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We analyze properties associated with a simple yet effective way to exploit parallel processors in

discrete event simulations: averaging the results of multiple, independent replications that are

run, in parallel, on multiple processors. We focus on estimating expectations from terminating

simulations, or steady state parameters from regenerative simulations. We assume that there is

a CPU time constraint, t, on each of P processors, Unless the replication lengths are bounded,

one must be willing to simulate beyond any fixed, finite time t on at least some processors in

order to always obtain a strongly consistent estimator (as the number of processors increases).

We therefore consider simulation experiments in which t is viewed as either being a strict

constraint, or a guideline, in which case simulation beyond time t is permitted, The statistical

properties, including strong laws, central limit theorems, bias expansions, and completion time

distributions of a variety of estimators obtainable from such an experiment are derived. We

propose an unbiased estimator for a simple mean value. This estimator requires preselecting a

fraction of the processors. Simulation beyond time t may be required on a preselected processor,

but only if no replications have yet been completed on that processor.

Categories and Subject Descriptors: G, 1. [Numerical Analysis]: General–parallel algorithms;

G.3 [Probability and Statistics] –probabzktzc algorith ms (including Monte Carlo); 1.6,1 [Simu-

lation and Modeling (G.3)]: Simulation Theory— types of simulation (discrete)

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bias, discrete event simulation, estimation, multiple replica-
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1. INTRODUCTION

Discrete event simulations often require large amounts of computer time in

order to produce statistically accurate estimates. This is particularly true of

queueing network models of manufacturing, communications, and computer
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4. P W. Glynn and P Heidelberger

systems. Such simulations therefore represent an important potential appli-

cation for parallel processors. Distributed simulation, or the execution of a

single realization of a stochastic process on multiple cooperating processors,

has recently been the focus of a good deal of research. Fujimoto [111 contains

an excellent introduction to this topic, including a discussion of why dis-

tributed simulation is difficult, a description of a variety of synchronization

techniques, and a literature review. For further surveys and a representative

sample of research in this area see [28, 30, 32, 361, or [37]. While significant

speedups have been achieved in distributed simulations of specific, specially

structured queueing systems (see, e.g., [10, 18, 25, 291, or [391 ), effective use

of distributed simulation for the type of complex models that often arise in

practice currently remains an area of research.

However, a simple alternative to distributed simulation easily takes ad-

vantage of parallel processing technology: running multiple independent

replications of the model, in parallel, on multiple processors and averaging

the results of at the end of the runs. The method can potentially be applied to

any model and does not require advanced parallel processing hardware, for

instance, it can be used on a collection of workstations attached to a local

area network. Heidelberger [191 developed a simple model to compare the

statistical efficiency (specifically the mean squared errors) of these two

approaches for estimating so-called steady state quantities. This analysis

shows, qualitatively, that the parallel replications approach is statistically

more efficient than distributed simulation, provided:

(1) the model’s memory requirements are small enough so that it can reason-

ably fit into the memory of a single processor;

(2) the model can be run long enough on a single processor so that initializa-

tion bias is not significant (compared to the standard deviation); and

(3) a main reason why the model must be run for long periods of time is the

slow rate at which the standard deviation decreases.

We believe that these conditions are satisfied for many queueing models, for

example, networks in moderate to heavy traffic with, say, up to hundreds of

queues: such systems are difficult to simulate primarily because the stan-

dard deviations of the point estimates are typically large (see, e.g., [381). As

technology advances and processors become faster and memories larger, we

expect the class of models suitable for the parallel replications approach to

become ever larger. Further statistical properties associated with this ap-

proach for steady state estimation are considered in [13, 141 and [171.
When one considers the estimation of quantities arising from so-called

transient, or terminating, simulations, the parallel replications approach

appears to be even more attractive. Examples of such quantities are the

following:

(1) the expected time until a queue length first exceeds some level (given a

prespecified set of initial conditions);

(2) the expected number of customers that can be served in a fixed time

interval (again, given a prespecified set of initial conditions);
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Parallel, Replicated Simulations Under a Completion Time Constraint . 5

(3) the mean time to failure in a reliability model; and

(4) the expectation of an integral, or sum, over a cycle in a regenerative

process (see [341 ), for instance, the integral of a queue size. In this case a

replication is associated with a regenerative cycle and the parallel repli-

cations approach for estimating transient quantities can be thought of as

a parallel regenerative method (see, e.g., [7]) for estimating steady state

quantities.

Intuitively, one should be able to just turn on the parallel processor for some

period of time, say t,and average the resulting observations at the end of the

run. For a large number of processors, one should be able to make t small,

thereby running only a few replications on each processor. Thus, highly

accurate estimates should be obtained in a very short period of time.

However, there are some potentially serious statistical problems with the

parallel replications approach, especially for a large number of processors.

These problems arise mainly because of the sampling bias associated with

the fixed completion time t. First of all, what should one do with the

replications that are in progress at time t? Should they be discarded, or

allowed to complete? Second, how should one average the resulting observa-

tions? There are several ways this can be done. Does it make a difference?

What are the statistical properties of the resulting estimators? This paper

studies these and related questions.

In the case of a single processor, these issues were investigated by Meketon

and Heidelberger [26], who showed that under certain circumstances it is

better to complete the replication in progress at time t.Specifically, if t is

measured in units of simulated time, then in the case of ratio estimation in

regenerative simulation, the bias gets reduced from order 1/t to 1/t 2 by

completing the regenerative cycle (replication) in progress at time t.In the

parallel processing setting, these (and other) issues were addressed by Hei-

delberger [20], who showed that some of the most obvious estimates obtain-

able from parallel replication schemes are guaranteed to produce incorrect

results, in the sense that they converge to the wrong quantity with probabil-

ity one as P, the number of processors, increases. In [20], other estimates

with correct convergence properties were proposed and analyzed. Associated

with these estimators is a completion time penalty that arises because all, or

some, of the incomplete replications must be allowed to finish in order to

reduce or remove the bias. A subsequent paper by Glynn and Heidelberger

[161 revisited the single processor ease, obtaining finer bias expansions for a
variety of estimators and relating these expansions to the bias-reducing

technique in [26]. Other issues related to parallel replication schemes have

also been analyzed by Bhavsar and Isaac [1].

The present paper explores the parallel processing implications of the

results in [16]. We generalize and improve upon the estimators suggested in

[20]. The generalization permits more than just ratio estimation, and the

improvements include new estimators with shorter completion times. In
addition, whereas [20] considers asymptotic behavior as either t+ m or

P + CO,we analyze situations in which both t and P approach co simultane-

ously. This allows us to determine, for example, the relative rates at which t
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6. P, W. Glynn and P Heidelberger

and P must grow in order to obtain valid confidence intervals when one

discards all replications in progress at time t.Since, in reality, we never

actually have an infinite number of processors, these results should be

interpreted as determining how large t needs to be qualitatively for a given,

large, number of processors.

