t, Wn< yA2) 
n=l n=l n=l 

N(t) 

E I(A. + yA/2 < t, W yA2) 
n=l 

N(t) N(t) 

> I(A, + yA'l2 <t)- ) I(W > yA/2) 
n=l n=l 

N(t) 

> N(t - yt2)- I(W > A/2), 
n=l 

applying the Corollary to Lemma 2 in the last step. * 
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LEMMA 4. For any y > O, lim,t_ P(t-12(N(t) - N(t - ytl/2)) > Xy) = 0. 

PROOF, Note that for 8 > 0 

(N(t) - N(t - yt'/2) [(,X + S)tl/2]) 

{ AN(t-ytl2)+[(Xy+8)tl/2] 
- 

AN(t ytl/2)+l < yt1/2 } and 

t-1/2 AN(t tl/2)+[(xY+8)tl/2l 
- 

AN(t-tl/2)+ - X -(X)Y + 8)i 0 

by Theorem 7(c), so that 

lim 
P(AN(t,ytl/2)+[(Xy+8)tl/21 

- 
AN(t-tl/2)+I < yt1/2) 

= 0. O 
t --- oo 

LEMMA 5. For any y > O, t-' 2EN I(W > yAI/2) = 0. 

PROOF. It suffices to show that n-L 1/2E i(Wk > yAlk/2) 0 because, for any 
> 0, 

P t-1/2 E I(Wk> yAY/2) > 
k=-1 

/ N(t) 

< P t-/2 E I(Wk > yA/2) > c, N(t) < 2Xt + P(N(t) > 2Xt) 
k=l 

[2Xt] 

< P -1/2 I(Wk > yA/2) > E + P(t-lN(t) > 2X) 
k=l t 

and P(t-lN(t)> 2X) 0 because N(t) satisfies the WLLN with limit X as a 

consequence of Theorem 6. Next, for 8 > 0, 

n 

(5.1) n-1/2 E I(Wk > yA1/2) 
k=l 

n 

k-1 

n 

+n-1/2 E I(Ak < (X2-1- 8)k) 
k?l 

k=l 

n 

k =l 
The first term on the right in (5.1) is asymptotically negligible by Lemma 6 below.)k) 

k=1The second term is asymptotically negligible too because, by the SLLN (Theorem 5), The first term on the right in (5.1) is asymptotically negligible by Lemma 6 below. 
The second term is asymptotically negligible too because, by the SLLN (Theorem 5), 
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n -lAn A-1 w.p.1, so that 

00 

E I(Ak < (X-1 - 8)k) < o w.p.l. 
k=l- 

and thus n-XE=xI(Ak < (X-1 - 8)k) O 0. . 

LEMMA 6. For any y > 0, limn, n- /2E2iP(Wk > yk/2) = 0. 

PROOF. Since n -/2E=iP(Wk > yk1/2) = Ek=laknk 1/2p(wk > yk1/2) where 
ak = (k/n)1/2 for 1 < k < n and 0 otherwise, so that Iak,l < 1 and akn > 0 as 
n -> oo for each k, to establish the desired limit it suffices (as a consequence of the 
dominated convergence theorem) to show that Ek_lk-1/2p(wk > yk1/2) < oo. By 
stationarity, this is equivalent to E1lk-1/2P(W2 > y2k) < o0, which in turn is 

equivalent to E(W1/y) < oo (Example 5, p. 44, of [4]). However, by Theorem 5, 
EW1 < oo. m 

PROOF OF THEOREM 2(c). First apply Theorem 5 to show that { U } obeys the 
SLLN with EU, = X-1 < oo. Then apply Theorem 2(a) to verify condition (4.1). 
Finally, apply Theorem 7(a). * 

PROOF OF THEOREM 2(d). Apply Theorem 7(a) again. To verify the conditions 
of Theorem 7, apply Theorem 2(a) for (4.1) and Theorem 5 to establish that {W } 
and {Uk) each obey a SLLN with EWk= w < oo and EUk = X-1 < oc. Then 
{Wk - AwUk} is stationary and obeys a SLLN with E(Wk - XwUk) = 0. ? 

