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ABSTRACT

This paper is concerned with gradient estimation

techniques for steady-state performance measures as-

sociated with regenerative stochastic processes. The

principal emphasis is on the discussion of conditions

under which likelihood ratio methods and infinitesi-

mal perturbation analysis techniques are valid.

1 INTRODUCTION

This paper is concerned with using simulation to esti-

mate gradients of steady-state performance measures

in the regenerative process setting. This turns out to

be quite a rich class of stochastic processes from an

applications viewpoint, encompassing all irreducible

recurrant discrete state space Markov processes as

well as a variety of more general discrete-event sys-

t ems. In particular, a large class of generalized semi-

Markov processes may be made regenerative by using

‘(splitting” ideas from the theory of Harris recurrent

markov chains; see, for example, Glynn (1989).

Two different gradient estimation algorithms are

explored in this paper; likelihood ratio gradient esti-

mations and estimations based on infinitesimal per-

turbation analysis (IPA). The focus, in this paper, is

on the tools needed to rigorously verify the mathe-

matical validity of these techniques in the regenera-

tive setting.

2 STEADY-STATE LIKELIHOOD

RATIO GRADIENT ESTIMATION

Let W’ = (Wn : n ~ O) be a real-valued stochas-

tic sequence. For each 0 E A = (a, b), let Pe be a

probability distribution on the path space of W. We

assume that there exists a non-decreasing sequence
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T = T(n) : n ~ O) of random times such that

T(0) = O and:

(Al) Under distribution P@,W is a non- delayed re-

generative sequence with respect to T, for each 9 E A.

Let Y. = z~!~)(;!- 1) Wj, in = ~~~,(~~1) ]Wj 1, and

~n = T(n) — T(n — 1). If Ee(.) is the expectation

operator associated with Pe, we require that Ee~l <

m and EOT1 < co, in which case

:~ Wj + a!(d) Pe as. (2.1)

as n + m, where a(t?)~u(0)/1(8) and u(O) =

E8Y1,1(0) = Ee~l.

Relation (2. 1) implies that cr(0) may be inter-

preted as the steady-state mean of W under Pe. Our

goal is to develop an estimation methodology for

a’(do) for (fixed) 190 E A. Since a = u/1, it is clearly

sufficient to develop estimators for u’ (O.), l’(O. ),

u(Oo), and l(O.). Of course, U(do) and /( O.) can eas-

ily be estimated via sample means formed from i.i. d,

copies of Y1 and rl generated under P@O.The greater

challenge is to develop estimators for U’(60) and /’(O.).

To accomplish this task, we assume that there

exists a a-field ~ for which Y1 and rl are ~-measurable

and such that PO is absolutely continuous with respect

to P80 on ~. Consequently, for each (3 G A, we may

represent u(d) and l(d) as

u(O) = EYIL(0)

l?(o) = ET~L(o),

where E(.)~E80(.) and L(6) is the likelihood ratio

(Radon-Nikodym derivative) of P@ with respect to

Pgo. Suppose that L(.) is P~O as. differentiable at

%0. If
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(A2)(Y(L(00 +h)-J7f30)/h: h>0,60+he A)

and (r(L(Oo +L)– L(OO))/h :h> O, flo+h E A) are

uniformly integrable under PeO,

then it follows that

U’(oo) = EYIL’(00)

l’(co) = ETIL’(co),

Hence, under (A2), u’((?o) and l’(00) can be consis-

tentlyestimated via sample means formed frclmi.i.d.

copies of YIL’(Oo) and rlL’(Oo) generated under P@O.

This then solves the problem of estimating a’ (l?.) con-

sistently.

The key, from a mathematical viewpoint, is

therefore to verify (A2).

2.1 Harris Chains

A large class of regenerative systems are derived from

discrete-time Markov chains Z = (Z. : n a O) living

on some general state space S. Assume thak there

exists a subset A ~ S, ~ >0, a positive integer m ~ 1,

and a probability distribution p such that:

(A3) i) Pe [Z. c A infinitely often 120 = z] = 1 for

13EA,.z ES,

ii) P8[z~ E dzlZO = z] z Ap(dz) for z E; A, z E

s,ee A.

