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Long-run stochastic stability is a precondition for applying steady-state simulation output analysis methods
to a discrete-event stochastic system, and is of interest in its own right. We focus on systems whose underlying
stochastic process can be represented as a Generalized Semi-Markov Process (GSMP); a wide variety of
stochastic systems fall within this framework. A fundamental stability requirement for an irreducible GSMP
is that the states be “recurrent” in that the GSMP visits each state infinitely often with probability 1. We
study recurrence properties of irreducible GSMPs with finite state space. Our focus is on the “clocks” that
govern the occurrence of events, and we consider GSMPs in which zero, one, or at least two simultaneously
active events can have clock-setting distributions that are “heavy tailed” in the sense that they have infinite
mean. We establish positive recurrence, null recurrence, and, perhaps surprisingly, possible transience of
states for these respective regimes. The transience result stands in strong contrast to Markovian or semi-
Markovian GSMPs, where irreducibility and finiteness of the state space guarantee positive recurrence.
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1. INTRODUCTION

We are pleased to honor the achievements of Donald L. Iglehart, who has played a major
role in creating a modern theory of stochastic simulation. An important development
of this theory is the recognition that the Generalized Semi-Markov Process (GSMP)—
originally proposed by König et al. [1974] for the study of complex service systems—is
an exceptionally well suited mathematical model of the underlying stochastic pro-
cess of a complex discrete-event simulation, and therefore worthy of serious study by
simulation researchers. (The underlying process records the state of the system as it
evolves over continuous time.) Work by Professor Iglehart, his students, and his col-
leagues has established the GSMP, which formalizes the usual variable-time-advance
simulation procedure, as the standard mathematical framework for investigating fun-
damental questions about discrete-event simulation [Glynn 1989; Haas and Shedler

Authors’ addresses: P. W. Glynn, Department of Management Science and Engineering, Stanford University,
Stanford, CA 94305; email: glynn@stanford.edu; P. J. Haas, IBM Almaden Research Center, 650 Harry Road,
San Jose, CA 95120-6099; email: phaas@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1049-3301/2015/05-ART25 $15.00

DOI: http://dx.doi.org/10.1145/2699721

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 4, Article 25, Publication date: May 2015.

http://dx.doi.org/10.1145/2699721
http://dx.doi.org/10.1145/2699721


25:2 P. W. Glynn and P. J. Haas

1987; Henderson and Glynn 2001; Iglehart and Shedler 1983, 1984; Shedler 1993;
Whitt 1980]. Although there are classes of discrete-event simulations that cannot be
modeled as GSMPs [Haas and Shedler 1987; Miyazawa 1993], a rich collection of
complex manufacturing, computer, transportation, telecommunication, health care, lo-
gistic, and workflow simulations can be captured within the GSMP framework using a
remarkably simple set of building blocks.

In the context of steady-state output analysis for discrete-event simulations, a fun-
damental question is whether the underlying stochastic process is stochastically stable
over time. Such long-run stochastic stability ensures that questions about the “steady
state” of a given system are well posed, and is a precondition for applying steady-state
simulation output analysis techniques such as regenerative, spectral, or standardized
time series methods. Steady-state stability is important in its own right, since lack of
such stability can indicate problematic behavior in the system of interest or deficien-
cies in the modeling process. In this article, we study long-run stability for systems in
which the underlying stochastic process can be represented as a GSMP.

A basic requirement for steady-state output analysis is that the states of the GSMP be
“recurrent,” in that the GSMP visits each state infinitely often (i.o.) with probability 1.
For example, the regenerative method for simulation output analysis [Crane and
Iglehart 1975; Glynn and Iglehart 1993; Shedler 1993] requires that each regener-
ation point be almost surely (a.s.) finite, which often amounts to the requirement that
a specified “single state” is recurrent. Other methods, such as the method of standard-
ized time series, assume that the GSMP obeys a Functional Central Limit Theorem
(FCLT) (see Glynn and Iglehart [1990]). Such an FCLT is implied by a “Harris recur-
rence” condition (Section 2.5) that in turn implies recurrence for each state [Glynn
and Haas 2006]. In this article, we study recurrence properties of GSMPs. We focus on
GSMPs having a finite state space and in which any state can potentially be reached
from any other state via a sequence of event occurrences; GSMPs having this latter
property are called “irreducible” (see Definition 2.2 in the following).