PROOF OF THEOREM 2(e). Apply Theorem 7(b) after applying Theorem 2(b) and 
Theorem 5 to establish the conditions there. o 

PROOF OF THEOREM 2(f). Apply Theorem 1 of [7] to get EffWt) fJoQ(s) ds < 
k= 1Wk for all t > 0, and then apply Theorem 2(e). ? 

PROOF OF THEOREM 2(g). Note that t - A(t) < AN(t)+l 
- AN(t) and apply Theo- 

rem 7(b). Apply Theorem 2(a) and Theorem 5 to establish the conditions there. . 

PROOF OF THEOREM 2(h). Note that 

[At] 

(Atl1- t) - (t - X-N(t)) = (Uk- X-1) + (A-[At] - t) 
k=l 

N(t) 
- E -(Uk- -l) ANt)- t, 

k=l 

so that 

t-l/2t(Atx-- t)-(t- X-N(t)) I 

N(t) [Xt] 

t-1/2 (Uk - A-1)- E (U - -1) 
k=l k=l 

+t-1/2jX-'l[t] - tf + t-1/21AN t- tj. 

The first term goes to 0 by Theorem 2(c), the second trivially, and the third by 
Theorem 2(g). * 
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PROOF OF THEOREM 3. By Theorem 4.4 of [1], it suffices to treat the marginals 
separately. As indicated in ?3, the WLLN for N(t) is elementary: For E > 0, 

P(t-lN(t) > X + E) = P(A[(A+f)Il < t) - 0 and 

P(t-'N(t) < X - E) = 
P(A[(X_) > t) -, 

as t -- oo. Turning to the second component, suppose that w < oo and let E > 0 be 
given. Then 

N(t) 

(5.2) P t- E Wk-Xw > 
k=l 

N(t) 

< P t-1 E Wk- Xw > , IN(t) -At <t 7t 
k=l 

+P( N(t) - Axt > >t) 

' [Xt+7t]+l ' [Xt-lt] 

< P t-1 E Wk > W + p + P t-1 Wk>XW - 
k=1 k=l 

+P(IN(t) - Xtl > nt). 

Choose q = E/2w and let t -> oo. The case w = oo is an easy modification. 
For fJQ(s) ds, it suffices to prove that t-l'E( t) 'W w, by the inequality used in 

the proof of Theorem 2(f). Since the convergence for the random sum ,k=Wk, just 
proved in (5.2) depends on N(t) only through the weak convergence t-'(N(t) = X, we 
can apply that argument again and complete the proof if we can shown that t-'O(t) 

X . To this end, note that 

N(t) 

P(O(t) < (\ - E)t) = P E I(Ak + Wk < t) < (A - E)t , 
k=1 

I(Ak + Wk < t) > I(Ak + Wk < t, Wk < Ak) > I(Ak + qAk < t, Wk < lAk) 

> I(Ak < t/(1 + r1)) - I(Wk > Ak), and 

N(t) 

E I(Ak < t/(1 + 7)) = N(t/(1 + )), 
k=l 

so that 

(5.3) 

N(t) 

P(O(t) < (X - e)t) < P N(t/(l + 1)) - I(Wk > lAk) < (A - e)t 
k=l 

< P(N(t/(l + r)) < t[A- E/2]) 

/ N(t) 
+P E I(Wk > rAk) > te/2 . 

k=1 
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Choose X sufficiently small so that X/(1 4- ) > X - e/2 and the first term on the 

right in (5.3) is asymptotically negligible as t -- oo. We complete the proof by showing 
that the second term converges to 0 as t -> oo for any positive E and q7. Note that 

N(t) )[(X+?)t] 
(5.4) P t- I(W,k> 71A k ) > < P t-1 I(Wk >Ak> ) > 

k=l k=l1 

+P(N(t) > (X + t)t). 

We have already shown that the second term on the right in (5.4) is asymptotically 
negligible, so that it suffices to show that n- k,lI(Wk > t rAk) = 0. Since 

P1 n-1 

n-W, = n-1 Wk- ((n - )/n)(n - 1)- Wk w - w = 0, 
k=l k=1 

Wn/A, 0, so that P(Wn > qA) -0 O, which implies that n- 'Ei,P(Wk > qAk) 
= 0. ? 

