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ABSTRACT

We present and compare two ways of applying the

regenerative method of simulation output analysis to

simulate the steady-state behavior of irreducible dis-

crete time Markov chains having a finite state space.

The “standard” approach involves defining the regen-

erative cycles based on the times a particular “return”

state is visited. The alternative approach involves us-

ing ‘{splitting” to define the regenerative cycles. We

present a way of selecting the splitting distribution

that guarantees that the splitting cycles are shorter

than the standard cycles, and that the variance es-

timates produced by the splitting approach are less

variable than the variance estimates produced by the

standard approach.

1 INTRODUCTION

The regenerative method of simulation output anal-

ysis is designed to obtain strongly consistent point

and variance estimates from one long sample path
in steady-state simulation of regenerative stochastic

processes. In order to apply the regenerative method,

it is necessary to identify times when the stochastic

process of interest regenerates, and to continue gen-

erating a sample path of this stochastic process until

it has regenerated a number of times. This can limit

the applicability of the regenerative method as regen-

eration times are sometimes difficult to identify, and

as it may take a prohibitive amount of computer time

to continue the simulation until several regenerations

have been observed.

In this paper, we study the application of the re-

generative method to steady-state simulation of irre-

ducible discrete time Markov chains on a finite state

space. In this case, it is easy to identify regeneration

times as the Markov chain regenerates every time it

returns to a given state. Thus, the “standard” way of

applying the regenerative method to simulate Markov

chains involves selecting any one “return” state in the

state space, simulating the chain until this state has

been visited several times, and using the times when

this state is visited as the regeneration times. Unfor-

tunately, this approach does not always work well as

it may be impossible to select a return state that is

visited often enough for this approach to be practical.

We discuss another way of defining the regeneration

times based on using splitting. This approach in-

volves selecting a particular “splitting distribution,”

and using the times when the Markov chain has thk

distribution as regeneration times. It will be shown

that when the standard method is used with a return

state s, and the splitting method is used with the

splitting distribution consisting of the sth row of the

transition probability matrix of the Markov chain be-
ing simulated, the splitting regenerative method will

produce both shorter regenerative cycles and more

precise variance estimates than the standard regener-

ative method.

This paper is organized as follows: in Section 2, we

present the standard and splitting approaches to re-

generative simulation of discrete time Markov chains.

Then in Section 3, we compare the estimators pro-

duced by these two methods. Finally, Section 4 con-

tains some concluding remarks.
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2 REGENERATIVE

MARKOV CHAINS

Increasing the

SIMULATION

Let {Xn} be a discrete time Markov chain with

Frequency of Regeneration

OF

finite

state space S and transition probability matrix P.

Suppose further that {Xn} is irreducible. Then {Xn}

has a unique stationary distribution r. We want

to estimate the steady-state mean T = Em{~(XO)},

where ~ : S -+ 7? is a given function (if w is a prob-

ability distribution on S, then EP is the expected
value operator given that X. has distribution p and

PM is the corresponding probability measure). We

will present and compare two ways of applying re-

generative simulation to estimate r. For more details

on the regenerative method of steady-state simulation

output analysis, the reader is referred to Crane and

Lemoine (1977) and to Iglehart and Shedler (1980).

The standard way of applying regenerative simula-

tion to estimate r is to select a fixed return states ~ S

and to end a regenerative cycle whenever the states is

hit. Equivalently, one can use the regeneration times

T~l),T\l),T~l), . . . . where X. = s, T~l) = 1, and for

rn~l,

T’(l) = inf{n ~ Z’~~l : Xn = s} + 1.m

Another way of applying regenerative simulation to

estimate r is to select a fixed splitting distribution p

and to end a regenerative cycle whenever the Markov

chain {X~} has the distribution p. For all z 6 S, let

A, E [0,1] be such that

pi] 2 Azvj , (1)

for all i, j ~ S. Suppose p is such that at least one

of the Ai, i c S, is strictly positive. Then it is well

known that the Markov chain {Xn} is regenerative

(see Athreya and Ney (1978) and Nummelin (1978)).

By equation (1), whenever the Markov chain is in

state i, with probability Ai the next state will have

the distribution p, independently of the past. This

means that regeneration has taken place. We will

restrict our attention to the case when pt = P8%,for

all i e S. Then we can take A$ = 1, so the Markov

chain {Xn} is regenerative. For all n = O, 1, 2 ...,

let tin be a Bernoulli random variable with parameter

Axn (so 6. = 1 with probability Ax. and 6. = O with

probability 1 – AX.), and suppose tin is independent

of both Xo, . . ..Xn and 60, . . ..6_l_l. Let XO = s,

T(2) = 1, and for m 21,0

7’(2) = inf{rz > T~ll : & = 1} +1.m

(2) (2) (2)
Then To ,Tl ,T2 ,.. . are regeneration times for

the Markov chain {X.}.

