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SIMULATING DISCOUNTED COSTS* 

BENNETT L. FOX AND PETER W. GLYNN 
Department of Mathematics, University of Colorado, Denver, Colorado 80204-5300 
Department of Operations Research, Stanford University, Stanford, California 94305 

We numerically estimate, via simulation, the expected infinite-horizon discounted cost d of 
running a stochastic system. A naive strategy estimates a finite-horizon approximation to d. We 
propose alternatives. All are ranked with respect to asymptotic variance as a function of computer- 
time budget and discount rate, when semi-Markov and/or regenerative structure or neither is 
assumed. In this setting, the naive truncation estimator loses; it may triumph, however, when the 
computer-time budget is modest, the discount rate is large, and the process simulated is not 
regenerative or has long cycle lengths. 
(DISCOUNTED COSTS; SIMULATION; SEMI-MARKOV PROCESS; REGENERATIVE 
PROCESS) 

1. Introduction 

In many settings, discounted costs arise naturally. This paper describes simulation 
methodologies for estimation of expected discounted costs associated with systems that 
exhibit stochastic fluctuations. Such techniques are important for numerical computation 
of discounted costs for stochastic processes in which conventional numerical methods 
either fail to apply or are inefficient. Examples of such processes include non-Markov 
processes or infinite state space Markov chains. The discussion given here of simulation 
algorithms for the discounted cost problem also merits interest to the extent that it provides 
an excellent vehicle for illustrating several sophisticated "variance reduction" methods 
for stochastic simulation. These techniques are more accurately called efficiency im- 
provement techniques, as we shall see. 

To formulate the estimation problem mathematically, we let X = {X(t): t 2 0 } be 
a stochastic process taking values in a state space S. Suppose thatf, g are two real-valued 
functions defined on S, in which f( x) represents the cost of running X in state x and 
g(x) corresponds to the (positive) discount rate in state x. Then 

D= f exp(-V(s))f(X(s))ds (1) 

is the infinite-horizon discounted cost, where V(s) = f g(s (u))du. Our goal in this 
paper is to construct Monte Carlo simulation algorithms for numencally evaluating d 
-ED. 

We now describe the layout of the rest of this paper. ?2 develops a naive estimator for 
d based on truncation of the infinite-horizon integral, and studies its relevant theory. In 
?3, an estimator based on randomizing the truncation point is developed, and it is shown 
that for large computational budgets, this estimator beats the naive truncation estimator 
of ?2. ?4 shows how to exploit semi-Markov process structure to improve the efficiency 
of the randomized estimator of ?3 by "conditioning out" the holding times. In ?5, an 
estimator which makes use of regenerative structure is explored, whereas ?6 studies an 
estimator which utilizes both semi-Markov and regenerative structure to obtain efficiency. 

* Accepted by George S. Fishman, former Departmental Editor; received May 13, 1987. This paper has been 
with the authors 8 months for 2 revisions. 
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In ?7, we compare the asymptotic variances of the above five estimators when the discount 
rate is small; a small discount rate is natural in many economic settings. ?8 analytically 
calculates the mean square error of the relevant estimators for the M/D/o /Ioo queue, 
for an arbitrary discount rate. Finally, in ?9, we offer some concluding remarks. When 
confidence intervals are based on (routinely-constructed) consistent estimators of the 
variance constants that we give, possibly large computer-time budgets may be needed 
for the asymptotic theory to "kick in" and thus assure that the desired coverage is achieved; 
this caveat is not a criticism of our paper, because it applies universally. Unless otherwise 
indicated, all proofs are deferred to the Appendix to make the paper easier to read. 

2. A Truncation Algorithm 

Naive Monte Carlo simulation, based directly on ( 1), is impractical since generating 
the r.v. D generally requires an infinite amount of computation time. A straightforward 
alternative truncates the r.v. D at some finite time horizon j, yielding the quantity 

D(:) = f exp(-V(s))f( X(s))ds. 

Given a computational budget t, it is clear that the truncation point : should increase 
with t. (Observe that a sample mean estimator based on D(:) with : fixed converges to 
ED(f3), which is in general not equal to d.) 

As a consequence, we need to define a sampling plan {: (t): t > 0 }, in which 3(t) 
corresponds to the truncation point associated with computer budget t. Assuming that 
the tinme required to generate a replicate of D(:) is cl:f (cl > 0), we find that the number 
n(t) of runs completed with budget t is Lt/c I (t)J. Given t, our estimator for d will then 
be 

31t ()(DI(fl(t)) + D2(f(t)) + + Dn(1)(/3(t))), n(t) 2 1, 
{ (t) (2) 

0, n(t) = 0, 

where {Dn(*): n ? 1 } is a sequence of i.i.d. replicates of D( ). 
We now investigate the choice of sampling plan which optimizes the behavior of the 

estimator (1 (t) for a fixed computer budget t. Given the exponential character of dis- 
counting, it seems reasonable to expect that the bias of 61 (t) behaves like a exp(- cj(t)) 
for some constants a, c. This expectation can be justified when X is a regenerative sto- 
chastic process; see Glynn and Whitt ( 1988). In fact, when the discount rate is constant 
(i.e. g a), c = a. In any case, it then follows that the mean square error (MSE) of 
6 I (t) is given approximately by 

E(61(t)- d)2 _ cl(var D) OM() + a2 exp(-2cj(t)). 
t 

The choice of :(t) which minimizes the above MSE expression is 

f3*(t)ox* +4 logt (3) 

where X* = -log (cl var D/2a2c)/2c, X* = 1 /2c. 
Theorem 1 below shows that the above approximations can be justified rigorously; its 

proof relies heavily on the general theory of replication estimators of the form (2), as 
described in Fox and Glynn ( 1989). The following (reasonable) assumptions will be 
needed: 

H 1. ,f, g are strictly positive functions on S. 
H2. 0 < var D < oc 
H3. b(fl) = d - ED(f3) a e^~'' as ,B X~c for some constants a1, C'. 
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We require that f be strictly positive merely to simplify the technical statements of the 
theorems presented in this paper. It is not necessary and can be replaced by suitable 
(cumbersome) absolute integrability hypotheses onf. 

THEOREM 1. 4ssume HI-H3 and suppose * is defined by (3). Then: 
(i) If A(t) = A*(t), then 

t ~ ~ ~~lvarD (61 (t) - d) = N(0, ( ). 
log t (i2c / 1) 

(ii) If :(t)/:3*(t) K > 1 as t oo, then 

k (61(t) - d) (Kc D 2c ) N(O, 1). 

(iii) If f3(t)/f3*(t) K < 1 as t- oo, then 

t 

log t I b(t) - dl =X oo. 