6. Examples. We conclude with four examples that help place our results in 
perspective. 

EXAMPLE 1. We show that the CLT does not imply either the SLLN or the 
FWLLN (and thus also not a FCLT). Let (Y,: n > 1} be a sequence of i.i.d. 
nonnegative random variables and let X2-_1 = Yn and X2n = - Yn for n > 1. Then 
the associated partial sums are S2,_1 = Y, and S2, = 0. Since n - /2Y = 0, { X } 
obeys the CLT with nonrandom limit, i.e., P(Z = 0) = 1. On the other hand, if 
EY = oo, then (p. 42 of [4]) E,=lP(Y > n) = E,?P(Y, > n) = oo, so that by Borel- 
Cantelli (p. 76 of [4]), P(Y, > n infinitely often) = 1 and n- S, fails to converge 
w.p.1.; i.e., the SLLN does not hold. Moreover, it is easy to modify the construction so 
that the basic sequence { X } is stationary: just let 

P( X2n- = Y,1 - X2n for all n) = P ( X2 - Y, = - - X2 for all n) = 1/2. 

By Birkhoffs ergodic theorem (Chapter 6 of [2]), then EY = + oo above is necessary to 
get nonconvergence of { n-lS,, w.p.1. 

Since the CLT holds with n-1/2S, = 0, if the FWLLN held, it must be with u = 0. 
To show that the FWLLN need not hold, it suffices to show that we need not have 

n-lmax, k <n{ Sk 

} 

= 0. To see this, we specify the distribution of Yn in more detail, 
let P(Y, = 2k) = 2-k for all positive integers k. Then P(Y, > k) > l/k for all k, so 
that, for any e > 0, 

P((2n) max {Sk} > ) =P( max{Yk} > 2nEc = 1 -P(Y, < 2ne) 
k < 2 kn k<n 

> 1- 

1 

- 
2 

- - 1- e-1/2E as n - oo 

which implies that the FWLLN does not hold. ? 
EXAMPLE 2. We now show that a FCLT does not imply a SLLN. Let {Y,: n > 1} 

be a sequence of independent random variables, which for most values of n assume the 
value 0 w.p.1. Let { nk: k > 1} be a rapidly increasing sequence of indices for which Y, 
has a different distribution; in particular, assume that n k + > n k > 1 and n k + /n2 - 

oo as k -> oc. Let Y,, = 0 w.p.1. for n not in the subsequence {nk} and let 
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P(YBk = nk) = k-1 = 1 - P(Ynk = 0). Now let the basic sequence (X,) be defined in 
terms of {Yn} as in Example 1. Since EkxiP(Y,k = n) = oo, P(Y = nk infinitely 
often) = 1 by Borel-Cantelli, so that { n - Sn fails to converge w.p.1. In fact, the set of 
limit points for {n-ln} is the two-point set {0, 1} w.p.1. On the other hand, 

n-1/2 max {Sjl} =n max x Y) <nk1/2 max {Y}) fornk n/2<nk+ 
1 <j < n 1 <j < n/2 1 <<j n nk 

< nk /2n - + 
nk1/2Ynk 

0 

by the growth condition on {nk and the distribution of Ynk' Hence, the FCLT holds: 
Sn = S for S, in (2.1) with y = 0 and S = 0, where O(t) = 0, t > 0. * 

EXAMPLE 3. We now construct a stationary sequence of nonnegative random 
variables { X,: n > 1} obeying a CLT, but not a FCLT. This shows that the conditions 
of Theorem 1 do not imply a corresponding FCLT, so that Theorem 1 cannot be 
deduced from [7]. Without loss of generality, we can extend any single-ended station- 
ary sequence { Xn: n > 1} to a double-ended stationary sequence { X,: - oo < n < 
+oo}; see p. 105 of [2]. We do this below. Let (rk: k > 1} be a sequence of 
independent random variables with P(rk =j) = nk2, 1 < j n2, where {nk: k > 1} 
is a rapidly increasing sequence of positive integers, to be specified in more detail 
below. Let { Yk, : - o < j < o0} be defined by 