Condition (A3) guarantees that for Z is a Harris re-

current Markov chain under P. for each O c A. It

is well known that (A3) can be exploited to obtain

regenerative structure for Z. Suppose that ZO has

distribution p. Now, observe that the minorization

condition (A3) ii) guarantees that for z c A we can

write
P@[zm G Czzlzo = z]

= kp(dr) + (1 – A) Q(O, Z, c-b)

where Q(O, x,.) is a probability y distribution cm S for

each O E A and x E A. Hence, each time Z visits

A, there is a probability ~ >0 that the chain will be

distributed according to q m time units later, thereby

constituting a regeneration. More precisely, we can

introduce a sequence (qn : n ~ O) of “coin flip” r.v.’s

such that q. = O whenever Zn ~ A, and q. = l(O)

whenever Zm c A and a “successful” (“unsuccessful” )

coin flip occurs. Then, the regeneration time T1 can

be defined as rl = inf{n ~ m : qn-m = 1}.

For a given function ~ : S ~ E?, let IVn = ~(Xn).

Then, it is evident that if E8T1 < m and EeY1 < w,

:~
Wj ~ a(0)~E8Y1/EoT1 PO ~.S. (2.3)

J =0

as n ~ co. To calculate the derivative cr’(do), we have

already shown that (A2) is the key.

To obtain a likelihood ratio estimator, we will

assume that there exist “densities” p(L9, x, y), g(O, x, y)

such that:

(A4) i) For x @ A,y E S,0 E A, P(O, x, dy) =

P(6>x, V)P(60, $, ~Y)

ii) For z E A,y G S,0 6 A, Q(6’, z,dy) =

g(d) ~, Y) Q(OO, X, ~Y)

Assumptions (A3) ii) and (A4) together guar-

antee that there exist densities pn (0, x, y) such that

P@[z. E dzlzo = x] = pn(e, x, z) P@o[zn E dzlzo e it]

for OCA, z,z ES.

To obtain a likelihood ratio for the path of the

sequence Xn = (Zn, q.) up to time T1, we decompose

the path according to appropriately spaced visits to

the set A. Specifically, let So = –m and set Sk =

~nf{n > Sk-1+ ?71: 2. ● A}, and let /3 = inf{k z

1 : qs, = 1}. Then, the likelihood ratio L(O) on the

cr-field ~ = u(Zn : 0 < n < 71) of Pe with respect to

POOcan be written in the form

k=l

where

for k < ~ and

LP(0)

Assume that the functions p~ (.,x, y) and q(., z, y)

are continuously differentiable on A for n ~ 1 and

z, y G S. To verify (A2), note that Y(L(OO + h) –

L(OO))/h = YL’(f) for some < G [Oo, do + h). But

L’(9)

where

l?~(o) =
~(o, Z.Sk, ZS, +m)

%(8> 25’,, -zSk+m)
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for k < ~ and

/@(e) =
1

Pm(@l 2s,.9> Zsp+m) “

We have used here the fact that pn(~, z, y) >

O(q(O, z, V) > O) whenever p~(d, Z,Y) # O(q’(d, z, Y) #

O). For s >0, set

and observe that by continuity jl(x, y) and ~k will t yp-

ically be close to 1. Then,

Sup L(e).
Ie-eel<.

To establish (A2) requires proving that the dominat-

ing r .v. just defined is integrable. But its expectation

is bounded by

“ [IIT111P4“ I&:, Ij’(zk, Zk+l)Illp.

+ lpllp4“ II$&yp HIIIP51
--

when pl, pz, . . . ,P.5 > Oandp; l+p; l+-” ”+p; l = I.