Lack of recurrence for a GSMP with a countably infinite state space often means
that the process drifts off to the far reaches of the space, never to return. Such outward
drift can correspond, for example, to overflowing queues or buffers in telecommu-
nication, service, and manufacturing models. In GSMPs with finite or infinite state
spaces, transience of certain states can lead to effective reducibility in a nominally ir-
reducible system. In this latter scenario, any state can be reached from any other state
in principle, but if such reachability hinges on passage through transient states, then
certain states will eventually become unreachable from each other with probability 1.
Consequently, the steady-state or limiting distribution of the GSMP, if it exists, may
depend upon the initial state of the system in a potentially complex manner, making
steady-state estimation difficult. Transience of certain states can also correspond to
“starvation” (withholding of needed resources) or overprovisioning of some process or
activity within a complex system, as discussed later in this section.

A GSMP makes a state transition when one or more events associated with the state
occur. For each such “active” event, a clock records the time until the event is scheduled
to occur. These clocks determine when the next state transition occurs and which of the
scheduled events actually trigger this state transition. When all events are “simple”
(Section 2.2) and each clock is set according to an exponential distribution, the GSMP
reduces to a continuous-time Markov chain [Haas 2002, Section 3.4] and classical
theory applies (see, e.g., Asmussen [2003]). In particular, if the GSMP is irreducible
with finite state space, then recurrence of each state is assured. Indeed, each state is
“positive recurrent”—in that the expected number of state transitions between visits
is finite—and the expected hitting times of each state (in continuous time) are finite.
Similarly, if each state has at most one active event, then the GSMP is a semi-Markov
process, and again the finiteness of the state space and the irreducibility property
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Fig. 1. State-transition diagram for GSMP with a transient state.

together guarantee that each state is positive recurrent. If, moreover, each clock-setting
distribution has finite mean, then the expected hitting times of each state are finite.

When the clock-setting distribution functions can be arbitrary and multiple events
can be active in a state, the behavior of the GSMP becomes much more complex and
sometimes counterintuitive. For example, it is possible to construct a GSMP having
an infinite state space in which the expected time between successive state transitions
increases linearly but, with probability 1, an infinite number of state transitions occur
in a finite time interval [Haas 2002, p. 90]. In what follows, we show that even when
the state space is constrained to be finite, nonintuitive behavior can occur in a non-
Markovian GSMP when the means of the clock-setting distributions can be infinite.
Specifically, we study GSMPs in which zero, one, or at least two simultaneously active
events can have such “heavy-tailed” clock-setting distributions. We establish discrete-
time positive recurrence, null recurrence, and, perhaps surprisingly, possible transience
of states for these respective regimes.

The transience result is established by means of a simple example, specifically, a
GSMP having three states, three events, and a state-transition diagram as in Figure 1.
Events e1 and e2 have heavy-tailed clock-setting distributions, whereas e3 has a light-
tailed distribution and occurs at frequent intervals. Observe that the only way in
which the GSMP can hit state 2 is if event e1 occurs and then event e2 occurs without
an intervening occurrence of frequent event e3. We show (Theorem 5.1) that, with
probability 1, such a scenario occurs only a finite number of times, because the clocks
for e1 and e2 are almost never small at the same time and hence these events almost
never occur close together in time.