nk, j= mn2 + Tk, 

(6.1) Yk,. i 0, mn 2+ Tk + 1 <j < mnk + nk(2 - 1), 

2-k, otherwise, 

for all integers m and k > 1. To have (6.1) well defined, we require that (nk} be an 
increasing sequence satisfying nk2k < n2 or, equivalently, nk2-k > 1 for all k. Since 
the rk variables are independent, Yk, j: - oo < < < oo are independent sequences for 
different k. For each k, the sequence {Yk, ) is made up of deterministic cycles of 
length n2. The discrete uniform distribution for Tk provides the proper initialization to 
make { Yk, : - oo <j < oo) defined in (6.1) a double-ended stationary sequence for 
each k. Note that 'jiYkj 

= n2-k provided that Yk = Ykn = 2-k, which will occur 
with high probability for large k. 

Let the basic sequence {X,: n > 1} be defined by X, = EkxlYk,, for n > 1. It is 
easy to see that { X} is stationary. For the remainder of the construction we require 
that nk increase rapidly enough so that 

oo '/k-1 

(6.2) EnJ 2j- 0 and n1 E n -n 0 ask- oo. 
.j=k ,j=1 , 

For any n given, let k k(n) be such that nk < n < nk+l. Let Sn = X, + * +X 
and note that 

, ISn n >k(n)- { n 
An \Sn-n\ > nE j c .EYk, j n2-k for some k > k(n)) 

j=l j=l 

c {Yk,1 
k 2-k or Yk,n k 2-k for some k >( k(n)), 
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so that, by (6.2), 

(6.3) P(An) < Pt Yk j n2-k forsomek > k(n) 

00 

< , P(YI. 2i orYj, n 2 -i) 
j=k(n) 

oo 

<2 E n,12s-o0 asn -oo. 
j=k(n) 

We want to show that P(Bf,) -> 0 for each E > 0, where B, = {n-12lS,, - nI > E}. 
To this end, note that 

00 

P(Bn,) < P(A) + P(B,Ac) < 2 E nJ-12 + P(Bnf,A). 
j=k(n) 

However, on Ac, 

k(n)- 

n-1/21S,,--n - nk(n)lS--n\l nk( ) nj- n 0 as n -> o 
j=1 

by (6.2). Hence, for any E, there exists an no such that Bn,Ac = 0 for n > no, so that 
indeed P(B,,) - 0 as n -- oo for each E > 0. 

We have shown that n- /2(S, 
- n) = 0. It follows that n-1/2( S, - [nt]) = 0 as 

n -* oo for each individual t. If a FCLT held as well, then we would have weak 
convergence in C[0, 1] with the topology of uniform convergence, which would imply 
that n-1/2 max{ Sj - j: 1 < j n } = 0, by the continuous mapping theorem, but we 
do not, as we now show. 

We exploit the fact that 0 < EicYk, j 
- n2-k < nk for all n, with equality holding 

at both bounds at least once in every segment no < n < no + n2, provided that 
Yk,1 = 0, by virtue of (6.1). Let C and Ck be the random sets C = {i: Y,1 + 2-~} and 
Ck= j: j = k, Yjl 2-j}. Let Z =Ej,cnj and Zk =Ejckni. Since Ck C 
w.p.1, Zk<Z < oo w.p.l. For k 4 C, E=l,Yk > n2-k for all n, so that S - 
n + Z >0 for all n. On the other hand, Yk, y=n for some n in j: 1j < n2} 

w.p.l. Hence, 

{max{Sj-j: Ij < n} > nk/2} Z < nk/4, Y,= 2k} 

= 
{Zk< nk/4, Yk,=2-k. 