But

()II,~::, lf(zk)lltP < E’/p ‘~’If(zj)lp ;
— j=O

the other maximum terms can be similarly bounded

by sums. These expectations, aa well ~ 11~1llP, can

be bounded by standard Lyapunov function methods;

see Chapter 15 of Meyn and Tweedie (1992). (Note

that /3 is geometric so ll~llp is trivially finite.)

The greater difficulty is posed by the term

IIsuPle-eo[<. ~(Ollr Let

al(z) = E[ sup L~(@’1/? >1,20 = z]
Ie–e.l<c

az(z) = E[ sup L~(e)’lp = 1,20 = z].
Ie-ool<e

By successively conditioning and using the strong

Markov property at the times SO, S1, ..., S@_ 1, it fol-

lows that

6-1

—— E ~ ~l(zs, +m)~2(zsP.,+m).

j=O

Hence, establishing (A2) requires getting a handle on

the functions ql and q2. In many applications, the set

A is compact . Continuity arguments then permit one

to control p~l(d, Z,S,, Zs, +m) and q(d, ZS,, ZS, +~)/

Pm (e, ‘Sk, ‘sk+~ ) are bounded- furthermore,

[

m—1

E ~ P(Zj,Zj+I)’lZO = Z
j=o 1

is typically bounded over z E A. Consequently, the

key to bounding ql and qz is to get a handle on

1
SI–1

w)~~ ~ P(zj, Zj+l)rlzo = z
j=O I

for z E A’. We complete this discussion of the verifi-

cation of (A2) by providing a Lyapunov function crite-

rion for bounding h. Let K(z, dz) = fi(z, Z)” POO[Zl c

dzlZo = z] and set g(z) = K(z, A). A standard ar-

gument establishes that if we can find a non-negative

function F satisfying

for z E A’ and s >0, the bound h(z) s ?(x)/c for

z E A’ follows.

2.2 Stochastic Recursions

A large class of Markov chains Z satisfy stochastic

recursions of the form

z.+, ==$4(2.,u.)

where ~: SxSf *Sand U=(Un:n~O)is

a sequence of S-valued r.v.’s that is i.i.d. under Pe

for each O E A. In order to guarantee that Z be

regenerative, we require the existence of a subset B

and a family P(O, .) of probability distributions such

that:

(A5) i) P~[Z. E B infinitely often 120 = z] = 1 for

ZES, OEA,
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ii) PoIZ1 E dzlZo = 2] = ~(fl,dz) for x E 13, z E

s.
Clearly, T1 = inf {n ~ 1: Zn _ 1 E B} is a regeneration

time for Z. (In fact, Z satisfies (A3) with ~ = 1.)

Suppose that:

(A6) Pe[uo E du] = P(O, U)l=eo[uo E Czu]

for some density p(O, u) that is continuously differen-

tiable on A. Then, the likelihood ratio of ~. with

respect to P@Oon % = a(Un :0< n < ~1) is simply

given by
T1–1

t(e) = ~ p(e, TJj),

j=O

To verify (A2) for ~(~) in this setting is much simpler

than the verification of the previous section for Harris

chains. In particular, since (2.5) continues to hold,

the key is to show that

E SUP i(d)” < w (2.6)
18-9.1<.

for some c >0. But

E Sllp i(e)’

le–eol~e

03

~ ~ ./3”12 sup p(e, Uo)2’. 1-[71 = n,].
n=O Ie-eol<c

Since ESUPl@-OOl~e P(8, UO)2r can typically be made

arbitrarily close to 1 for e small enough, it is evident

that (2.6) holds if E exp(~~l) < m for IAI sufficiently

small and positive. However, this can be verified eas-

ily by using suitable Lyapunov functions. (In fact,

the Lyapunov function r of the previous section can

be suitably specialized.) By verifying (2.6), this per-

mits us to establish that U’(OO) and l’(O.) can l~e es-

timated via sample means of Yl~’(Oo) and ~l~’(do)

respectively.

