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Hoe�ding’s inequality for uniformly ergodic Markov chains
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Abstract

We provide a generalization of Hoe�ding’s inequality to partial sums that are derived from a uniformly ergodic Markov
chain. Our exponential inequality on the deviation of these sums from their expectation is particularly useful in situations
where we require uniform control on the constants appearing in the bound. c© 2002 Elsevier Science B.V. All rights
reserved
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1. Introduction

Hoe�ding’s inequality is a key tool in the analysis of many problems arising in both probability and
statistics. Given a sequence Y ≡ (Yi : i¿ 0) of independent and bounded random variables, Hoe�ding’s
inequality provides an exponential bound on partial sums of the form Sn=Y0 + · · ·+ Yn−1.

Theorem 1 (Hoe�ding’s inequality). Suppose that for each i¿ 0 there exist real numbers ai and bi such
that P(Yi ∈ [ai; bi])= 1. Then for any 	¿ 0; we have

P(Sn − E[Sn]¿ n	)6 exp

(
−2n2	2

/
n−1∑
i=0

(bi − ai)2
)
:

For a proof, see Hoe�ding (1963).
As indicated above, this result has found broad applicability in many di�erent settings. See, for example,

Ser@ing (1980) for various statistical contexts within which the inequality plays a central role. Devroye
et al. (1996) illustrate the importance of this inequality in the classiBcation setting. The explicit nature of the
constants in the bound makes it especially attractive in contexts within which one needs to establish that the
probability in question decays exponentially in n in some uniform fashion.
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Our interest in the inequality arose from its rule in the analysis of a reinforcement learning algorithm;
see Ormoneit and Glynn (2001). Our speciBc application requires an extension of Hoe�ding’s inequality to
the setting of Markov chains. It is important to recognize that some appropriate mixing assumption must be
enforced, in addition to requiring boundedness of the summands, if the qualitative form of the inequality is to
be retained. To see this, consider the degenerate setting in which Yi=Y0 for i¿ 1, in which case any upper
bound on P(Sn − E[Sn]¿ n	) cannot decay to zero as n → ∞. Consequently, the extension of Hoe�ding’s
inequality to the Markov context will require imposing an appropriate recurrence condition on the chain (that
will induce an appropriate level of mixing).
SpeciBcally, let X ≡ (Xn: n¿ 0) be a Markov chain taking values in a state space S. We require the

following condition on X :
(A.1) There exists a probability measure ’ on S; �¿ 0, and an integer m¿ 1 such that

Px(Xm ∈ ·)¿ �’(·)
for each x∈ S.
Here Px(·) denotes the conditional probability P(·|X0 = x). Condition (A.1) is closely related to the as-

sumptions of uniform ergodicity (see Meyn and Tweedie, 1993) and Doeblin recurrence (see Doob, 1953).
It is often easy to verify for chains taking values in a compact state space. It should be noted that chains
satisfying (A.1) automatically possess a unique stationary distribution � (Meyn and Tweedie, 1993).
To present our main result, let f : S → R, set Yi ≡ f(Xi), and let Sn ≡

∑n−1
i=0 Yi. For example, Yi may be

the reward for visiting the state Xi, as in the case of a Markov reward process (Puterman, 1994). Furthermore,
let the norm and the long-term expected value of f be deBned according to ‖f‖ ≡ sup{|f(x)|: x∈ S} and � ≡∫
S f(x)�(dx), respectively. Our main result is the following Markovian extension of Hoe�ding’s inequality.

Theorem 2. Assume (A:1) and suppose that ‖f‖¡∞. Then we have

Px(Sn − E[Sn]¿ n	)6 exp
(
−�

2(n	− 2‖f‖m=�)2
2n‖f‖2m2

)
for n¿ 2‖f‖m=(�	).

Note that this bound has the same degree of explicitness in terms of the underlying “problem data” as
does the classical Hoe�ding’s inequality, and displays the same qualitative behavior. One interesting feature
of our proof, supplied in Section 2, is that it depends critically on the “additive form” of Poisson’s equation
for the function f. This is perhaps surprising in view of the recent work of Balaji and Meyn (2000) which
emphasizes the role of the multiplicative Poisson’s equation in the large deviations theory for Sn. However,
it should be noted that our analysis assumes the recurrence hypothesis (A.1), whereas Meyn’s work covers
more general chains.

2. Proof of Theorem 2

Set fc(x) ≡ f(x)− � and note that Sn − n�=
∑n−1

i=0 fc(Xi). Under condition (A.1), it is known that

|Exfc(Xn)|6 ‖f‖ · (1− �)�n=m�;
see Asmussen et al. (1992) or Rosenthal (1992) for a proof. 1 (Here, Ex(·) ≡ E[ · |X0 = x].) Hence,

g(x)=
∞∑
n=0

Exfc(Xn)

1 The bound is proven there with ‖fc‖ instead of ‖f‖ on the right-hand side, from which the inequality above follows.
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converges absolutely and

‖g‖6 ‖f‖ · m=�: (1)

Furthermore, g solves Poisson’s equation:

g(x)− Exg(X1)=fc(x) (2)

for x∈ S. Observe that

Di ≡ g(Xi)− Ex[g(Xi)|X0; : : : ; Xi−1]

is a martingale di�erence for i¿ 0. Furthermore, (2) implies that

Sn − n�=
n∑
i=1

Di + g(X0)− g(Xn):

It follows that for �¿ 0,

Ex exp(�(Sn − n�))6 exp(2�‖g‖) · Ex exp
(
�

n∑
i=1

Di

)
: (3)

But

Ex exp

(
�

n∑
i=1

Di

)
=Ex exp

(
�
n−1∑
i=1

Di

)
Ex[exp(�Dn)|X0; : : : ; Xn−1]: (4)

However, we may now take advantage of a key step in the proof of the classical Hoe�ding’s inequality
(conditional on X0; : : : ; Xi−1) to conclude that, because Di lies a.s. in an interval of length 2‖g‖,

Ex[exp(�Dn)|X0; : : : ; Xn−1]6 exp(� 2‖g‖2=2); (5)

see Lemma 8:1 of Devroye et al. (1996) for a proof of inequality (5). Inequalities (3) and (5), together with
(4) recursively applied, yield the inequality

Ex exp(�(Sn − n�))6 exp(2�‖g‖+ n� 2‖g‖2=2):
Markov’s inequality then establishes the tail bound

Px(Sn − n�¿ n	)6 exp(−�n	+ 2�‖g‖+ n� 2‖g‖2=2): (6)

The value of � that minimizes this bound is

�n=
n	− 2‖g‖
n‖g‖2 :

Substituting �n into (6) and exploiting the bound (1) establishes the theorem.

Note that we also could have directly applied Azuma’s inequality (see Azuma, 1967) to our martingale
representation for Sn, in order to obtain an exponential inequality for the sum Sn. However, Azuma’s inequality
involves an a.s. bound on |Di|, which in our setting could be as large as 2‖g‖. This introduces an extra factor
of 4 into the exponent of (5), and thereby reduces the e�ectiveness of our probability bound by a similar
factor.
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