Since Yk, j: - oo <j < oo) is independent of Zk, we can write 

P(max{S,-j: 1 ~<j < ni} > nk/2) > P(Zk < nk/4)P(Yk,l = 2-k) 

> P(Z < nk/4)P(Y,1 = 2-k) 

which converges to 1 as k -- oo. As a consequence, 

P(nk max{Si- j: 1 j < n} >1/2) 
- 1 ask- oo. * 
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REMARK. Since the FCLT does not hold in Example 3, the various mixing condi- 
tions that imply the FCLT, such as the 4-mixing condition in Theorem 20.1 of [1], 
must fail. In fact, mixing fails with a vengeance. For example, let nk 22, so that the 
conditions of (6.2) are satisfied and we can identify whether or not Yk, j = nk by 
looking only at Xj. For the event E = {Yk j = nk), obviously Ej+mn2 = Ei for all 

integers m. Hence, 

|P(Ej n 
Ej,n 

- P(Ej)P(Ej+,,) I P(E)) P(E ) 0 

for all m, so that +(n) fails to converge to 0 as n -* oo. m 
EXAMPLE 4. We now show that Theorem 1 does not hold if we drop the nonnega- 

tivity and stationarity assumptions. This reveals limitations of the ordinary CLT 
framework, because the FCLT for the random sum Ek-Wk in [7] holds without these 
conditions. Let {N(t), t > 0} be a Poisson process with mean 1. Let Wk = 1 for all k, 
except certain special k depending on N(t). In particular, let 

(6.4) WN(2) = 1 + 2"+1, WN(2") + 1 = 1 - 2+ n >1, 

provided that N(2n+1) > N(2n) + 1, which occurs all but finitely often by Borel- 
Cantelli: P(N(2n) < N(2n) + 1) = P(N(2") < 1) and E1P(N(2") < 1) < oo. In 

the exceptional case, let WN(2n) = WN(2")+1 = 1. Let BN be the random subset of 
unusual indices, i.e., 

BN = k: N(2") = k and N(2"+l) > N(2") + 1, for some n, n = 1,2,...}. 

In Lemma 7 below we show that limk , P(k E BN) = 0, which implies that the joint 
CLT (1.1) is valid with the limits U being N(0,1) and W = 0. To see this, note that 

t k 

P F Wj -k 0 =P(k EBN)-0 ask-oo. 
i j 1 / 

pwe /yV(2") W 2 " 
However, P(k(2.)Wk - 2 > 2) - 1, so that the CLT for E't)Wk, the sixth compo- 
nent in (1.2), fails. Of course, (6.4) also causes the FCLT for { W } to be invalid. (This 
is necessary by Theorem 17.1 of [1].) This is easy to see because 

m \ 
2-"/2 max (Wk- k) > 2-"/22 = 2"/2 provided N(2"-1) < 2" 

m2" k-i J 

Hence, n-1/2maxm<,{Ejmli(W -j) -j) oo w.p.1 as n -x oo. If the FCLT held, then 
the limit would have to be 0, by the continuous mapping theorem. . 

LEMMA 7. With definition (6.4), P(k E BN) 0 as k -> oo. 

PROOF. By the SLLN, for any E > 0, there exists an m such that IN(2") - 2n" < C2" 
for all n > m. We will show that for all E sufficiently small, there exists at most one 
n n(k, c) > m such that N(2") = k. To see this, note that we must have Ik - 2"1 < 
c2", which is equivalent to 

(6.5) [log k - log(1 + E)]/log2 < n < [log k - log(1 - e)]/log2, 

so that it suffices to choose e sufficiently small so that [-log(1 - E) + log(l + e)]/ 
log 2 < 1 or, equivalently, so that (1 + e)/(1 - E) < 2. We suppose that such an E has 
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been selected. Then 

P(k e BN) < P(N(2n) = k for some n) 

< P(N(2n) = k, 12-"N(2") - 1| < for some n > m) 

+-P(N(2") = k for some n < m) 

+P(12-nN(2") - 1| > c for some n > m) 

< P(N(2(k)) =k) + E P(N(2) = k) 
j=- 

+P(12-NN(2") - 1 > c for some n > m) 

< supP(N(2'(k)) =j) + 4 P(N(2j) = k) 
j>1 j=l 

+P(|2-NN(2") - 11 > for some n > m). 

First let k - oo with m fixed to get the first two terms to converge to zero. Then let 
m -> oo to get the last term to converge to zero, invoking the SLLN. * 
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