However, if the density p(e, z, y) of Z can easily

be calculated, the derivative L’(OO) of the previous

section is a competing estimator. Note that

TI-2

E[i(e)lG] = ~ P(O, Zj , zj+l)~~(e)

j=O

where ~ = u(Z. : 0 s n < ~,). If ((~(tlo + h) -

~(00))/h : 0 < h < e) is P80 uniformly integrable,

then (~(80 + h) – ~(Oo)/h ~ t’(do) in L1(PeO) so

(~’(R,+h-L(Oo))/h ~ E[~’(00) Ig] in L1(P80 ). l-t fol-

lows that the difference quotients (L(Oo+h)–L(O{l))/h

are uniformly integrable as demanded by (A2) amd

L’(@o) = E[i’(Oo)l~].

By the principle of conditional Monte Carlo, the r.v.

YIL’(OO) haa smaller variance then Yl~’(Oo). So, us-

ing L’(6’0) is st artistically desirable.

However, our discussion also shows that for sys-

tems satisfying stochastic recursions, the easiest way

to establish (A2) for L(O) may be to instead estab-

lish (A2) for ~(d). Hence, introducing ~(d) can be a

useful theoretical tool,

3 STEADY-STATE IPA

We now turn to steady-state derivative estimation us-

ing I PA, focusing on discrete-time problems. Here,

too, regenerative structure plays a key role in the con-

vergence and consist enc y of the derivative estimates.

We begin with some background on IPA, then

give conditions for the derivative estimates to be re-

generative, and finally use regenerative structure to

prove strong consistency.

3.1 IPA Estimates

Many discrete-time sequences studied through simu-

lation satisfy recursions of the general form

wn+~ = q$(wn, un), n >0, (1)

where {Un, n ~ O} are inputs to the simulation and

{W., n ~ O} are the outputs of interest. We allow

the Wn’s to be d-vectors and the U.’s to be l-vectors.

With this generality, (1) is by no means restrictive;

but to use IPA, we will need to put further conditions

on 1#1.

A familiar example of (1) is the Lindley equation

for the waiting times in a single-server queue:

W.+ I = [W. + S. – An]+, n 20, (2)

where S’n is the n-th service time and An is the time

between the n-th and (n + 1)-st arrivals. In this ex-

ample, d = 1, 1 = 2, and U. = (An, Sri); ~ is defined

by (2).

Suppose now that each Un is a (random) function

of a parameter O ranging over an interval [a, b]; then

each Wn, n ~ 1, depends on 0, and we may also

assume that W. depends on 0. We want to compute

derivatives with respect to this parameter. Let Un,i

and W.,; denote the i-th components of Un and Wn.

Formally differentiating (1), we get

d (31j$[ , 1 a(bi ,
w’?+l,i(~) = z @%,j(o + ~ ~f%j(fm (3)

j=l j=l
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i= l,...,d, where the partial derivatives of the i-

th component of q!Jare with respect to the indicated

components of its arguments and are all evaluated

at (VVn (0), Un (0)). This is another recursion, map-

ping (w’., W;, U., U;) to W~+l. Combined with (l),

it gives a mapping from (W., FV~ ) to (VVn+l, W~+l)

with input (?ln, U;). Equation (3), when valid, de-

fines an IPA algorithm for computing {W’;, n ~ 1}.

Returning to the Lindley equation (2), we find

that the ~ implicitly defined there is not a differen-

tiable function: differentiability fails where W.+ S’n –

A. = O. For the queue, this event corresponds to

one busy period ending at exactly the same time the

next one begins. This phenomenon is typical of many

discrete-event systems: differentiability may fail when

two events occur simultaneously, and these are often

the only points of non-differentiability. So, justifica-

tion of (3) requires some care. Fortunately, this is

more of a theoretical than a practical concern; dif-

ferentiability is often assured by conditions implying

that events occur singly with probability y one.

We now give a set of conditions from Glasser-

man ( 1992ab) justifying (3) and further implying that

E[w’~(0)] = E[W~ (d)]’. These conditions will also be

useful in our analysis of steady-state derivative esti-

mation.