The paper is organized as follows. In Section 2, we introduce notation and,

in the interest of keeping the paper self-contained, review the most relevant

results from [16] and [20]. Section 3 considers the estimation of a simple

mean value, while Section 4 considers the estimation of a nonlinear function

of a vector of simple means (e. g., a ratio of two mean values). Completion

time results associated with the various estimators are derived in Section 5,

and the results are summarized in Section 6.

2. NOTATION AND REVIEW

We let P denote the number of processors. We assume that processors are

identical and that, simultaneously, each processor runs multiple replications

of the simulation. The output of replication j on processor z is a random

variable (r.v. ) X,~. The goal of the simulation is to estimate p = E[ XL ~]. We

let ~Z~denote the (random) amount of (computer or real) time required to run

replication j on processor i and let S,(n) = ~Ll + . . . + ~, ~ be the time that it

takes processor i to complete n replications (also let S,(0) = O). In a simula-

tion of length t,processor i can complete IV,(t) replications where N,(t) =

sup{ n > 0: S,(n) < t}.Throughout the paper, we make the reasonable as-

sumption that {(X,], ~1~), z = 1, . . . . P, j z 1} are i.i. d. (independent and

identically distributed) r.v. s. Under this assumption { N,( t), t > O}, i =

1,. ... P are i.i.d. renewal processes (see [5] or [35]).

Notice that there are many possible ways to estimate ~ from such an

experiment. One could estimate p based on simulating a fixed total number

of replications, or based on a completion time constraint t as in the above

setting. While other stopping rules are also possible, we only consider estima-

tors based on a completion time constraint, which represents a realistic and

practical method for running such parallel replication schemes. In [20], a

variety of such estimators for p are considered and analyzed. The first, and

perhaps the most obvious, thing to do is simply average all of the observa-

tions that have completed by time t. This results in the following estimate:

(2.1)

In [20], it is shown that while lim ~- ~

lim
iil(P, t) = P almost surely (as.),

~+~ JI(P, t) is typically not equal to p, in fact lim P+@ jl( P, t) = K +
0(1/ t) as. In other words, if one attempts to estimate p by running a very

large number of processors for a short amount of time, then the estimate need

not converge to p. On the other hand, if one completes all the replications in
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Parallel, Replicated Simulations Under a Com~letion Time Constraint . 7

progress at time t,then the estimate

has the property that lim, +~ jiz(P, t) = ]imP+~ ~z(P, t) = ~ as. The differ.

ence in asymptotic behavior (as P + m) between jll( P, t) and jiz( P, t) is due

to the ratio form of the estimates and the fact that (N,(t) + 1) is a stopping

time and, therefore, by Wald’s equation (see p. 186 of [21]), the limit of 1/P

times the numerator of Eq. 2.2 converges to E[ N,(t) + l]E[ X,J] while l/P

times the denominator converges to E[ N,( t) + 1]. Thus the limiting ratio is

independent of tand produces the desired result. Since N,(t) is not a stopping

time, this argument cannot be applied to ~1( P, t). The price to be paid for this

consistent estimation of p is an increased completion time, which was shown

to grow as order ln( P) in [20] under a variety of distributional assumptions

on 7,J.

This discussion shows that, for the estimators described above, one must

simulate beyond time t in order to obtain strong consistency as P + w. We

next show that no matter what estimator is used, one cannot expect to always

get the right answer by simply setting a fixed, finite completion time t and
“throAwing processors” at the problem. More specifically, suppose t is given.

Let OX( P, t) be any estimator for E[ X,~] that can be constructed from

information obtained in the interval [0, t],that ~s, ~x( P, t) is a function of

{(X,~,7,~), j S Nz(t),i = 1,...,P}. We r~quire 19x( P, t) to be a universally

valid estimator in the sense that lim ~ ~ ~ (3X(P, t) = E[ X,j] as., regardless of

the distributions of X,j and r,~. Suppose now that P{ r,~ > t} >0 and define

Y,j = ~Xtl if r,J s t and Y,~ = X,j + 1 if ~,j > t.Then, E[ X,~l # E[ Y,jl, how-
ever 6X(P, t) = 8Y(P, t), since

{(xL,~~LJ)jj~~,(t), i= l,..., p} = {(yl,,~L,),j~Nt(t), i= 1,. ... P}.

(2.3)

Therefore,

E[X,,] = li+~jx(P, t) = li+i{y(P, t) # E[Y,J], (2.4)

that is, ~ Y( P, t) is not consistent for ( Y,~, ~,~). Thus, no such universal

estimator exists, and one must be willing to simulate beyond time t on at

least some processors in order to obtain a universally valid estimator. This

paper will define and analyze the properties of such a class of estimators.

Before defining these estimators, we need to review some results from [161

for the case of a single processor. To prevent introducing new notation, we
keep the processor subscript z, even though it is not needed in the rest of this

section. Define ~,(0) = O and for any n ~ 1, define_~Z( n) = X;= ~X,~ / n. For

the case of a single processor, the properties of X,( N, ( t))were studied in
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[161. The basis for determining these properties is the relationship

where, for a real-valued r.v. Y, E[ Y; Al denotes E[ Yl( A)] and 1(A) denotes
the indicator of the event A. This relationship depends on the fact that,

given N,(t) = k, ( X,l, . . . . X,~) are exchangeable r.v. s. Equation 2.5 has
appeared in Pathak [31] and Kremers [22] in the context of survey sampling

from a finite population. Kremers also states the result for the so-called

infinite population case which corresponds to our probabilistic setting (for a

single processor). A special case of Eq. 2.5 when X,~ = ~,~ appears on page 93

of Ross [33]. From Equation 2.5, bias expansions can be obtained. For

example (Corollary 5 of [16]), if E[ I X,~ 11< m and E[ I X,j ~; I ] < co for some

p >0, then E[~,(NZ(t))] == p + o(t-~), that is, lim~+~ tp lE[~,(iV,(t))] – WI

= O. Similarly (Corollary 6 or [16]), if E[ I X,~ ed‘L~I ] < m for some O >0, then

E[~, (N,(t))] = p + o(e-d’).