This GSMP may be viewed as a simplified model of a starvation scenario in which, for
example, resources are used by two processes, each of which alternates between busy
periods with heavy-tailed durations and short idle periods. The resources are available
for use by a third process—which periodically submits a resource request—only when
both heavy-tailed processes are idle. For example, the resource might represent a tool
in a manufacturing cell. Theorem 5.1 essentially implies that, with probability 1, the
third process will only be granted the resource a finite number of times because there
will only be a finite number of times at which both heavy-tailed processes become idle
roughly simultaneously. Alternatively, the GSMP can be viewed as a stylized model
of overprovisioning. For example, suppose that a resource is permanently dedicated
to handling the simultaneous or near-simultaneous occurrence of two events, each
of which is recurring but with a heavy-tailed distribution for the interevent times.
In an emergency response simulation, one event might be a major forest fire and
another event a magnitude 6.0 earthquake; in a reliability simulation, the events
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may correspond to failures of two highly reliable parts. Our results imply that with
probability 1 such events will occur jointly at most a finite number of times.

These positive recurrence, null recurrence, and transience results have a rough anal-
ogy to the theory of random walks on multidimensional integer lattices—see Section 6—
and illustrate the richly complex behavior of non-Markovian GSMPs relative to their
Markovian or semi-Markovian counterparts. Our results extend to other discrete-event
formalisms, such as stochastic Petri nets [Balbo and Chiola 1989; Chiola 1991; Chiola
and Ferscha 1993; Haas 2002; Haas and Shedler 1986] and event graphs [Schruben
1983]. A preliminary version of these results, in the setting of stochastic Petri nets,
appeared in Glynn and Haas [2012].

2. GSMP PRELIMINARIES

We briefly review the standard GSMP model and then describe the “hazard rate”
representation of a GSMP. We next define a useful set of irreducibility and “positive
density” conditions and then discuss some notions of recurrence in a GSMP.

2.1. The GSMP Model

Following Shedler [1993], let E = {e1, e2, . . . , eM} be a finite set of events and S be a
finite or countably infinite set of states. For s ∈ S, let s �→ E(s) be a mapping from S to
the nonempty subsets of E; here E(s) denotes the set of all events that are scheduled
to occur when the process is in state s. An event e ∈ E(s) is said to be active in state s.
When the process is in state s, the occurrence of one or more active events triggers a
state transition. Denote by p(s′; s, E∗) the probability that the new state is s′ given that
the events in the set E∗ (⊆E(s)) occur simultaneously in state s. A “clock” is associated
with each event. The clock reading for an active event indicates the remaining time
until the event is scheduled to occur. These clocks determine which of the active events
actually trigger the next state transition. The most general GSMP formulation allows
clocks to run down at state-dependent “speeds”; for simplicity, we restrict attention
throughout to GSMPs in which all speeds are equal to 1. (Our results extend to GSMPs
in which all speeds are positive.) Let C(s) be the set of possible clock-reading vectors
when the state is s:

C(s) = { c = (c1, . . . , cM) : ci ∈ [0,∞) and ci > 0 if and only if ei ∈ E(s) }.
Here the ith component ci of a clock-reading vector c = (c1, . . . , cM) is the clock
reading associated with event ei. Beginning in state s with clock-reading vector
c = (c1, . . . , cM) ∈ C(s), the time t∗(s, c) to the next state transition—also called the
holding time in s—is given by

t∗(s, c) = min
{ i:ei∈E(s) }

ci. (1)

The set of events E∗(s, c) that trigger the next state transition is given by

E∗(s, c) = {
ei ∈ E(s) : ci − t∗(s, c) = 0

}
.

At a transition from state s to state s′ triggered by the simultaneous occurrence
of the events in the set E∗, a finite clock reading is generated for each new event
e′ ∈ N(s′; s, E∗) = E(s′) \ (E(s) \ E∗). The clock reading for a new event e′ is generated
according to a clock-setting distribution function F( · ; s′, e′, s, E∗), independently of the
clock readings for the other new events. We assume that F(0; s′, e′, s, E∗) = 0, so that
new clock readings are a.s. positive, and that limx→∞ F(x; s′, e′, s, E∗) = 1, so that each
new clock reading is a.s. finite. For each old event e′ ∈ O(s′; s, E∗) = E(s′) ∩ (E(s) \ E∗),
the old clock reading is kept after the state transition. For e′ ∈ (E(s) \ E∗) \ E(s′), event
e′ (which was active before the events in E∗ occurred) is canceled and the clock reading
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is discarded. When E∗ is a singleton set of the form E∗ = { e∗ }, we write p(s′; s, e∗) =
p(s′; s, { e∗ }), O(s′; s, e∗) = O(s′; s, { e∗ }), and so on. The GSMP is a continuous-time
stochastic process { X(t) : t ≥ 0 } that records the state of the system at time t.