Recall that a function f : S --+ Rd, S ~ R“ is

Lipschiiz if there exists a constant kf, called a mod-

ulus, such that

Ilf($) - $(Y)II s ~jll~ - Yl], ~,y e s.
Lipschitz functions are differentiable almost every-

where. A Lipschitz function of a scalar is absolutely

continuous and is therefore the indefinite integral of

its (almost-ever ywhere defined) derivative. The class

of Lipschitz functions is just broad enough to include

rein, max, and similar functions arising in discrete-

event systems, and just smooth enough to be com-

patible with IPA.

We call a random function X = {X(8), O c [a, b]}

almost-surely Lips chit z if its sample paths are Lips-

chitz with probability one. If X is Lipschitz, let Kx

be a (random) modulus for X.

We now proceed with the conditions. Our first

assumption puts minimal smoothness conditions on

the inputs and on the initial state:

(Al) Wo and {U., n 2 O} are as. Lipschitz functions

on [a, b]. For each O E [a, b], W’. and {Un, n ~ O} are

as. differentiable at 6’, taking one-sided derivatives at

the endpoints.

The first part of (Al) restricts dependence on 6

for a fixed sample path; the second part fixes O and

varies the sample path. Both types of conditions are

need ed. We also assume

(A2) #is Lipschitz.

By itself, (A2) implies that the partial derivatives

of # exist almost everywhere. But this is not quite

enough for (3), since it is possible for {(Wn, Un), n ~

O} to return infinitely often to the null set of non-

differentiable points of ~, with positive probability.

To rule this out, define

C+ = {z ~ R* x R1 :41 is differentiable at z},

and require

(A3) P((Wn(0), U.(O)) G Cd) = 1, for all n ~ O, for

all O E [a, b].

This is not a primitive condition, in the sense

that the distributions of {(Wn (8), Un (0)), n ~ O} are

generally unknown. Nevertheless, (A3) is often easy

to verify in practice. For example, in the Lindley re-

cursion (2), (74 is the complement in R x R2 of the

set {(w, s,a) : W+S –a = O}. If, say, {S~, n 2

O} and {An, n > O} are i.i.d. and mutually inde-

pendent, and if either A. or So has a density, then

{(Wn, Sa, An), n > O} never leaves C@, as.

We now combine these conditions to validate I PA

estimates for (1):

Lemma 3.1. Suppose (A1)-(A3) hold. Then each

lVn, n ~ O, is as. Lipschitz on [a, b]. If W. and {Un,

n ~ O} have integrable moduli KIVO and {Ku., n 2

O}, then at every O c (a, b) for which TVn (6) is inte-

grable, E[VVn ((9)]’ exists and equals EIW~(0)].

Proof. The Lipschitz property is preserved by compo-

sition, so under (Al) and (A2), Wn is as. Lipschitz.

Under (Al) and (A3), Wn is also differentiable, as.,

at each O. Let k+,l and k4,2 be moduli for ~ as a func-

tion of its first and second arguments, respectively, for

all values of its other argument. (For example, take

kd,i = k+, i = 1,2, the modulus guaranteed by (A2).)

Simple induction shows that

n-1

IIW:(OII S Kwn = k$,l~~w, + ~ k;,;~ liuj , (4)
j=o

and Kw~ is an integrable modulus for (each compo-

nent of) Wn. Then, by dominated convergence,

liioh-1E[Wn)i(L9 + h) – Wn,i(0)]
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exists and equals EIw~,i(0)], i = 1,..., d. ❑

3.2 Regeneration

Suppose, now, that for each 0,

n—1

?2-’ ~ VU(6)+ W(O),.s. . . (5)

i=o

for some deterministic function w(.). Lemma 3.1 mo-

tivates an examination of whether similar conditions

imply
n—1

n-’ ~ W~(0) -+ w’(d), ..s. (6)

i=O

There are two considerations in (6) — whether the

limit exists and, if it does, whether it equals w’(O).