Part (iii) forces the selection A(t) 2 0* (t) for large enough t. On the other hand, if 
the constant K appearing in (ii) is strictly greater than one, the variance of the limiting 
normal r.v. is greater than that obtained when : = f*. We conclude that Theorem 1 
shows that the asymptotically optimal choice of sampling plan is: = /*. 

Implementing this choice requires determining a and c. [A glance at the proof of 
Theorem 1 shows that in fact c is the crucial parameter, in the sense that if A(t) = log tl 
2 c + (, then convergence result (i) always ensues, regardless of the choice of t.] Theorem 
1 indicates that if one is to guess a choice for c, it is better to underestimate c than 
overestimate it. In particular, suppose that one uses A(t) = log t/2c' + t with c' < c. 
Then 6I(t) will satisfy relation (ii) with K = c/c'; on the other hand, if c' > c, I(t) has 
the poor convergence structure associated with (iii). An underestimate c' of c is always 
available when A = inf {g(x): x E S} > 0, namely c' = A. 

Theorem 1 also shows that even if : is chosen optimally, the best possible rate of 
convergence is flog tlt. This is unsatisfactory in comparison to the canonical rate of 
1 / Vt typical of Monte Carlo simulation. Thus, the straightforward truncation approach 
of this section appears inefficient for large computational budgets t, and the investigation 
of alternative algorithms is warranted. Heuristic adjustments to 0* (t) may be appropliate 
when the computer-time budget is only moderate. 

EXAMPLE. Let X = (X(t): t 2 O) represent the number of customers in a GG/ce// 
so queueing system. Assume thatf( x) = x and that g(x) = a. Then c = a and the above 
analysis suggests that with computer budget t, we should simulate L2at/log tj i.i.d. rep- 
licates of the r.v. D(log t/2a), thereby yielding the estimator 

1 L2at/lOgtj p(Iogl/2a) 

~~1(t - J 
~ ~ e- s Xi (s) ds. L2at/log tj i1- 

3. A Randomized Estimator 

A principal difficulty in estimating d is that the naive Monte Carlo estimator based 
on replicates of D is inadmissible: it requires infinite time to simulate a single observation 
of D. Hence, it is clear that one must carefully consider the computational effort required 
per observation in order to properly assess the efficiency of an estimator. Hammersley 
and Handscomb ( 1964) proposed evaluating the efficiency of a Monte Carlo procedure 
via the formula 
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Efficiency = (Time)-' * (Variance) ` where 

Time = expected computation time per observation, 
Variance = variance per observation. 

Glynn and Whitt ( 1986) rigorously justify this criterion, even when an observation and 
the work to get it are correlated. Thus, the efficiency of an estimator may be improved 
by reducing computation time per observation and/or reducing variance. An important 
implication of this observation is that the efficiency of an estimator may be improved 
by increasing the variance per observation provided that the computational time required 
per observation is appropriately decreased. The estimator proposed in this section has 
precisely this property. Specifically, the variance per observation is greater than that of 
D, but the observations can be generated in finite time. 

Suppose R is an exponential r.v. with mean one, which is independent of X. Set 

fV-1(R) 

D( 1 ) = J f(X (0) dt 

where V- (*) inf { t > 0: V(t) ?. }; we call D( 1) a randomized estimator since it 
involves adding additional randomness to the probability space. Note that D ( 1 ) requires 
simulating X only up to time V` (R), and can therefore be generated in finite time if: 

H4. V(oe) f0`o g(X(t))dt = X a.s. 
When g-= a, then EV -1(R) = 1 / a and var V -l(R) = 1 / a2. Thus, both the expected 
work per run and the variance per run are (generally significantly) affected by a. 

The following proposition shows that efficient estimation of d can be based on D 1), 
since ED(l) = d. 

PROPOSITION 1. Assume HI, H2, H4. Then 

D = E{D(1)jX}, so that ED(1) = d. 

Standard properties of conditional expectation guarantee that var D < var D( 1), so 
that the variance per observation is increased by using an estimator based on D( 1). To 
analyze the efficiency of D( 1), we will obtain a central limit theorem (CLT) for the 
corresponding estimator. Let { (Dn( 1 ), Vn l(Rn)) : n ? 1 } be a sequence of i.i.d. copies 
of (D( 1), V -(R)). Given t units of computation time, the number of observations 
generated is 

N1(t) = max {n ? 0: cl (V-1(R1) + + V-1(Rn)) ? t} 

(disregarding overhead for generating the Ri's) and the estimator 62(t) available after t 
units of computational effort have been expended is 

I 1 

62( t) {N (t) (Di (1) + + DNI(,)(1)), NV (t) > 1, 

0 N1 (t) = 0. 

EXAMPLE (continued). Let RI R2, be i.i.d. exponential r.v.'s having unit mean 
and let N, (t) = max { n ? 0 : RI + * * * + Rn < at/c } be the corresponding counting 
process. (In fact, N1(t) is a Poisson r.v. with mean at/cl.) Thus, if X,, X2, are i.i.d. 
replicates of X, the estimator 62(t) takes the form 

I Ni (Xt) rRila 

62(t) = N {x1) R J Xi(s)ds 
NA 1() i= J 

when N,(t) ? 1. 
Theorem 2 shows that 62(t) converges at rate t-112; it can also be used, in a straight- 

forward way, to obtain confidence intervals fo>r d. 
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THEOREM 2. Assume H1, H4, and ED( 1)2 < oo. Then 

t1/2(62(t)-d)== (cl var D(l )I EV-1(R))1/2N(0, 1). 

Furthermore, var D(1) = 2 fO fo E{exp(-V(t))f(X(s))f(X(t))}dsdt - d2 and 
EWV1 (R) = f E exp(-V(t))dt. 

This theorem confirms the efficiency criterion specified by (3), in the sense that the 
asymptotic variance of the limiting normal r.v. is precisely the reciprocal of the efficiency 
given by (3). In the next three sections, we will describe estimation algorithms that will 
increase the efficiency of 62(t) by reducing the variance of D( 1) without increasing the 
average amount of time required to generate an observation; the improved efficiency 
will be obtained by utilizing special stochastic structure in X. 

4. Discrete-Time Conversion for Semi-Markov Processes 

In this section, we construct an efficient estimator for d which exploits semi-Markov 
process (SMP) type structure; the idea is to eliminate some of the variance in D( 1 ) by 
conditioning on the embedded discrete-time process which describes the sequence of 
states visited by X. This "discrete-time conversion" is similar in spirit to the estimator 
discussed in Fox and Glynn (1986) for estimation of steady-state quantities associated 
with SMP's. It "undoes" some of the variance increase due to randomization. 