Equation 2.5 also suggests an u~biased estimate of ~, as follows. Defining

~,(t) = max(l, N,(t)),then E[ ~c(N,(t))] = ~. In order to form this estimator,

one must complete the replication in progress at time t only if no replications

have yet been completed (i.e., if N,(t) = O, or equivalently, ~,1 ~ t).Strong

laws and central limit theorems for both x,( IV,(t))and X,( N,(t))follow

directly from standard results in probability and renewal theory: For exam-

ple,

as t+ co where * denotes convergence in distribution, IV( a, b) denotes a

normally distributed r.v. with mean a and variance b, and 02 is the variance

of X,~ (assumed finite). Drawing on the results of Chow et al. [3], uniform

integrability and moment convergence associated with these central limit

theorems are given in [16]. For example, Theorem 6 of [16] states that if

E[ I X,j I 2p+1+a] < m and E[7~lP+a] < m for some p >0 and 6>0, then

hrirE[lti(~@l(t)) - ~)lp] = E[IN(0,02E[TL,] )IP] (2.7)

In addition, multidimensional versions of the central limit theorem in Eq. 2.6

are also valid. These can be combined with Taylor series expansions and the

uniform integrability of Eq. 2.7 to obtain central limit theorems and bias

expansions for nonlinear function estimation.

3. PARALLEL ESTIMATORS FOR A SIMPLE MEAN

We now build on the results described in the previous section to derive and

analyze three alternative parallel processing point estimators for a simple

mean. The first estimator, ji( P, t), has the property that, like ~1( P, t), itcan

be formed at exactly time t.We define

(3.1)
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Parallel, Replicated Simulations Under a Completion Time Constraint . 9

Notice that while F( P, t) and fil( P, t) both make use of the same underlying

observations, these observations are combined differently. Our first result

concerns the expected value and convergence properties of Z( P, t).

PROPOSITION 3.1. If O < T,l < m as. and if E[ I X,~ 1] < m, then

(1)

(2)

(3)

(4)

(5)

lim ,+m F(P, t) = ~ Cz.s.

If there exists a finite constant B such that r,] < B a.s. and if B < t, then

E[ji(P, t)]= p and limP+~ F(P, t) = p as.

If E[ I X,ll r:] < m for some k >0, then E[~(P, t)]= p + o(t-k) and

lim ~+~ jl(P, t) = p + o(t-k) as., i.e., lim,+~ tk limP+~ I F(P, t) – pl =

O a.s.

If E[ I X,j I ed’~] < co for some 0>0, then E[ji(P, t)] = p + o(e-d’) and

limp+~ Z(P, t) = w + o(e-et) as.

If E[ I X,l 11+*] < m for some 6>0, and if limP+~ tP = m, then L(P, tP)

*pas P-m.

PROOF. Result (1) follows by ordinary strong laws for cumulative pro-

cesses, since P is fixed. Results (2), (3), and (4) essentially follow from the

strong law of large numbers and Eq. 2.5, see Corollaries 1, 5, and 6 of [16],

respectively. For (5), by Chebyshev’s inequality P{ I ji( P, tP) – p I > c} <

E[ I ~,(N1(tp))– p I]/E,which converges to zero by Corollary 10 of [161. ❑

Proposition 3.1 shows that if t is fixed and P gets large, then F(P, t) need

not converge to p. However, if P is fixed and t gets large, then Z( P, t) does

converge to p. Since E( P, t) is biased for finite t, we next define an unbiased

estimate of p in the parallel setting to be

(3.2)

This estimator may require simulating past time t,since it requires complet -

ing at least one replication on each processor. Specifically, one must complete

the replication in progress on processor i if and only if IV,(t) = O. The

convergence properties of this estimator are stated next. The proof of Proposi-

tion 3.2 is not given since it is basically the same as that of Proposition 3.1.

PROPOSITION 3.2. If O<~,J<w a.s. andif E[l XLJl]<co, then

(1) E[fil(P, t)] = p,

(2) lim,~m jll(P, t) = limP+m jIl(P, t)= p as.

(3) If E[ I X,J 11+8] < m for some 6>0, and if limP+~ tp= CO,then ~l(P, tP)

*pas P+m.

The third estimator we consider is also unbiased, but has a shorter comple-

tion time than that associated with fil( P, t). Since E[ jl( P, t)] = E[ X,l 1(~,1 s

t)],in order to obtain an unbiased estimate of p = E[ X,j], we need only
estimate the remainder term E[ X,l 1( TL1 > t)]. Instead of using all P proces-

sors (as jll( P, t) does), we use PI preselected processors to estimate the

remainder term. Thus, rather than requiring that at least one replication be
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completed on all processors, we only require at least one replication on the PI

preselected processors. We assume that these preselected processors are

labeled i = 1, . . . . PI. Formally, this estimator can be written as

(3.3)

Notice that if PI = P, then ;2( P, Pl, t) = Jl( P, t), whereas if PI = O, then

(by convention) )2( P, Pl, t) = jl(P, t). Proposition 3.3 describes the conver-

gence properties of ~2( P, PI, t). Note that the PI processors must be prese-

lected: an unbiased estimate would not result, for instance, by taking the

first PI uncompleted replications that actually do complete.

PROPOSITION 3.3. 1~ O < rLJ < co as. and if E[ I X,] 1] < m, then

(1)

(2)

(3)

(4)

lfPl >0, then E[jlz(P, Pl, t)] = p,

lim t-m L2(P, PI, t) = p as.

If P+ w and Pl + W, then CZ(P, Pl, t) - p as.

If E[ I Xl, I 1+8] < w for some 6>0, lim P4~ tP = co, and limp+~ Pl = m,

then J2(P, Pl, tP) * p as P+ W.

We next turn to central limit theorems for these estimators. Define p, =

E[X,11(7,1 = t)], a2(t)= Var[ ~,(N,(t))], and 62 = Var[ ~,(~,(t))]. We begin

with central limit theorems for jl( P, t) and jil( P, t) as either P + w or t+ m.

These are applications of well-known results in applied probability.

PROPOSITION 3.4. If O < r,j < w as. and if U2 < co, then

(1) If u2(t) < co then, @(~(P, t) – p,) * u(t) N(O,l) as P+ co,

(2) If &z(t) < m then, @(~l(P, t) – p) = ti(t)N(O, 1) as P+ co,

(3) If E[~,,l < ~ then, v_(~(P, t) – p) * aE[~,J]lf2N(0, 1) as t + m,

(4) If E[~,ll < COthen, v’Pt (fil(P, t) – p) * 0E[7,,]12N(0, 1) as t+ m.