Regenerative structure is particularly useful in ad-

dressing the first question.

While convergence in (5) is also often btwed on

(possibly implicit) regenerative properties, it turns

out that a somewhat stronger regenerative structure

is usually needed for the convergence in (6). Indeed, it

is possible to have all the sequences W(O) =

{Wn(0), n 2 O}, O E [a, b] regenerate simultaneously

infinitely often and yet for {W; (19), n ~ O} to fail to

be regenerative for all 0, aa the following example il-

lust rates:

Example 3.1 For i = 1,2, let ~ti) = {7$), n ~ 1}

be the points of two independent, unit-rate Poisson

‘2) > O} is the set ofprocesses. The sequence {fl~n , n _

points of a rate-(1/@) Poisson process if O > 0. Let

~(d) be the superposition of these points and ~(l). Let

X. be 1 or 2 depending on whether the n-th point of

T(O) is from ~(l) or t9~t2). Then

{

Tn(e), Xn = 2;
T;(e) = o, Xn = 1.

NOW let W(O) be the sequence of spacings, w’,, (f?) =

rn(fl) – rn_l(0), n ~ 1. For each d, w’(d) is an

i.i.d. sequence (of exponentially distributed random

variables with mean 0/(0 + l)). Thus, the sequences

{W(O), 0> 0} trivially regenerate simultaneously be-

cause each regenerates at every n, However, the cor-

responding derivatives are given by

{

wn(e), X.-1 = 2,zn = 2;

w;(e) = 0’ xn_l = l,zn = 1;

Tn(o), X.–1 = l,zn = 2;
–Tn-l(e), x.-l = 2,zn = 1.

The first two cases pme no problem, but all four csses

occur infinitely often, and the last two show that there

can be no iV for which the distribution of W~(0) is

independent N.

When {WA(O), n z 0} is in fact regenerative, it is

often because of the structure present in the following

example:

Example 3.2. Consider, again, the Lindley recur-

sion (2). Suppose service requirements and interar-

rival times are each i.i,d. and mutually independent

of each other. The server works at rate 1/0, with

0<0< EIA1]/EIS1]. If the O-th customer finds the

queue empty, then WO(0) s O and subsequent waiting

times obey

Wn+l(0) = [W.(O)+ 6S. - An]+.

It follows that

{
W;+l(e) = ~@’)+‘n‘ j~$:e+ ‘s” >‘n;

1 1

with Wj(0) = O. Thus, {W’~(0), n ~ O} returns to

zero whenever {Wn (0), n ~ O} does; the state (O, O) is

recurrent for the Markov chain {(W.(0), W~(6’)), n ~

0}.

The regeneration in Example 3.2 can be ex-

plained in rough terms aa follows.The process {Wn (0),

n ~ 0} returns to zero infinitely often because many

states are mapped to zero by #(., Sn, An), for given

(Sn, An). In particular, if q5(Wn(0), Sn, An) = O, then

the same is true throughout a neighborhood of W. (0),

as. Similarly, W~+l(6) remains zero under a suf-

ficiently small change in 0. But if Wn+l (d) = O

throughout a neighborhood of 0, then W~+l (0) = 0.

Thus, the fact that the waiting times couple from dif-

ferent initial states forces the derivatives to equal zero

infinitely often. In this sense, regeneration at zero has

special significance for derivatives.

To formalize these ideas, we return to (3). To

write this recursion more compactly, let DW # and

DU q5be, respectively, d x d and d x 1 matrices of par-

tial derivatives of 4 with respect to the corresponding

arguments. Then (3) simplifies to

w;+,(~) =[~w#(wn(e), Un(e))]w;(e)

+ [Du@J(wn(e), Un(e))]u;(e). (7)

This, in turn, can be re-written as

~;+l(~) = &( fV%(e) + %(0, (8)



286 Glasserman and Glynn

where {X. (0), n ~ O} are matrices and {Y.(0), n 2 O}

are vectors.