Specifically, we assume in this section the existence of a discrete-time process Y = { Yn 
n 2 0 } taking values in S and a strictly increasing sequence of random times { Sn :n 

> 0 } such that 
H5. (i) X(t)= o YnI (Sn < t < S1) where So = 0. 
(ii) { f3,: n ? 0 } is conditionally independent given Y, where 13n = Sn, - Sn- 
(iii) P { fn E dt I Y } = F(Yn, Yn, I, dt) for some family of distributions F indexed by 

s X S. 

H5 generalizes the notion of SMP, since we do not require here that Y be a Markov 
chain. (See, e.g., Cinlar (1975) for further discussion of SMP's.) 

To apply discrete-time conversion, we let N( t) = max { n 2 0: S, ? t } be the number 
of transitions of X by time t, and set M = N(WV-1 (R)). From H5, we get 

M T rSj+V V-(R) 

D( 1) = E J f(X(t))dt + f(X(t))dt 
j=O 

= I f(Yj) flj f(YM)(V(R)-S,). 
j=O 

The "discrete-time" estimator of this section is based on D(2) = EF D( 1)I Y, M}, that 
is 

M-1 

D(2)= f(Yj)E{j Y, M} +f(YM)E{ V-1(R)-SMI Y,M} (5) 
1=0 

Let So(x, y, X) be the Laplace transform of the distribution F(x, y, dt) defined by 

(o(x, y, X) = { ) e-tF(x, y, dt). 

It is easy to show, using a dominated convergence argument, that the derivative p'(x, y, 

X) with respect to X exists for all positive arguments A. Let { ('Pk, k'): k ? 0 be the 
sequence defined by 

'Pk = p(Yk, Yk+l, g(Yk)), f = p'(Yk, Yk?1, g(Yk)). 
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With this notation in hand, the next proposition calculates the conditional expectations 
appearing in (5), as well as the conditional distribution of M given Y. 

PROPOSITION 2. Assume Hi, H4, and ED( 1) < co. Then,fork < m 
rn-I 

P{M>mljY= H pij, 
j=O 

E {3kl Y, M = m} = f klAk, 

(1 + g(Ym(M> - (PM) 
E{ V-l(R) - SmI Y,M} = 

g(YM)( I T MOM) 

As a consequence of Proposition 2, wefind that 

15(2) If(Yj '(j+f( YM) 
\,M ~ ~ I(6) D ( 2 ) g(Ym)( 1 - (PM) 

Formula (6) shows that we get D( 2) by generating Y up to time M, where M is generated 
by using the conditional distribution given in Proposition 2. The following algorithm 
can be used to produce r.v.'s with the distribution of D(2); its validity follows immediately 
from (6), noting that M is generated by "inversion". 

Algorithm A. 1. Generate a random variate U, uniform on (0, 1). 
2. Generate Yo. 
3. Set m -- 0, A -*1, F -- 0. 

Comment: now A = P {M 0 1 Y}. 
4. Generate Y,,+,. 
5. Set A --Asprn 

Comment: now A = P {M ? m + I I Y}. 
6. If U > A, then 

(i) Set D -f( Ym) (1 + g(Yn3)4P -m <) F. 
g(Ym) (I (PM) 

Comment: now M = m. 
(ii) exit. 

7. Else, 
(i) set F r- F + f( Ym)(;n/ ',n 
(ii) set m *- mn + 1. 
(iii) go to step 4. 

An estimator 63 (t) based on a sequence { (Dn(2), Mn3: n 2 1 } of i.i.d. replicates of D(2) 
can be constructed analogously to 62(t) (see (4)). The estimator 63(t) so defined is a 
sample mean of N2( t) observations of D(2), where N2(t) is the number of observations 
generated in t units of computer time. To a first approximation, N2(t) = max { n 2 0: 
c2(Ml + - - - + Mn) < t } where c2 is the computer time required to increment m by 
one in Algorithm A. (This disregards the set-up time to generate M, and the fact that 
the effort required to execute steps 4 to 7 of Algorithm A depends on the random states 
occupied at times m and in + 1.) 

EXAMPLE (continued). We illustrate this estimator by specializing the G/G/oo/or, 
queue so that the interarrival and service time distributions are exponential with param- 
eters X and ,u, respectively. The resulting M/M/oo /oo queue is a semi-Markov process. 
(In fact, it is a continuous-time Markov chain.) In this case, 

X + x,4 
S (x, j2 T ) = 
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for x, y E R+ = {0, 1, 2, * }and r ? 0. If g(x) = a for x ? 0 andf(x) = x, the ratio 

sp'/s<j takes the form s js' =-(X + a + Yju)-1. Also, it turns out that 

(1 + g(YM)Mo f-(M) _ 1 

g(YM)( - FM) X + a + YMi 

Letting (Y( 1), MI), (Y(2), M2), * * * be i.i.d. replicates of (Y, M), our estimator 
(based on t units of computational effort) can be expressed as 

1 

N2 (t) Mi Yi(i) N2(t) j j=o (X + a + 
Yj(i)1) 

where the r.v. Mi has conditional distribution 

rn-i (X + Y1(i) P {Mj > mI Y(i) } = H1 ( }=o (X + a~ + Yj(i)pA) 

Note that this estimator requires only simulating the embedded chain Y (the exponential 
holding times needed to simulate X are unnecessary). The discrete-time Markov chain 
Y has transition matrix 

X j= i+1, 

P {Yn+l =J IYn O ni , j =i-1, i 1, 
X + n,u 

{, i=j or Ii-jj 22. 

The following CLT describes the behavior of the estimator 63(t), and can be used to 
construct confidence intervals for d. 

THEOREM 3. Assume HI, H4, and ED(2)2 < oo. Then 

t 2(63()- d) =* (c2EM- var D(2))2 N(O, 1) 

as t -> oo. 

The proof of this result follows immediately from ?5 of Glynn and Whitt ( 1986). 
Since D(2) = E{D( 1)1 Y, M}, it follows by the principle of conditional Monte Carlo 
(see Bratley, Fox, and Schrage 1987, ?2) that var D(2) < var D( 1). Thus, the estimator 
63(t) is obtained from 62(t) by reducing the variance per observation. However, as Theo- 
rems 2 and 3 point out, an efficiency increase is obtained only if (c2EM)/(c1 EV-'(R)) 
< var D( 1)/var D(2). 