Because of its inherent bias, ji( P, t) and its associated central limit theo-

rem (part (l)) cannot be the basis of a valid confidence interval for ~ using a

fixed amount of computing time and a very large numbers of processors. On

the other hand, for a fixed number of processors and a large amount of time,

the bias goes to zero so that the central limit theorem for J( P, t) can be used

to form confidence intervals for p (part (3)). Since ~1( P, t) is unbiased, its

central limit theorems can be used to form confidence intervals for ~ for
either a large number of processors (part (2)), or a large amount of time (part

(4)) .
In order to obtain central limit theorems as both t+ co and P + co simul-

taneously (triangular array central limit theorems), we first note that if

E[ I X,~ I ‘+*] < m and E[~,41+31< ~ for some 6>0, then by Theorem 6 of [16]
(essentially Eq. 2.7):

limtu2(t) = limt62(t) = E[~,J] 02.
t+co t-cc

(3.4)
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PROPOSITION 3.5. If O < T,] < m as., a2 >0, E[ I X,j I 5+*] < co, E[~~*] <

‘XI for some 6 > 0, and lim P+~ tp= co,then

(1) ~(~(P, tp)– pLtp) = UE[7,,]112N(0, 1) as P + m,

(2) @’tp(k(P, tP) – p) ~ uE[~,,l~f2N(0, 1) as P ~ m.

PROOF. We show that the conditions of Lyapounov’s theorem (Theorem

7.3 in [2]) are satisfied. For JI(P, tP), we first show that @(jIl( P, tP) –

p)/ ~(tp) = N(O, 1), from which the result follows by Eq. 3.4. In our case,
Lyapounov’s condition reduces to showing that

E[l~@,(b)) - V12+C]~.
p’/2~2+’(’P) ‘

(3.5)

as P + m for some small c > 0. Thi~+i$dlows by multiplying the numerator

and denominator of’ Eq. 3.5 by & and applying Eqs. 2.7 and 3.4. The

proof for F( P, tP) is similar. However, Lyapounov’s theorem applies to sums

of r.v. s with means O, which accounts for the centering term being w~Prather

than p. El

As in Proposition 3.4, the central limit theorem for Z( P, tp) is not necessar-

ily centered about the desired quantity p due to the bias of this estimator.

Confidence intervals for p based on this central limit theorem are centered

about p~P and have width proportional to 1/ &. Thus, confidence interval

coverage is degraded unless \ p – p~P I is small compared to 1/ fi. This is

the case provided P is not too large with respect to tp.Thus, in practice, with

a given number of processors, to obtain valid confidence intervals for p using

ji( P, tP) requires simulating for a relatively long time on each processor. No

such restrictions apply to jll( P, tP) because it is unbiased.

To obtain valid confidence intervals for ~ using F( P, tp), we basically need

to replace the centering term, p,,, in the central limit theorem for E( P, tP) by

W. The ability to replace ~~, by p depends on the relative growth rates of P

and tp,as well as moment conditions on X,J and r,]. As discussed above, if

the number of processors P grows too quickly with respect to the time

constraint tp, then the residual bias remains significant, and the central
limit theorem cannot be used to form confidence intervals for p. To quantify

this effect, we next give precise conditions under which the desired central

limit theorem is obtained.

PROPOSITION 3.6. Under the same conditions as in Proposition 3.5,

fi(~(p,~p) - IL)+ 0EIT,,]’/2N(0,1) as P+ GO,

provided either:

(1) E[ I X,, 17$,1< ~ and P = O(t~k-l), or

(2) E[ I X,, I e@’~l < ~ for some @>0, and P = 0(e2@’’/tP).

PROOF. For part (l), since Proposition 3.5 is valid, by Theorem 4.1 of [21, it

suffices to show that fi I p~P – ~ I + O. But by (3) of Proposition 3.1,
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~j IPtp – IL\ + O, from which the result follows. The proof of part (2) is
similar. ❑

Note that the maximum allowable number of processors increases (with

respect to the time constraint) with increasing moment assumptions on ~,~.

For example, by the Cauchy-Schwarz inequality, E[ I X,l I 7;] s

E[ X,~]l~2 E[ r~~k]1/2 < m for k = 2 under our base assumptions in Proposition

3.5. Thus, under these base assumptions, we require P = 0( t~), or equiva-

lently, tp= Q(Pi/3) (a sequence aP = Q( bP) if there exists constants C and

PO such that aP > CbP for all P = PO).
We next consider central limit theorems for J,z( P, Pl, t). The primary

intent of this analysis is to show that the growth restrictions (1) and (2) of

Proposition 3.6 can be loosened considerably (since j2(P, Pl, t) is unbiased)

even if PI /P is very small. Define R,(t) = X,ll(~,l > t).

l%OpOSITION 3.7

(1) Under the same conditions as in part (3) of proposition 3.4,

d~(;2(P, Pl, t) – ~) = UE[Tc~l112N(0, 1) as t + m.

(2) Let PI and P+ m in such a way that Pi/P = a for some Q (O < Q < 1).

Let ti~(t) = a2(t) – 2ptE[R,(t)] + Var[Rl(t)]/a. Under the same condi-

tions of part (1) of Proposition 3.4: \@(j12(P, Pl, t) – p) = &2(t)N(0, 1) as
p+m

(3) Let tP, PI and P + IX in such a way that PI /P = a for some Q (O < a s 1).
Assume the conditions of Proposition 3.5. Then, &(j12(P, Pl, tP) – p)

+ oE[~,~]12A7(0, 1).

(4] Let tP, PI and P+ co in such a way that PI/P = ciP + O. Assume the

conditions of Proposition 3.5. Then, /ptp(LJp> p,, tp) - p) =
0E[TLI]1!2N(0, 1), prouided either:

(a) EIX~T~l < co and P/Pl = O(t$-l) for some k > I, or

(b) EIX~e”’] < m and P/Pl = O(ed’p/tP) for some @>0.