This representation of the IPA estimates is use-

ful in establishing regenerative properties. We first

give a result in the setting of Harris ergodic Markov

chains, then specialize to classical regeneration. For

background on Harris chains, see Asmussen (1987).

Since we consider just one value of O at a time, we

suppress the argument.

Theorem 3.2. Suppose {( W., Un, ~~), n ~_O} is a

Harris ergodic Markov chain and let (W., ~., U~) have

the invariant distribution of this chain. If

P(llw(j(wo, /70)

then {(W~,W’~, U~,U~),n Z

Markov chain.

Prvof. That

=0)>0, (9)

O} is a Harris ergodic

{(W., W’;,U., UA),
n > O} is Markov follows from (7) and the hypothe-

sis that {(W~, U~, U:), n > O} is Markov. Let X. =

DW@(T%n, ~~) and let ~~ = Dud(fin, fin)U~. By Har-

ris ergodicit y, {(w’n,un,u;),
n z O} couples with its stationary version at a fi-

nite time IVl, as. Subsequently, (X., Y~) coincides.-
with (Xn, Yn); i.e.,

W~+l =~nW~+Yn, n 2fV1.

Condition (9) implies that XjV2 = O for some finite

Nz > ATl, as. Then W~,+l = YN,, regardless of W:;

i.e., the derivatives couple in finite time, for all initial

states.

As shown in Glasserman (1992b), condition (9)

implies that {IV;, n z O} has a unique stationary dis-

tribution, giving a stationary distribution for

{(WTI, W:, U., U;), n z O}. But any Markov chain

that admits coupling and has a stationary distribu-

tion is Harris ergodic. n

Similarly, for classical regeneration we have

Theorem 3.3. Suppose, now, that {( U., Ul), n ~

O} are i.i.d., that {Wo, n ~ O} returns to the origin

infinitely often, as, and that

P(DW$Z5(0,Uo)= o,Duqyo,Uo)u:= o) >0. (lo)

Then {(Wn, W; ), n ~ O} is regenerative with W’ = O

at the regeneration times.

Proof. If W. = O, then with the strictly positive prob-

ability in (10), W~+l = O and (W~+I, W’~+l) becomes

independent of {(W~, W;), k ~ n}. ❑

With either the Harris ergodicity of Theorem 3.2

or the classical regeneration in Theorem 3.3, we have

convergence in distribution of {W;, n > O} to the

stationary distribution WA, If w& is integrable, then

n-1

x
n-’ w~ (11)

i=o

converges almost surely, and this is half of what we

need for (6).

3.3 Consistency

Once we have as. convergence of time-averages of

{W; (0)1 n ~ O}, the question of consistency reduces

to one of interchanging a limit and a derivative. We

will give two sets of sufficient conditions for this in-

terchange.

For (6) to hold, we need conditions on the depen-

dence of the inputs across different values of 19. The

simplest assumption is

(A4) {Un, n ~ O} are i.i.d. functions on [a, b].

Naturally, (A4) implies that {U~, n ~ O} are also

i.i.d. functions. More generally, we could require that

{( W., U., U~), n > O} be a Harris ergodic function-

valued Markov chain.

Our first strong consistency result is based on

the method of Hu (1992). Hu shows that limit and

derivative can be interchanged under convexity con-

ditions.

Theorem 3.4. Suppose the conditions of Theorem

3.3 hold with (A4) replacing the i.i.d. condition given

there. Suppose that (Al) holds with “Lipschitz” re-

placed by “convex.” Suppose further that ~ is in-

creasing and convex. If E[lfio(0)l] < co for all 0

and E[l WJ (b) 1] < cm, then (6) holds at almost every

e E [a, b].