To fully understand this condition, note that var D( 1 )/var D(2) reflects the degree 
to which randomness in D( 1) is due to the holding times O., as opposed to the embedded 
sequence Y. On the other hand, the ratio c2EM/c,EV-'(R) describes the complexity 
of generating a D(2) observation relative to a D( 1 ) variate. Observe that both types of 
observations require generating Y up to time M; thedifference is that D( 1 ) additionally 
requires generating the holding times Oj, while D(2) involves the Laplace transform 
quantities (pj and fp'. If the F(x, y, dt)'s are distributions having Laplace transforms that 
are easily numerically evaluated (as is the case with gamma r.v.'s, for example), then 
the (possible) increase in effort involved in passing from D( 1 ) to D( 2) should be modest; 
in these circumstances, 63( t) is more efficient than 62(t). For a more detailed comparison 
of "discrete-time" estimators with their "continuous-time" analogs, see ?2 of Fox and 
Glynn (1986). 
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5. Estimation for Regenerative Processes 

We assume now that X is a (possibly) delayed regenerative process with regeneration 
times 0 < To < T, < . . . (if X is nondelayed, set To = 0.); see (;inlar ( 1975) for a 
definition and examples. Thus, we do not require in this section that X satisfy the semi- 
Markov hypothesis H5. Let T_, = 0. The independence of regenerative cycles implies 
that 

d = EA(0) + EC(O)EK(O) where (7) 

A (i) = f exp-f g(X(Ti-, + s))ds) f(X(Ti- + t))dt, 

C(i) = exp(-f g(X(Ti-I + t))dt), 

K(i) = f exp - g(X(Ti-I + s))ds)f(X(Ti + t))dt, 

and Ti = Ti-Ti- I. A similar analysis of EK( O) shows that 

EK(O) = EA(1) + EC(1)EK(1). 

But K( 1) has the same distribution as K(O) by the regenerative property, so EK(O) 
= EK(1). We conclude that EK(O) = EA 1).(1 -EC(1))'. Substituting into (7) 
yields 

d = EA(O) + EC(O)EA( 1) ( 1-EC( 1 ))-'. (8) 

Equation (8) suggests that d can be estimated by simulating regenerative cycles. Since 
each regenerative cycle can be generated in finite time, independently of g, we will avoid 
the problems inherent in trying to generate D explicitly, or, when the discount rate is 
small, in randomizing as in ??3 and 4. (See also ?7.) In the discounting context, it is 
important to allow the possibility that X is a delayed regenerative process (as opposed 
to steady-state simulation). For example, if one is asked to compute the discounted cost 
for a Markov chain initiated with a distribution concentrated on more than one point, 
this generalization would be required. 

Since (8) involves two different types of cycles (delayed and nondelayed), it offers the 
possibility to stratify the computation effort so as to maximize the efficiency of the resulting 
estimators. Given a computational budget t, we allocate a proportion p to generating 
pairs (C(O), A(O)) and a proportion q = 1 - p to simulating the pairs (C( 1 ), A( 1 )) 
from the nondelayed cycle. An estimator 64(t) is then obtained by substituting the resulting 
sample means in (8). 

To be precise, let {(Cn(i), An( i) Tni): n ? 1 } (i = 0, 1) be two independent sequences 
of i.i.d. random vectors where (Cn(i), An(i)) shares the same distribution as (C(i), 
A(i)), and where rni represents the length of the corresponding cycle used to obtain 
(Cn(i), An(i)). Thus, if we set po = p, pi = q, then N'(t) = max {n ? 0 cl(T1i + 
+ Tni) < pit } is the number of type i cycles completed by time t. Put 

= { A'(t) ((C1 (i ) AI (i)) + + (CNi(t) (i), AN(t) (i))), N'(t) 1, 

0, Ni(t) = 0. 

Then the estimator 64(t) is given by 

64(t) = A,(O) + C,(O)At( 1) (1 - Ct( 1))'. 

EXAMPLE ( continued). For our M/M+/of/ci& example, suppose that X(O) = 0 and 



SIMULATING DISCOUNTED COSTS 1305 

that we use the state 0 as our regeneration state. Then X is a nondelayed regenerative 
process. If we set T(O) = 0 and T(n) = TI1 + - * * + rnl for n 2 1, T(n) is the instant 
at which the process X enters 0 for the nth time. The estimator 64(t) can then be written 
as 

1N=1t) JTEi e-xX(T(i - 1) + s)ds/N'(t) 
64(t)= 1 - (Nl(t) e-aTli/Nl (t)) 

To analyze the behavior of this estimator, we derive a CLT for 64(t). (Again, this can 
also be used to produce confidence intervals for d.) We require that: 

H6. Eri < cxO (i = 0, 1). 

THEOREM 4. Assume H1, H2, and H6. Then, for 0 < p < 1, 

t 12 (54()- d) =, (a O/p + 2/q) 12 N(O, 1) 

as t o0, where 

a2 = c, var (A(0) + C(O) EK( ))* Ero, 

(EC(0) 2 
2= Cl l-EC()) var (A(l) + C(l) * EK(l)) * ET,. 

To optimize the performance of 64(t), we select p to minimize the asymptotic variance 
term 62/p + a2/ q. It is easily verified that the minimizer is given by p* Or 0( aO + 1 )W 

(provided u- + a1 > 0) where ri = i/Po, in which case the corresponding variance is (af 
+ a1 )2. To compare the efficiency of the estimator with the previous ones, in particular 
the deterministic truncation estimator, it is useful to relate the coefficients defining 60 
and o-2 to var D appearing in Theorem 1. 

PROPOSITION 3. Assume HI and H2. Then 

var D = var (A(0) + C(0) * EK( I )) + E(0 )2 var (A(1) + C(1) * EK(1))). 1 - EC(l)2va(() ()E()) 

To aid in comparison, note that EC(0)2 > (EC(0))2 and E(l - C(1)2) ? (1 
- EC 1 ))2, (For the second inequality, 0 C( 1 ) ? 1 so EC 1 ) ? EC( 1 )2. Hence 1 
-EC(l)? 1 -EC(l)2.Butsince0<EC(l)< 1,(I -EC(E ))2 1-EC(l).)Inthe 
nondelayed case where C(O) = 1, A (0) = 0, we choose q = 1 (obviously). Theorems 1 
and 4 then suggest that 

var l1(t)/var64(t) 2bEr t(l -EC 
1 

)2) (9) 

We conclude that if t > exp(2bEr1 ), it is better to use 64(t) . 

6. Estimation for Regenerative Semi-Markov Processes 

In this section, we illustrate how the methods of ?4 and 5 can be combined to ob- 
tain an estimator 65(t) which exhibits the best features of 63(t) and 64(t). In particular, 
65(t) exploits the regenerative structure of X while "filtering out" the variance in 64(t) 

due to holding time randomness; the latter property is achieved by using discrete-time 
conversion. 