PROOF. For part (l), Because of Eqs. 3.3 and (3) of Proposition 3.4, the

result will be true, provided v’~1 R,(t)l = O for i = 1, . . ., P1. But

P{fil R,(t)l > e} < P{~ll > t} +0 as t+ co. For part (2), define ~, =

aXL(N,(t)) + R,(t), 2, = (1 – ci)~l(N,(tJ), ~ = Z~llY,/Pl, and Z =

Z~.Pl+lZl /(P - PI). Then, &(P, P,, t) = Y+ ~. Let py = EIY,I, ~z = E[Z,]
and notice that p = p ~ + pz. Thus,

vT(j12(P, P,, t) –w) = ,@(T–py) + JF(z-pz). (3.6)

Let u; = Var[ Y,] and & = Var[ Z,] = (1 – a)2U2( t). By the ordinary central

limit theorem, _@(~__ WY) * ul-N(O, 1) and i~(~ - ~z) *
OzN(O, 1). Since Y and Z are independent, the convergence in distribution

occurs jointly, and the result follows by Eq. 3.6, provided F;(t) = a;/ a +

c#(l – a).But,

a;= CY2Var[~, (N,(t))] + Var[R, (t)] + 2a Cov[~C(N, (t)), R,(t)]. (3.7)
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Since R,(t) ~,(iVZ(t)) = O, Cov[ ~,(N,(t)), R,(t)] = – ptE[ R,(t)], and the result

then follows by simple calculations. Part (3) similarly follows, since it is

easily shown that tpC7~(tp)-+E[ TZJ]U2. For part (4), adopting the above

notation, since aP -0, by part (1) of Proposition 3.5, ~(~ – Vz) +

u E[ ~,J]lt2N(0, 1). The result is then true provided fi I ~ – p ~ I = O which,

in turn, is true provided Var[ fi( ~ – pY)] = PtPu~ /P1 ~ O. But

Ptp 0;
— = uPtPu2(tP) – 2tP~,PE[R, (tP)] + (tPP/Pl) Var[R, (tP)] . (3.8)

PI

The first term on the right-hand side of Eq. 3.8 converges to O by Eq. 3.4. For

the second term, ~f, ~ w and tPE[ R,(tP)] + O (provided E[ I XZ~ I T,jl < m).

For the third term, under assumption (a), tjVar[ R ,(tP)l + O so (tP P/Pl)

Var[Ri(tP)l ~ O provided tPP/Pl = O(tj), that is, P/Pl = O(tk-~). The re-

/suit similarly holds under assumption (b). Therefore, Var[ PtP ( Y – p ~ )] ~

O, as required. ❑

In Proposition 3.7, for fixed .PI and P, a properly centered central limit

theorem is again obtained as t+ m (part 1). Note that the central limit

theorem for PI( P, tP) puts no restrictions on the relative values of P and tp.

However, in order for ji( P, tP) to have a properly centered central limit

theorem, a minimum growth rate for tp with respect to P is required. In

contrast, the central limit theorem for j12( P, PI, tP) places no direct restric-

tions on the relative values of P and tp,but rather requires a minimum

growth rate for tp with respect to the ratio P/PI. (This is actually a

sufficient condition, see, e.g., exercise 15 on page 49 of [4]. ) Note also that, for

fixed t, 62(t)is a decreasing function of a = PI/P. Thus, there is some

variance inflation by not preselecting all of the processors (a = 1). However,

parts (3) and (4) of Proposition 3.7 show that this variance inflation disap-

pears asymptotically provided either a is fixed or CY= aP does not approach

zero too quickly with respect to tp.

When one considers estimating a function g(M) by, say, g( jil( P, tP)), then

some bias may be introduced (i. e., E[ g(~l( P, tP))] # g(u)) if g is nonlinear

even through jil( P, tP) is unbiased. The standard approach to characterizing

this bias is via Taylor series expansions and moment convergence in the

central limit theorem of the underlying point estimate. Therefore, in order to

obtain such bias expansions, we need to establish uniform integrability and

moment convergence of the underlying point estimators. Proposition 3.8 does

this by characterizing conditions under which the various point estimates are

uniformly integrable.

PROPOSITION 3.8. Under the same conditions as in Proposition 3.5,

(1) ( 6(FI(P, t~) – P))2 is uniformly integrable as P ~ CO, and limP+a

E[(fi(Jl(P, tP) – P))21 = U2E[TJ.

(2) If, in addition, either conditions (1) or (2) of Proposition 3.6 hold, then

( fi(F(P, tp) – P))2 is uniformly integrable as p + CO, and limp+-
E[(@(~(P, tp)– W))21 = U2E[TLJI.
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(3) Under the same conditions of Proposition 3.7, parts (3) or (4),

( fi(k(p, PI, tp) – p))2 is uniformly integrable as P + CO,and limp+~
E[(fi(ji2(P, Pl, tP) – /L))21 = U2E[~,~l.

PROOF. For part (l), by Proposition 3.5, ( @( Jl(P, tp) – W))2 =

U2E[~,j]N(0, 1)2. Furthermore,

E[(m(Fl(p> tP) - d)2] = pfPvar[k(p~ ~P)l

= tpc72(tp)+ 02E[~,J] (3.9)

by Eq. 3.4. Therefore, the result follows by Theorem

PtPE[(~(P, tp) - p)’] = PtP(Var[ji(P, tP)]

– tpa2(~p) + p~P(lq,—

5.4 of [2]. For part (2),

+ (l%, - #)2)

.– P)2. (3.10)

The first term on the right-hand side of Eq. 3.10 converges to a 2E[ r,~ ] by Eq.

3.4, while the second term converges to zero by the same argument as in the

proof of Proposition 3.6. Combining this with the convergence in distribution

of Proposition 3.6 yields the result. The moment convergence for part (3) was

basically established in the proof of Proposition 3.7, and the result then

follows similarly. ❑

We next state multidimensional versions of Propositions 3.5, 3.6, and 3.7.

These will also be needed in the next section for nonlinear function estima-

tion. These results are simply shown by applying the Cram&-Weld device

(Theorem 7.7 of [2]) to Propositions 3.5-3.7. We require some notation. Let

x,, = (x,,(l),. . . . X,J( d)) be a d-dimensional vector valued output of replica-

tion j on processor i and let p = (PI, . . . . pd) where ~~ = E[ X,J(a)] and define

C~~ = Cov[ X,j( a), Xl 1(b)]. We now define multidimensional analogues

Z(P, tp), P1(P, tp) and Zz(l’, PI, tp) of ilf’, tp), ~1(1’, tp) a~d )IZ(P, PI, tP),
respectively, as follows. Define ~t(n,) = (~,(n, 1),....Xz(n, d)) where

x,( n, a) = XJ”= ~X,J(a)/ n. Component a of ji(P, tp) is then defined to be

(3.11)

The vectors #iLl(P, tp) and ji2( P, PI, tp) are defined analogously. Let N(O, A)

denote a multidimensional normally distributed random vector with means O

and Variance /Covariance matrix A.

PROPOSITION 3.9. Assume that the conditions of Proposition 3.5 apply to

each component of X ,J. Then,

=(FI(P, fp) - IL)= EIT,,]1’2N(0,C) asp+ CO.