For k = 1,2, and for all m z 1, let
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T(k) – T:~l,## = m

T&k)–l

y(k) =
m ~ f(xn)>

~=@k)
m—l

and

Let ~(k) = ~~k),y(~) = Y{k), and z(k) = Z[k),fork z=

1,2. By the ratio formula for regenerative processes,

we have
Eq{Y(k)}

r = EW{7(@} ‘

for k = 1,2. Moreover, we have the following expres-

sion for the variance 02:

2 _ J%{[z(ku2}
a – ~w{+)} ‘ (2)

k = 1,2. (It is easy to show that the right-hand side

of equation (2) does not depend on k.) Let

for k = 1,2. Then if we simulate the Markov chain

until n state transitions have taken place, we get the

following strongly consistent estimates for r and a2:

(4)

k=l,2.

We have defined two sequences of regeneration

times {T$) }, k = 1,2, for the Markov chain {X~;}.

Since As = 1, it is clear that a splitting regeneration

occurs each time the state s is hit. This shows that

{T/)} c {T:)}, so we have shown that splitting r,>

generations take place more frequently than standard

regenerations (and thereby that the splitting regen-

erative cycles are shorter than the standard regener-

ative cycles). In Section 3, we show that the split-
ting regenerative method also produces more precise

variance estimates. Note that shorter cycles do not

always result in more precise variance estimates, as

shown by Calvin (1994).
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3 A COMPARISON BETWEEN STAN-

DARD AND SPLITTING REGENERA-

TIVE ESTIMATORS

By applying a theorem in Glynn and Iglehart (1987),

one can show that the point and variance estimators

given in equations (3) and (4) satisfy the following

joint central limit theorem:

Theorem 1 Under the assumptions made on

Markov chain {Xn},

(
nl/2 ~fk)(n) – r, s(k)(n) – a) + JV(O, D(k)),

for k = 1,2, where

~fi) = ~2

and

the

—

E@{~(k)Z(k)}EP{[Z(k)]3}

~2[’%+(kw ‘
k=l,2.

We now derive an expression for the amount of vari-

ance reduction that is obtained by using splitting re-

generative cycles rather than standard regenerative

cycles. For this purpose, define

q = min{m>l: state s is hit in the splitting

regenerative cycle [T#), T#./. ~) }.

Then
n+]

j=l

and

Note that n is a ~eometric random variable with Da-,
rameter p = F’@{~(l) < 7(2)} = PW{T(l) = T(2)} since
~(1) > ~(z). Therefore Ev{q} = (1 – p)/p. By The-

orem–l, we have D\~) = Dfi) = cr2. The following
result is proved in Andrad6ttir, Calvin, and Glynn

(1994):

Theorem 2 Under the assumptions made on the

Mar%ov chain {X.}, Df~) = Dfi) and

D$2) = D:) + EW{V}EW{[Z(2)]21V ~ 1} +

(Eq{q})2(%{-z(2)ln21})

> DE).

Theorem 2 quantifies the variance reduction ob-

tained by using splitting rather than standard regen-

erative cycles. Note that the difference between the

quality of splitting versus standard regenerative esti-

mators increases as p = P@{7(1) < 7(2)} decreases,

and as EP{[Z(2J]2/q > 1} and EW{Z(2)/q > 1} in-

crease.

4 CONCLUSION

We have discussed two ways of applying the regenera-

tive method to steady-state simulation of irreducible

discrete time Markov chains on a finite state space.

The standard regenerative method uses visits to a

fixed return state as regeneration times, whereas the

splitting regenerative method uses the times when the

Markov chain has a given splitting distribution as re-

generation times. We have shown that when the split-

ting distribution consists of the row of the transition

probability matrix of the Markov chain correspond-

ing to the return state of the standard regenerative

method, the splitting regenerative method will pro-

duce shorter cycles and more precise variance esti-

mates than the standard regenerative method. This

improvement obtained through the use of the split-

ting regenerative method is likely to be most benefi-

cial when the state space of the Markov chain is large,

no single state is visited very often, and the transi-

tion probability matrix of the Markov chain exhibits

a significant amount of row similarity.
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