Returning to the set-up of ?3, we now assume that the embedded sequence Y is re- 
generative. Thus, we require that Y possess regeneration times 0 c Uo < U1 < * and 
set U-1 0, ni = Ui - Uj_. By the conditional independence of the j3's given Y, it 
follows that the random times T1 = are regeneration times for X. Hence, (8) is valid 
for the Ti's; as an immediate consequence, we obtain the identity 
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d = EA(0) + EC(O)EA( 1) ( 1-EC( 1))- (10) 

where A( i) E { A (i) I Y }, C( i) = E { C i) Y }. To compute the conditional expectations 
appearing in (10), observe that 

E{C(i)j Y} = E{ [ exp(-g(Yj)o3)I Y 

Ui-1 

=H1I (pe and 

E{A(i)Y} Y) E{=E , exp(-f0g(X(Ti-i + s))ds)f(Yi)1Y} 

J=UJ1i-i f3 I ui-I j-1 [%jA 
= E. E rI exp(-g(Yk)fk) J exp(-g(Yj)t)dtf( Yj) I Y 

j=_ k=O J 

UjlO j11 f( Y ) 
-Z Hso(k(1 (i 

j=iik=O - g(Yj) 

Given the above formulas, it is straightforward to generate the pairs (C(i), A(i)) by 
simulating the sequence Y. As in ?4, the computational effort may be assigned so that a 
fraction pi of the total time t is delegated to generation of pairs (C(i), A(i)) (i = 0, 1). 
An estimator 65(t) can then be constructed analogously to 64(t). 

We can derive a CLT for 65(t) which describes its convergence and can be used for 
confidence interval estimation; the proof is analogous to that of Theorem 4 and is therefore 
omitted. The result (Theorem 5 below) assumes that the computational effort required 
to generate (C( i), A( i)) is c3tqi. The constant C3 reflects the difficulty of simulating the 
chain Y and numerically evaluating the $pj's. We do not assume that c2 = C3 since the 
discrete-time algorithm of ?4 also involves numerical evaluation of the derivatives of the 
hoj's, which may be harder. For continuous-time Markov chains, however, both Soj and 
SoJ have simple closed forms. 

H7. Ei < oo (i = 0, 1). 

THEOREM 5. Assume HI, H2, and H7. Then, for 0 < p < 1, 

t/2d(65(t) -d=> (vi2/p + i2/q)1/2N(O, 1) 

as t -* oo, where 

0 =c3 var (E{A(O) + C(0) EK(l) I Y} ) E1o, 

a l = C3 I -_EC( 1 )) var (E {A ( I) + Qf 1 ) * EK( 1 ) I y }) . En,l. 

EXAMPLE (continued). We illustrate this estimator with our M/M/oo/oo example. 
If X(0) = 0, then the embedded Markov chain Y(see ?4) has initial state 0. If we choose 
O as our regeneration state, UO = 0 and Ui is the transition on which Y visits 0 for the 
ith time. Let N5 (t) = max { n 2 0: C3 Un < t } be the process which counts the number 
of regenerative cycles completed with t units of computational effort. Noting that Y is a 
nondelayed regenerative sequence when Yo - 0, the estimator 65(t) takes the form 

- 
_ E=l (1 - Pj)Yj Hkj=O (Pk/N5(t) 

65(t)-= -(N5(I) Ht4'J i /NI(t)) 

where (pj = (X + Yj)/(X + a + Yjp). 
The principle of conditional Monte Carlo again guarantees that 0 ? 0, al < C;the 
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amount of variance reduction depends on the extent to which the randomness of D is 
due to the holding times. As an immediate consequence, we find that if cl ErT c3En 1, 
65(t) is more efficient than 64(t). The following proposition relates a0 and Il to 
var (E{ DI Y }); its proof is similar to Proposition 3 and is omitted. 

PROPOSITION 4. Assutme HI and H2. Then 

var (E{DI Y}) = var(A(0) + C(O) EK( 1)) 

+ 1 -EC( 1)2 
var (A( I ) + C 1) EK( 1)). 

This result can be used to compare the efficiency of 6I (t) to 65(t) when Y is nondelayed. 
By arguing as in (9), we find that 

var 61 (t) log t * cl var D * ( 1-EC( 1))2 

var 65 (t) 2bErtj c, var(EfDjYj) (1 -Ee( 1)2) 

Here, we find that ift >exp(2bc3Ei,i var(E{DI Y} )/(varD* cl)), 65(t) is more efficient 
than 6I(t). 

7. Analysis of Efficiency for Small Discount Rates 

In this section, we study the relative efficiencies for small discount rates of the methods 
considered above. Smallish discount rates arise naturally in many economic contexts 
(e.g. low inflation rate settings) and a considerable literature has developed on this topic. 
(See, for example, Veinott ( 1969) or Whitt (1972).) 

To make our analysis precise, let 

Va(t) = a g(X(s))ds 

where g does not depend on a and set d( a) = ED,, where 

Da = f exp(-Va(t))f(X(t))dt. 

We are interested in the efficiency of our five estimators for D( a) when a is small. Given 
Theorems 1 through 5, we examine the asymptotic behavior of the scaling constants 
appearing in front of the limiting normal r.v. These scaling constants determine the width 
of the confidence interval associated with a given method, and consequently one wishes 
to choose estimators for which the scaling constants are as small as possible. 

Our subsequent mathematical analysis requires: 
H8. X is a (possibly) delayed regenerative process with regeneration times 0 ? To 

< T, < 
H9. E( Y1(f)4 + Yi(g)4) < 00 (i = 0, 1), where 

rTi rTi- I 

Y1(f) = f(X(s))dx, Y1(g) = f g(X(s))dx. 

Although the results stated here require the regenerative structure for the proofs, it seems 
likely that the same asymptotic behavior holds for more general classes of processes. This 
belief is supported by some of the more general limit theorems appearing in Glynn and 
Whitt (1988). 

To state the following theorem, we add an a-dependence to all the r.v.'s and constants 
appearing in Theorems I to 5. For example, DCY( 1 ) is defined as fVa(R) f(X(t))dt. 
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THEOREM 6. Assume H1-H8. Then: 

(a) d(a) - ( / a)(r(f)/r(g)). 
(b) var D<>, - (I/ /2a)(a 2/ r(g)). 
(c) c(a) ar(g). 
(d) var D( 1) - ( 1 /a 2)(r2(f)/r2(g)). 
(e) EV) (R) - (ar(g))<. 
(f) var Da(2) - (1 /a2)(r2(f)/r2(g)) 
(g) EM(ae) - (aer(g))-'(Eq7l ETj ) 
(h) (00(a) + a, (a ))2 (c2/1a2)(U2/r(g)). 