The same multidimensional central limit theorem holds for F( P, tp) and

~z( P, PI, tp), provided the conditions of Propositions 3.6 and 3.7 apply to
each component of the respective random vectors.
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We conclude this section with a discussion of the formation of confidence

intervals for p. The central limit theorems of Propositions 3 .4– 3.7 can be

used as the basis for such confidence intervals; however, in practice, the

variance terms in these limit theorems are not known and must be esti-

mated. As usual, this presents no theoretical obstacles, since the variance

terms can be consistently estimated (see, e.g., [7]). However, there are

several ways the variance can be estimated and the appropriate estimator

depends on whether t+ cm,P -+ m, or t and P + m. We therefore outline the

appropriate procedures for jil( P, t). Analogous results also hold for ji( P, t)

and .iZ2(P, Pl, t).

First consider the case when t remains fixed, but P ~ w. Define

6f(P,t)= + ;l(xL(N,(t)) - ji,(P, t))2.
L

(3.12)

Then limP+@ 6:( P, t) = dz(t) as. Combining this with the central limit

theorem of part (2) of Proposition 3.4, we obtain @(~l(P, t) – ,U)/61(P, t) *

N(O, 1) as P -+ m (the above assumes that O < &z(t)< CO).From this central

limit theorem, an approximate (say) 90 percent confidence interval for ~ is

j.Il(P, t) + 1.645 &l(P, t)/@. If P is fixed and t+ CO,define

and

(3.13)

Then lim ~~ ~ 6;( P, t) = E[~t~]02 as. (assuming these terms are finite), and

therefore ~(J1(P, t) – p)/62(P, t) =+ N(O, 1) as t+ m. Finally, if P A m

and tp+ CO, then 6;(P, tP) = E[~,J]u2 (assuming E[ I X,~ 12+8] < m and

E[~~J+6] < co by Proposition 3.2). Therefore, fi(Jl(P, tP) – 1.L)/62(P, tP) *

N(O, 1).

4. NONLINEAR FUNCTION ESTIMATION

In this section we consider estimating a real valued nonlinear function g(v)

by either g(~(p, t~)), g(El(P, tP)), or g(j.12(P, Pl, tP)). This problem arises in
many contexts, for instance, in variance estimation where X,] = (X, ~, Xl:)

(i.e., X,J(2) = X,,(l)z) and g(~) = g2 – p;. Another application is steady

state estimation in regenerative simulations, in which one is interested in

estimating ratios of the form g(p) = ,UI /p2. We only consider situations in

which tp,Pl, and P all ~ CXJ.First note that since F( P, tP) - p, jll( P, tP) ~ p

and ji2( P, PI, tP) = p (under the minimal moment conditions given in Section

3), then g(ji(P, tP)) + g(p), g(jll(P, tP)) - g(~) and g(j.i2(P, Pl, tP)) = g(p),
provided that g is continuous at p.

Define g. = 3g/3x.l ~.,, and G~~ = 32g/3x. i3x~ 1..P. Let Cfi(p) be the

set of functions having finite continuous derivatives of order j for j = O, . . . . k
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in a neighborhood of p. We next use the standard technique of combining

central limit theorems with Taylor series expansions to obtain central limit

theorems and bias expansions for g(ji( P, tP)), g(~l( F’, tp)) and g(fiz( p, PI, tp))

(see, e.g., Chs. 27 and 28 of [6] or Ch. 2 of [24]).

PROPOSITION 4.1. Let g ~ CIOL) and assume the conditions of Proposition
3.5 apply to each component of X,J. Define

and assume O < o; < W. Let tP and P+ W.

(1) If PI/P = a for some a (O < a < 1). @(g(12(l’, 1’,, tp)) - g(p)) =’

qlv(o, 1).

(2) Jm(mp> tp)) - w,,)) = U,N(O, 1).

(3) If conditions (1) or (2) of Proposition 3.6 apply to each component of X,,,

then ~(g(~(p, tP)) – g(fl)) = UIN(O, 1).

(4) If PI /P = ciP + O and conditions (a) or (b) of part (4) of Proposition 3.7

apply to each component of X,1, then &(g(~z(P, PI) tP)) – g(~)) =

UIN(O, 1).

PROOF. For simplicity of notation, we assume that d = 1 (and use the

notation of Section 3). We only establish results (2) and (3): the other cases

and the multidimensional versions can be shown, without complications,

along similar lines. Using a first order Taylor series expansion, write

g(~( P, ~P)) = g(wt,) + g’(~p)(iip, tp) – PLtP) where .Ep is cm the line segment

between p~P and jI( P, tp). Since ~~P * v and I(P, tp) * p, <p * p and, there-
fore, g’( &P) = g’(K). Therefore, by Proposition 3.5,

v@c(mRtP)) - g(k,)) = mP)mlw% -P@) ~41)

=g’(&iE[#2N(0,1).

For part (3), do the Taylor series about ~ rather than p,, and apply the

central limit theorem of Proposition 3.6 ❑

Note that part (1) of this Proposition also applies to jil( P, tp), since

~z(p, PI, tp) = jll(P, tp) for a = 1 (Pl = P).
We next turn to bias expansions. These can be established under a broad

variety of moment assumptions and regularity conditions on the function g.

For example, in the case of a single processor, expansions for E[ g(~(iV,(t)))l

and E[ g(%( N,( t)))]were derived in [16] under the assumption that the

function g is bounded a.s. (and_g = Cz(p), plus certain moment assumptions).

In [15], the expansion for E[ g(X( IV,( t)))]was shown to be valid provided that
g is bounded by a polynomial of degree r for any r >0 (i. e., I g(~(Nt(t))) I s

A + 23IIx( N,( t))– v II‘,and g e Cz(p), plus somewhat different moment condi-
tions). This is true, provided g has bounded partial derivatives of order r, for

example. For the simple case of a function of a mean of a deterministic
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number of i.i. d. r.v. s, Chapter 2 of [24] contains such bias expansions,

provided g has bounded partial derivatives of order r (r = 3) and the r-th

moments of the underlying r .V. s are finite. In the interest of simplicity, we

state the results under conditions that make the proof both simple and

transparent. Define

E[~zJl dB= ~ ~ f G.,C.,. (4.2)
~al b=l

PROPOSITION 4.2. Let g e Cz(p) and assume that all of g‘s partial deriva-

tives of order 2 are bounded everywhere. Suppose that tP and PI = Pl( P) + m

as P+m.

(1)

(2)

(3)

If the conditions of part (1) of Proposition 3.8 apply to each component of

XIJ, then E[g(Fq(p, tp))l = g(p) + B/(ptp) + @/ptp).

If the conditions of part (2] of Proposition 3.8 apply to each component of

Xl,, then E[g(~(P, tp))l = g(w) + B/(Ptp) + o(l/Ptp) as P + CO,Provided

either:

(a) E[ I X,J I Tjl < ~ and P = O(t~-l), or

(b) E[ I XiJ I eoTJ] < co for some 0>0, and P = O(e’’p/tp).