Proof. The composition of an increasing convex func-

tion with a convex function is convex; thus, every

Wn(.) is as. convex. A convex function on a closed

interval is Lipschitz, hence absolutely continuous, so

we have

J

9,
W.(02)= Wn(o,)+ W;(O) dO, as.,

e,

for all n and 01,02. Now take time averages of both

sides and let the time horizon increase to infinity. The

result is

J-:%iJw’)deE[~(02)] = E[I?(131)] + lim
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By convexity, W;(d) ~ W;(b), as. By dominated

convergence, we may therefore interchange limit and

integral to get

J

82

E[ivo(ez)] = ~[fio(el)] + E[m;(e)] de,
e~

for all 01, Oz. With w(O) = E[~O(0)], this proves that,

a.e. on [a, b], w’(O) exists and equals E[fi~(19)]. ❑

The function max is convex, so Theorem 3.4 can

be applied to the Lindley recursion and its general-

izations.

Our next result drops the convexity requirement

by putting a stronger condition on the Lipschitz prop-

erty. As in (4), let k+,z be a modulus for + as a

function of its second argument for any value of its

first argument. In the setting of Theorem 3.3, let

{r~, k ~ O} be the renewal process of returns to the

origin.

Theorem 3.5. Assume the conditions of Theorem

3.3 and (A4). Suppose (A1)-(A3) hold with integrable

moduli in (Al). Suppose ~. and ~{ are integrable.

If k@,2s 1 and Supe 11[~1(~) – TO(O)] < CO, then (6)

holds at almost every O c [a, b].

Proof. Consider, for simplicity, the non-delayed case

To ❑ O. If Tj < n < ~j+l, then it follows from (4) and

the fact that W/, = O that

Hence, if kd,z g 1, taking expectations we get

E[llVV~(6)l/] s l?[~l(fl) – ro(d)]l?[~{u,]. By the last

hypothesis in the theorem, EIII W; (0) 11] is therefore

bounded uniformly in n and 0. Arguing much as in

Theorem 3.4 (but taking expectations first ), this al-

lows us to interchange limit and integral to get

E[l’io(ez)]– E[mJ(e~)]

since the limit of (11) is also the limit of its expec-

tation. This implies that w(d) = E[~o(d)] is differ-

entiable at almost every 6, with w’(O) = E[J@(d)].

o

3.4 Remarks on Continuous Time

Though we have only considered consistency of IPA

for discrete-time processes, similar techniques are use-

ful in continuous time. We briefly outline how.

Let X = {Xt, t ~ O} have a countable state space

and suppose X changes state at times {7., n > 0}.

Suppose X depends on d. Assuming, say,

J
t

t-l
f(X$(0)) ds ~ rrz(fl), (12)

o

the question is whether

-!&’ /’”f(x.(d)) ds] ~ m’(e), (13)
o

for some {t., n > O} increasing to infinity.

A first step in showing (13) is arguing that

d, ‘m

J

n-1

z,
f(xs(e)) ds = ~ f(yrt(e))[~:+l – T:],

1=0

where Yn is the state just after the n-th transition.

Techniques from Section 3.1 are useful here because

this finite-horizon derivative estimator will typically

be unbiased only if the state-transition times are Lip-

schitz functions of O.

For many discrete-event systems, it is possible to

supplement the system stat e with the time remaining

for scheduled events to obtain an augmented process

{(K, C.), n > O} that is Markov. Regeneration of

this ptocess is useful in establishing (12). To ana-

lyze IPA estimators, it is convenient to consider a fur-

ther augmented process {( Y., C’n, An ), n ~ O}, where

A records information about derivatives of scheduled

event times. One way for {(Y., C’.), n 2 O} to re-

generate is for Y to visit a state in which an entirely

new set of events is scheduled; often, this corresponds

to a s~stem returning to an empty state. When new

events are scheduled, new derivatives are generated,

so {(y., c., An ), n > O} also regenerates, and this is

an important step in verifying (13). As in Section 3.2,

we see here a connection between a strong form of re-

generation for the original process and regeneration

at zero for the derivatives. A detailed treatment of

the continuous-time setting is given in Glasserman et

al. (1991).
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