(i) (ao0(a) + al(a ))2 ((c3/1a2)(a2/r(g))(Eq IETI). 
as a J 0, where r(f) = EYi (f )/ETi, T(g) = EY, (g)/ET1, 

2 var(r(g)Y1(f) -r(f)Y1(g)) 1 
E-TI r( g)3 

2 var (E{ r(g)Y1 (f)-r(f)Y1 (g) Y}) 1 
E I 

Given a computation budget of (at least) moderate size t, the above theorem tells us 
that if the discount rate is small, then we can expect that 

log t .1 a 2( 

varb1(t)~ *3 ', lb 
var v3(t -t a2 4r(g) (I la) 

1 cl r2(f) 

var 62(t) a r2(g) F (I lc) 

var 65(t) (I IC 2) 
3 t a r P(g) (lid 

1 C3 ii2 Efl1 var 55(t) - ~~~~~~(Ilie) t a 2r(g) FT1 

Assuming that cjEqI < c1 ETI for j = 2, 3 (i.e. the cost of simulating a regenerative cycle 
in discrete time is less than or equal to the cost of simulating a cycle in continuous time), 
the above analysis suggests that we can order (for small discount rates) the estimators in 
order of decreasing preference as follows: 655(t), 34(t), 6 1(t), 533(t), 532(t). 

The above results also show that the discounting problem does not get harder as a 
0, provided that we take advantage of regenerative structure. Suppose that we wish to 
construct a 100(1 - y)% confidence interval for d( a) with half-width equal to e% of 
d( a). If the estimator 65(t) is used, the computational effort t(a) required for this relative 
width confidence interval is given approximately by 

t(a) -z2(,y)a2c3* E?7r(g) 
E 2ET r(f)2 

where z(y) solves P {N(0, 1) < z(y)} = 1 - /2. Since the right-hand side does not 
depend on a, this shows that the. discounting problem does not get harder, in a relative 
error sense, as the discount rate is driven to zero. 

8. An Example: The M/D/oo/oo Queue 

In this section, we analytically compute the mean square error of the estimators 61 (t), 
62(t), and 64(t) for a special case of the G/G/cx& /cxz queue dXescribed earlier in the paper. 
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Specifically, we shall analyze the M/D/oo/oo queue, in which the arrival process is 
Poisson with rate X and service times take on the constant value A. (This queue is more 
analytically tractable than M/M/oo /oo.) For our example, we let f(x) = x, g(x) = a, 
and assume C1 = C2 = C3. 

If we let q = (n(s): s ? 0) be the Poisson arrival process to the queue and X(s) is the 
number of customers in the system at time s, it is clear that X(s) = ?7(s) - (s - ), 
provided that we define n(s) = 0 for s < 0. Hence, 

00 
Da= e-asX(s)ds 

o~~~~~~~~~~~~c 
- J e'IV(s)ds+ J e-s(n(s) - r(s - A))ds 

= ( 1 -e-aA) &e-as (s)ds. 

o~~~~~~~~~~ 
Then d(a) = EDa = (1 e-aA) f0 e-asXsds = (1 -e-a)X/a2. Also, using the inde- 
pendent increments property of q, find that 

var D e'a')22 e-f s- au cov (a(s), n(u))duds 
oCs 

= (1-e-aA)22 f e- as-auXsduds 

= (1 - e-aA)2X/2a 3. 

Similar, but more involved, calculations show that if we choose fi> 2A, 

var ( e- asX(s)ds) = (1 - e-aA)2X/2a3 - A2(( )- )- (12) 

We find that if: > A, 

bias e -asX(s)ds) = . (13) 

The theory of ?2 suggests that we choose the truncation point: = (log t)/2a when the 
computer budget equals t. The computer budget just equals the total simulated time over 
all replications. The corresponding number of replications is then L2at/log tj. Using 
(12) and ( 13), we find that if t > exp(4azA), 

o gt -aA)2 X I X2A2 (log t) I (eaA I- 
MSE(531(t)) _ (1 ~ea +~ - ~xI Azi (14) 

2at 2a3 t a 2 2a 3t2 a/ 

(We write _ only because we have replaced the integer L2at/log tj by 2at/log t.) To 
analyze the mean square error of 62(t), we observe that if s < u, then 

EX(s)X(u) = X2(s A A)(u A A) + X((s - u + A) V 0). 

Straightforward integrations then prove that (see Theorem 2) 

-a-1) 
2 

-a\) 6 X2 
-a tMSE( 32( t)) ( -e-A) - (5 + eaA - A e 

X"A _2 2XA __a 
- X e + 3 (1- )- 42 e (15) 
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To compute the mean square error of the regenerative estimator, we let 0 be our 
regeneration state. Then, T( 1) = inf { t 2 0: X(t-) * 0, X(t) = 0 } is the first regeneration 
time for X. Let Eo ( ) (varO ( )) represent the expectation (vaiiance) operators, conditional 
on X(0) = 0. 

THEOREM 7. For r 2 0, Eo exp(-TT( 1 ))=X(X + T exp((X +T))1. 

Proposition 3 then proves that 

varo (A( 1 ) + C(1) EK( 1))= varo (Dog) * ( 1-Eoe-2aT(l)) 

X e (X+2at)A 
e 1 - 

aA___2_ __- a 2 X + 2ae (?+2a)A 

Recalling that the stationary distribution 7r of X is Poisson with parameter XA, it follows 
that 7r0 = e-xA. Hence, EoT( 1) = (X7ro)-l = exA/X. Thus (see Theorem 4), 

1 (X + ae (X?a)A)2 

MSE(54(t)) (1 -e- aA)2. 4(X + ae(2a)A) (16) 

Since X is not a semi-Markov process, estimators 53 and 55 are inapplicable. 
Table 1 uses formulas ( 14), ( 15), and ( 16) to calculate the mean square error of 

estimators 51, 52, and 34 for various choices of the parameters t, A, and a. The table 
shows that if A is not too large, the regenerative estimator 34 is best. Recalling that the 
length of a regenerative cycle is e A/ X, we see that the regenerative cycle length EoT( 1 ) 
grows very rapidly with A. The lesson here is that the regenerative estimator is the method 
of choice when the regenerative cycles are not too long. We also see that if the discount 
rate a is large, the randomized estimator 2 wins, as suggested by ( 1 lb). Perhaps sur- 
prisingly, Table 1 indicates that 51 is competitive with 2 and 54 across the entire range 
of parameter values. We found that our choice of :*(t) = (log t)/2a gave reasonable 
performance in this example. (Recall that Theorem 1 shows that setting ,B* (t) = (log t)/ 
2a + t is asymptotically optimal, for any choice of t.) The table also shows that each of 
our (applicable) estimators can have the lowest mean square error and that their mean 
square errors can differ widely in particular cases. 