If the conditions of part (3) of Proposition 3.8 apply to each component of

X ,J, then E[g(ji2(P, P,, tp))l = g(p) + W(ptp) + 0(1/ ptp).

PROOF. We again assume that d = 1 and show the result for g(~(P, tp)).

Using a second order Taylor series expansion, we have

Ptp(g(ii(F’, tp))- g(p)) = .#(P)ptP(ixp7 tP)-P)

+ @’(tP)
~Ptp(E(P, tp) - P)z (4.3)

where <p is on the line segment between p and F( P, tp). The expectation of

the first term on the right-hand side of Eq. 4.3 equals g’(p) PtpE[ X,l; TLI > tp]

which converges to zero under assumptions (a) or (b). Again, &p = p, so the

second term on the right-hand side of Eq. 4.3 converges in distribution to

(1/2) g’’(v) u2E[~,,lN(0, 1)2 by Proposition 3.5. So we will be done if

g“(.(P) Ptp(jI( P, tp) – I-L)’ is uniformly integrable. But this follows, since there
exists a finite constant M such that I g“( x) I s M for all x. The proofs for

Zl( P, tp) and L2.( P, Pl, tp) are similar, except that the expectations of the
first order term in the Taylor series expansions are identically equal to zero

since E[~l(P, tp)l = E[ii2(P, PI, tp)l = p. ❑

Proposition 4.2 states that (under suitable regularity conditions on g and

growth restrictions on P, PI, and tP) the bias goes to zero as a constant

divided by the total simulation effort P x tp. Jackknifing [271 is one method

that can be used to mitigate bias due to nonlinearity effects. In [151, the

jackknife is explored in the setting of a single budget-constrained processor.
We intend to study the budget-constrained jackknife estimator in the multi-

processor setting in future work.
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5. COMPLETION TIME ANALYSIS

In this section we analyze properties of the random completion time associ-

ated with ~z(P, Pl, t) (or with P = Pl, j.Il(P, t)). Let ~(~) = P{T,J s ~}, ~(~)

= 1 – F(x), and M. = max(7zl, . . . . Tnl). Let T,(t) = max(~,l, t): T,(t) is the

completion time on processor i (1 s i s Pl) given the budget constraint t

(actually, budget guideline is a better term). Then

M(t, P,) = ~~=~,(Tl(t)) = max(t, MP,) (5.1)

is the completion time of the simulation experiment. We are also interested

in the total processing time on the preselected processors,

T(t, P1) = s T,(t), (5.2)
~=1

and in the number of “active” processors at time t,

that is, A(t, Pl) is the number of processors required to simulate beyond time

t.

Since I“(t,Pl) and A(t, Pl) are just sums of i.i.d. r.v.s, their limiting

behavior (as PI + m) can be described by standard strong laws and central

limit theorems. Similarly, since M( t, Pl) is basically a maximum of ii. d.

r.v. s, its limiting behavior can be derived from results in extreme value

theory (see, e.g., [23]). We give a sampling of such results. Note that the

properties of these random variables can be determined directly from the

values of t and PI. If t and PI are viewed as functions of P, then these

properties depend on P only indirectly as expressed by the relationships

t = tp and PI = PI(P).

Consider first the number of active processors A(t, Pi). Note that A(t, Pl)

is binomially distributed with parameters F(t) and PI. Therefore, if t

remains fixed and PI + w, then A( t, Pi)/ PI obeys a strong law and is

approximately normally distributed with mean ~(t) and variance
F(t)~(t)/Pl. However, if P, PI and tp+ m in such a way that Pl~(tP) + Q

(O < a < m), then A(tP, Pl) converges in distribution to a Poisson r.v. with

parameter a (see Section V. 5 of [91). For example, if 7,~ is exponentially
distributed with rate A (~(t) = e-~f) and tp = (l/A)ln(Pl /a), then the Pois-

son convergence is obtained.

Turning now to the total processing time on preselected processors, by Eq.

5.2, if t remains fixed and PI + m, then T( t, Pi)/ PI obeys both a strong law

and central limit theorem. Now consider the behavior as t+ m. Notice that

7’( t, PI)/ PI t is the ratio of the actual computing time to the planned comput -

ing time (on the preselected processors) and ( T( t,Pl) – PI t)/Pl is the aver-

age excess (unplanned) computing time per processor.
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PROPOSITION 5.1. If EIT,JI < m, then as t + m,

(1) I I“(t, PI) – P1tl/P1 + o,
(2) T(t, P,)/(tPJ =’ 1.

PROOF. For part (l), since \T(t, P,) - Pltl s x;:,l T,(t) - tl,

P{ 1T(t, PI) – P1tl/P1 > e} s E[\ 7’(t, pJ – pltll/(pl~) s JW TAO – tll/’

= lX>,}(X-~)w~)v~= /Jw (5.4)

But the right-hand side of Eq. 5.4 converges to O since E[ ~i~] < m. The proof

of part (2) is similar. ❑

Notice that the convergence in Proposition 5.1 is obtained even if PI + m

along with t.Thus, for large t,no matter how many processors there are, the

ratio of actual computing to planned computing converges (in probability) to

one.

We now turn to the completion time. We assume that F is in the (maxi-

mum) domain of attraction of a (finite) extreme value distribution, that is,

there exist constants a. and b. and a finite r.v. X* such that a.( Mn – bn) =

X*. For example, for the exponential distribution with parameter h, a. = h,

bn = in(n)/h and P{ X* s x} = exp(– e-x). In addition, in this case there is a

well-known closed form expression for E[ Mnl: E[ Mnl = (1/X) Hn where Hn =

Z~=l(l/i) = in(n).

PROPOSITION 5.2. IfaR(M~ – bJ ~ X* and limP+m PI = ~, then

(1) If limP+~ apl(tP – bp,) = – m, then aP,(M(tP, PI) – bpl) = X*.

(2) If limp+~ apl(tP – bp,) = a(– m < a < m), then apl(M(tP, pl) – bpl) ~

max(a, X*).

(3) If limP+~ ap~tp – bP,) = +CO, then P{ M(tP, PJ = tp} -’1.

I%OOF. For part (l), we show apl(M(tP, Pl) – MP,) = 0.

P{ j ap,(M(tp, Pl) – MPI) I > E} S1’{MPIStP}

(5.5)
—— P{ap,(Mpl – 6P,) s apl(tp, – bp,)} + o.