9. Conclusions 

Table 2 reviews the basic properties of the estimators considered in this paper. 
Our M/D/cx& /oo example has the fixed-time truncation estimator 3I performing well 

at essentially all combinations of t, a, and A, except that when A is small (and hence 
the regeneration cycles short) the regenerative estimator wins by a large margin. The 

TABLE 1 

Mean Square Errors 

Truncated Randomized Regenerative 
Estimator Estimator Estimator 

a 81 2 84 

0.20 0.003 lo5 0.17 10.3 0.044 
1.0 0.30 l0o 3.5 X 10-4 4.71 X 0-4 9.22 X i0-5 

10.0 0.03 107 0.045 0.37 2.75 
20.0 0.30 10" 5.22 X 108 3.45 X 10-8 8.94 X 10-2 

20.0 0.03 108 1.60 X 10-2 0.14 18289.9 
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TABLE 2 

Randomized Regenerative 
Truncated Randomized Semi-Markov Regenerative Semi-Markov 
Estimator Estimator Estimator Estimator Estimator 

Estimators 6, 62 63 64 65 

truncates Yes No No No No 
deterministically 

truncates No Yes Yes No No 
randomly 

"conditions out" No No Yes No Yes 
holding times 
when process is 
semi-Markov 

uses regenerative No No No Yes Yes 
structure 

becomes less No Yes Yes No No 
efficient as 
discount rate 
decreases 

variance per run see below 63 beats 62 a5 beats 64 

overall efficiency always loses 
for large 
enough depends on expected work per 
computer 62, 63 always lose to64, 65 for run as well as variance per 
budgets small enough discount rate run; see text 

randomized estimator 62 occasionally wins (by a slight margin) when the discount rate 
is (artificially) high; its performance is otherwise terrible. When A is large (recall that 
the average length of a regeneration cycle here is e/ X), the regenerative method breaks 
down. Too much should not be inferred from one example. However, the example in- 
dicates that fixed-time truncation is the least volatile estimator, in accordance with in- 
tuition. 

The real contribution of this paper is for problems with computer budgets ample 
enough to afford pilot runs to get "ballpark" estimates of all auxiliary parameters required 
for our estimators and their respective variance constants. The work to compute the 
Laplace transforms can be estimated easily. If they require little work (and the process 
is semi-Markov and regenerative), we would narrow the set X of estimators to be compared 
in trial runs to 61 and 85. If the process is regenerative but not semi-Markov, we would 
narrow X to 6I and 64. If the process is semi-Markov but not regenerative, we would 
consider 61 and 83. If the process is neither regenerative nor semi-Markov, then the only 
possibilities are 61 and 62- 

Estimating the variance constants gives the mean square error parametrically in the 
computer-time budget (assuming that budget is large). We can thus rank our estimators 
for large budgets, much larger than that spent on pilot runs. A direct comparison of 
sample mean square errors based on pilot runs could be misleading, because 62, 83, 84, 

and 65 converge at the canonical rate t - I /2 whereas 68 converges slower (at rate 
t-1/2 log t). We can also get the mean square errors parametrically in the discount rate 
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via (1 la)-( lIe); this can be used as an additional theoretical guide for choosing the 

"production run" estimator. 
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Appendix 

PROOF OF THEOREM 1. First, observe that the positivity of f shows that the bias b(f3) is positive for all ,B. 
Furthermore, by H2, it is evident that b(13) converges to zero as ,B -- oo, and thus a and b must be positive 
finite constants. 

We now apply the results of Fox and Glynn ( 1989) to obtain the theorem; it is easily checked that their 
hypotheses are in force. Their Proposition 1 states that ,8(t) - oo as t - oo is necessary for consistency of 
5I (t), while their Theorem 2 proves that 

q(t)(bI(t) - d) TN(O, 1 ) + -y (Al) 

as t oo, where q(t) = (t/cl,f(t) var D(13(t))1/2, and -y = lim,-BOO q(t)b(13(t)). Since ,B(t) - oo, it is evident 
that 

var D(,B(t))/var D- 1 (A2) 

as t oo. Furthermore, 

t1l/2b(,B(t)) be(-c13(t)) *exp[ c(,(t) clog ) (A3) b x(co( t)) ex[c1() 2c 

Hence, if 13(t) = B* (t), it follows that t 1"2b(13(t)) converges to a finite constant, so that -y = 0; part (i) is then 
obtained by using (Al ) and (A2). Similarly, for part (ii), tl"2b(13(t)) -O 0 so that -y = 0 and the result again 
follows immediately from (Al) and (A2). Finally for (iii), (A3) shows that for t sufficiently large, 

t1l2b(13(t)) 2 2 exp[4 (1 K) log t] K t 

so that -y = X, yielding the result. 
PROOF OF PROPOSITION 1. We can write D( 1() as 

D(l) = f I(V-'(R) > t)f(X(t))dt 

= I(R> V(t))f(X(t))dt. 

The result then follows from Lemma 1 below, by noting that the independence of X and K proves that E{ I(R 
> V(t))f(X(t)) I X } = f(X(t))P{ R > V(t) I X } = f (X(t)) exp(-V(t)). 

LEMMA 1. Let Z be a nonnegative process on a probability space ( Q, W, P). If 9 is a sub-u-field of i, then 

E{' Z(t)dtlgj = f E{Z(t)j.9}dt a.s. 

PROOF OF LEMMA 1. We use the defining relation for conditional expectation, as given on p. 298 of Chung 
(1974). Note that fo E{ Z( t) I } dt is a s-measurable r.v. such that if A E 9, 

E(f E{Z(t)jI}dt I(A)) = f E(I(A)E{Z(t)I9})dt 

= E(I(A)Z(t))dt 

=E( Z(t)dt *I(A)); 
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the first and third equalities use Fubini's theorem, whereas the second follows from the defining relation for 
E{Z(t) j 9 } . We have therefore demonstrated that frO E{Z(t) j 9 } dt satisfies the defining relation for 
E { fro Z(t)dt 1 . }, proving the result. 

PROOF OF THEOREM 2. The CLT for 62(t) follows immediately from ?5 of Glynn and Whitt (1986). For 
the expression for var D( 1), note that 

V -l(R)t 

E5( 1)2 = 2E{j ff(X(S))f(X(t))dSdtl 

= 2E{f fI(R > V(t))f(X(s))f(X(t))dsdt}. 

= f fO E{I(R> V(t))f(X(s))f(X(t))dsdt}. 

But E{I(R > V(t))f( X(s))f( X(t))I X} =If(X(s))f(X(t))* P{R > V(t)} =f(X(s))f(X(t)) exp(-V(t)), 
yielding the formula. A similar proof gives the expression for EV-'(R). 

PROOF OF PROPOSITION 2. For the first formula, note that 

P{M2 mY} = P{IV (R)> SnIY} 

= P{R > V(Sn)lIY} 

= E{P{R> V(Smn)IX}IjY} 

= E{exp(-V(S..))IY} 

rn-i 

= H E{exp(-g(Yj)I3)I Y} 
j=0 

rn-I 

= Ho(Yj, Yj+ , g(1Yj)), 
1=0 

from which the result follows. For the second expression, observe that E { fk I Y, M = m } = E&{ fkI (M = m) I Y } / 
P { M = m I Y }. To analyze the numerator, note that for k < m, 

E{IkI (M2 m) IY} = E{E{flkI(R > V(Sm))I X}I Y} 

= E{ Ik exp(-V(Sm))I Y} 

m-1 
= -(k* H 'pj 

j=0 
j$k 

so that Ej{ fkI (M = m) I Y } =-(Pk'' (1 -Pm) * H1jM=-o_J#k 'Pj. This, when combined with the first formula, yields 
the second identity. 

The proof of the third formula follows a similar pattern. We write E { V- (R) - SMI Y, M = m } = E{ (V-'(R) 
- SM)I (M = m) I Y }IP {M = m I Y }; again, we handle the denominator using the first formula. For the 
numerator, we note that E{ V`(R)I (M = m) I Y} can be expressed as 

j P { V-1(R) > t; M = m IY}dt=j P{R > V(t); R > V(Sm)l Y}dt 

- J P{R > V(t); R > V(Sm+i)/ I Y}dt. (A4) 

By conditioning on X, we find that P{R > max (V(t), V(Sk))l Y} = E{exp(-max (V(t), V(Sk))) I Y}. So 
by Lemma 1 

J P{R > max (V(t), V(Sk))I Y}dt = E exp(-max (V(t), V(Sk)))dt} 

= E{Sk exp(-V(Sk))I Y} + E{J exp(-V(t)dtlY| (A5) 

On the other hand, E{SmI (M = m)I Y} E{SmI (V(Sm) < R < V(Sm+i))I Y} E{Sm(exp(-V(Sm)) 
- exp( - V( Sm+i ))) I Y }. Combining this with (A4) and (A5) shows that the numerator equals 
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E texp(- T (S,h( exp(-g(Y,,)i)dt - f,3m exp(-g(Yn,) ml) )I Y | l 'Pi ( (I -s?,,) + iO ,,,) 

Dividing by the denominator gives the third formula. 

PROOF OF THiEOREM 4. Standard weak convergence arguments prove that 

4(t) = [,4,(o) + C,(O)EK( )] + [ -EC(1) (A( 1) - EK( 1 )( 1-C( 1 )) + oP(t '2) 

where p( il 
- 
l"2) represents a process x(t) such that t "2x(t) ==> 0. The random time-change results of ?5 of Glynn 

and Whitt ( 1986) can now be applied to the bracketed terms above to obtain the result. (To show that the 
respective variances are finite, see the proof of Proposition 3.) D 

PROOF OF PROPOSITION 3. The regenerative structure of X proves that (=denotes equality in distribution) 

D= A (O) + C(O)K( 1) 

where (A (0), C(O)) is independent of K( 1). Squaring both sides and taking expectations, we get 

ED2 =EA(0)2 + 2EA(O)C(O)EK( 1 ) + EC(0)2EK( 1)2. (A6) 

Since all terms on the right-hand side are positive, we see that H2 implies the finiteness of all the qualities 
appearing there. We apply the same analysis to K( 1): 

K(l)=A(l) + C1 )K(2). 

Using the fact that K(2) K( I), we get EK( )=E )+ 2 EA ( I) Q I EK(l))(l - EQ )2- (EC2 
< 1 by H I ). Substituting this into (A6) yields the result, after algebraic simplification. 

PROOF OF THEOREM 6. For (a) we use (8) and let a o 0. A Taylor expansion gives 

oTo 

A,,(O) =J exp(-a V(t))f( X (t)) dt 

= JT I [1- a V(t) + a V2(t)e- (') X(t))dt 

where -y -y(a) E (0, a). Since V2(t) exp(--y(a)V(t))f(X(t)) ? V2(r)f(X(t)) uniformly in a and 

TzO 
{ V2(r)f(X(t))dt = yo(f)Yo(g)2 

is integrable by H9, it follows from the dominated convergence theorem that 

EAa(O) EYo(f) - aE V(t)f(X(t))dt + 2 E V2(t)f(X(t))dt + (a 2). (A7) 

Similarly, one can show that 

a2 
EQO) = 1- aEYo(y) + 2 EYo(y)2 + o(a 2). 

2 

Corresponding expressions for EAJ( 1) and EC( 1) lead immediately to (a). For (b), (h), (i), we use Propositions 
3 and 4 and arguments similar to the above. Relation (c) can be found in Glynn and Whitt ( 1988). 

For (e), observe that 

Vo'(R) Lo(O) + I(O) Q(1) (A8) 

whereL(0)= V-'(R)A To,I(O)= I(V-2(R)> TO),Q(j1)= VY(r)- To,,and(LJO),IJ(0))isindependent 
of Q( 1 ). Furthermore, on { V -I(R) > To}, 

QaM= )La( 1) + Iat(l1)Qat(2) (A9) 

where L(l) = (VaJ(R) A T,) - To, I,( 1) = I(V,'(R) > TI), Q,(2) -- Va(R) - T,, (La(M1), I"(1)) is 
independent of QJ(2), and the distribution of Qj(i) conditional on { V,'(.R) > Ti } is independent of i (i = 0, 
1). Taking expectations in (A8) and (A9) and using the independence leads to an expression similar to (8). 
One then expands the expectations in a manner similar to (A7) to obtain (e). Results (d), (f), and (g) are 
proved using decompositions analogous to (A8) and (A9), followed by Taylor expansions for small a. 

PROOF OF THEOREM 7. We let E, ( * ) denote the expectation operator, conditional on X(0) = 1 and service 
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starting on the single customer at time t = 0. Then, since interarrivals are exponential with parameters X, we 
find that 

x 
Eo exp(- TT(1)) FX El exp(- TT( 1)). 

If V is the arrival time of the next customer, we see that 

Ele T(l) = Ef {eT(l); V > A} + El {e T(I); V< A} 

la 
= E,{e- ; V> i\} + fEl {e~ T(i); VEdv} 

= e-P1 {V> i\} + f E,e- (T( )+v) evdv 

x 
- e-(+X)\ + Ele- T(l) 

X 
(1 - e-(N+r)a). 

Solving for Eie,T(), we get E,e'T(I) = (X + T)/(X + re(x+ ). Thus, Eoe-T(I) = X/(X + re(x+.). 
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