Part (2) follows from the continuity of the maximum operator. For part (3),

P{ M(tP, Pl) = tp} = P{MP1 ~ ‘P}

(5.6)
——

P{~pl(MP1 – P,b ) < ap,(tpl – bp,)}-+l. ❑

Note that part (1) of Proposition 5.2 will typically apply if tP remains fixed,

in which case M( tp, P1) inherits the limiting distribution of Mpl.

We next consider the combined implications of Propositions 3.7 and 5.2 in

a particular case. Suppose r,~ has an exponential distribution with mean 1.

Let tp = @ ln( PI). For 13< 1, part (1) of Proposition 5.2 applies, so

E[ M(tF, PI)] = ln( P.). For 6>1, part (3) of Proposition 5.2 applies, so
E[ M(tp, PI)] = tp= ~ ln( Pi). Now if Xt~ is bounded, then the moment condi-

tion of part (4) of Proposition 3.7 is satisfied for I’3<1. Thus, in order for
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E2(p, PI, fp) to ok the proper central limit theorem, we must have PI’ PI =
O(ed’P/ tp), that is, P < BP: ‘d@/((3 ln( Pi)) for some constant l?. Now let
P = P}+@~/((3 ln(Pl)) and suppose we were to use jIl(P, tP) (i.e., we insist on

at least one replication on all processors). The expected completion time

associated with ~l(P, tP) then grows like (1 + 19B)ln(P1) – ln(p ln(Pl)). For

8=P= 1, the expected completion time using jil( P, tp) is then nearly twice

that when using Lz( P, Pl, tP). However, for 0 = 1 and O > 1, the ratio of the
expected completion times is approximately (1 + L?)/(3 = 1 for large B. Note

that in this case, the difference in expected completion times basically grows

like ln(Pl).

The above analysis has considered nondegenerate limits for A( tp, Pi),

2’( tp, PI), and M( tp, Pi). In the exponential example, these nondegenerate
limits are obtained if tp- ln( Pl). Clearly, if tp+ m very quickly, then
A(tp, Pl) = O, T(tp, Pl) = tpPl, and M(tP, Pl) = tp with high probability

(see, e.g., part (3) of Proposition 5.2). We conclude this section by analyzing

the convergence rates of these r.v. s for large tp in more detail.

PROPOSITION 5.3. Let E[rk+m+2] < m for some k > 0 and m z O and let
PI = O(t~). IflimP-~ PI = ~ and limp-~ tP = CO, then

‘+2 E[A(tP, Pi)] = O.(1) limp+~ tp

‘+lEIT(tp, Pl) – tPPl] = O.(2) limp+~ tp

(3) limp+~ t; Var[T(tp, P,)] = O.

“2E[M(tP, PI) – tpl = O.(4) limp+~ tp

PROOF. For part (l),

tg+zE[A(tp, P,)] = t;+2Pl~(tP) < Ct~+k+2~(tp) + O (5.7)

by exercise 15 on page 46 of [4]. For part (2), arguing similarly, as in

Proposition 5.1,

tP+’E[lT(’p, pl) - Plfpll s fF+lplF’[l Tt(fP)-tPll

s Ct;+l+kE[lTL(tp) - ,Pl]+o ‘5”8)

by Corollary 8 of [16]. For part (3), Var[T(tp, Pi)] = PI Var[Tl(tp)], and the

result follows along similar lines by showing that tp+k Var[ T’,( tP)l + O. For

part (4),

[

PI–l
‘n2 E[Tz(tP) - t~] +

~
Var[T, (t~)]”2

1

t~/2E[M(tP, Pl) – tp] s tP

(5.9)

by the global bound (Eq. 4.2.6) on page 59 of [8]). The result follows

similarly. U

The analog of Proposition 5.3, under moment generating type assumptions

on rl~, is stated below. Its proof is essentially identical to that of Proposition

5.3.
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PROPOSITION 5.4. Let E[~~eO’LJ] < m for some 0>0 and let PI = ()(eti’”)

where O < 191s 8. Let 19z= 9 – O1. If limP+~ PI = co and limp+w tp = W,

then

(I) limp+~ t~e@’~pE[ A(tp, PI)] = O.

(2) limp+- tpe @PE[T(tP, Pl) – tPPl] = O.

(3) limp+- eoztp Var[T(tp, PI)] = O.

(4) limp+~ eW/zE[M(tp, Pl) – tpl = O.

Propositions 5.3 and 5.4 state that if the number of preselected processors

PI is not too large with respect to the computer time tp,then the expected

number of processors that must continue simulating beyond time tp is very

close to zero. Thus the total unplanned computing time is also extremely

close to zero, as is the expected waiting time for the last processor to complete

simulating.

6. SUMMARY

This paper has analyzed properties associated with a simple yet effective way

to exploit parallel processors in discrete event simulations: averaging the

results of multiple, independent replications that are run in parallel on

multiple processors. We assumed that there is a CPU time constraint t on

each of P processors. However, we showed that, unless the replication

lengths are bounded, one must be willing to simulate beyond any fixed, finite

time t on at least some processors in order to always get the right answer.

The statistical properties of a variety of estimators were then explored. Limit

theorems were obtained for these estimators when either the number of

processors or the CPU time constraint approaches infinity. In addition,

central limit theorems and bias expansions were obtained when both of these

parameters simultaneously get large. In this case, relative growth rates for P

and t were determined in order for the estimators to have properly centered

central limit theorems. For example, if one insists on never simulating

beyond time t (and using the estimator ji( P, t)), then P must grow rather

slowly with respect to t.On the other hand, one can preselect PI (O < PI s P)

of the processors and simulate beyond time t on a preselected processor if and

only if no replications have yet been completed on that processor. This results

in the unbiased estimator j.12(P, Pl, t). While one can preselect an asymptoti-

cally negligible number of processors (i. e., PI /P + O), this places restrictions

on the relative values of t and PI /P (to obtain the desired central limit

theorem, as described in Proposition 3.7). However, in practical applications,

since the appropriate moment conditions may be difficult to identify and the

constants subsumed in the 0( ) notation are unknown, correct implementa-

tion of this sampling plan may be a problem.

A sensible, practical approach is to preselect a fixed fraction a of the

processors. While there is some variance inflation for large P and finite
values of t (as opposed to preselecting all the processors), this inflation will
be modest provided that t is not too small with respect to the distribution of

r ,~ and a is not too close to O. As t+ co,there is no (asymptotic) variance
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inflation. In addition, for large values of t,provided PI is not too large,

(T(t,Pl) – PI t), the total amount of computer time used beyond time t, is

negligible in the sense that Var[ T( t,PI)] + O quite rapidly. The waiting time

for the last processor to complete simulating, ( M(t, Pl) – t), is also negligible

in the sense that E[ M( t, Pl) – t] ~ O very rapidly.
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