Formal definition of the process { X(t) : t ≥ 0 } is in terms of a general state space
Markov chain { (Sn, Cn) : n ≥ 0 } that describes the process at successive state-transition
times. Heuristically, Sn represents the state and Cn = (Cn,1, . . . , Cn,M) represents the
clock-reading vector just after the nth state transition (see Shedler [1993] for a formal
definition of the chain). The chain takes values in the set � = ⋃

s∈S

({ s } × C(s)
)
.

Denote by μ the initial distribution of the chain; for a subset B ⊆ �, the quantity
μ(B) represents the probability that (S0, C0) ∈ B. We use the notations Pμ and Eμ to
denote probabilities and expected values associated with the chain, the idea being to
emphasize the dependence on the initial distribution μ; when the initial state of the
underlying chain is equal to some (s, c) ∈ � with probability 1, we write P(s,c) and E(s,c).
Typically, the GSMP is initialized by selecting an initial state s0 according to a discrete
distribution ν over S, and then generating a clock reading for each e ∈ E(s0) from an
initial clock-setting distribution function F0( · ; e, s0). We assume such an initialization
procedure throughout. The symbol Pn denotes the n-step transition kernel of the chain:
Pn((s, c), A) = P(s,c){ (Sn, Cn) ∈ A} for (s, c) ∈ � and A ⊆ �.

We construct a continuous-time process {X(t) : t ≥ 0} from the chain { (Sn, Cn) : n ≥ 0 }
in the following manner. Let ζn (n ≥ 0) be the nonnegative, real-valued time of the nth
state transition: ζ0 = 0 and ζn = ∑n−1

j=0 t∗(Sj, C j) for n ≥ 1. We focus throughout on
GSMPs having finite state space S, in which case an argument as in Theorem 3.3.13
of Haas [2002] shows that Pμ{ supn≥0 ζn = ∞} = 1. The GSMP is then defined by
setting X(t) = SN(t) for t ≥ 0, where N(t) = sup { n ≥ 0 : ζn ≤ t } is the number of state
transitions that occur in the interval (0, t]. By construction, the GSMP takes values in
the set S and has piecewise constant, right-continuous sample paths.

We focus throughout on GSMPs in which, with probability 1, events never occur
simultaneously. In this setting, for n ≥ 1, denote by e∗

n = e∗(Sn−1, Cn−1) the nth event to
occur, and for n ≥ 0 denote by t∗

n = t∗(Sn, Cn) the holding time in state Sn. Observe that
the sequence U = (S0, t∗

0 , e∗
1, S1, t∗

1 , e∗
2, . . .) completely specifies {X(t) : t ≥ 0 } along with

the sequence of trigger events.

2.2. Simple Events and Heavy-Tailed Events

To simplify the exposition, we focus throughout on GSMPs in which each event e′ is
simple in that there exists a distribution function F( · ; e′) such that F( · ; s′, e′, s, E∗) ≡
F( · ; e′) and F0( · ; e′, s) ≡ F( · ; e′) for all s′, s, and E∗. Note that the assumption of simple
events entails no loss of generality for a finite-state GSMP, because any such GSMP
with clock-setting distribution functions having an explicit dependence on s′, s, and e∗
can be “mimicked” by a GSMP with clock-setting distribution functions of the foregoing
simple form by (a) using “complex” states of the form z = (s′, s, e∗) that record the prior
state and current trigger event in the original GSMP and (b) using “complex” events of
the form u = (e′; s′, s, e∗) that similarly record data about the state transition at which
the clock for e′ is set. That is, when the original GSMP is in state s and the occurrence
of e∗ triggers a state transition to s′, the “simple” GSMP makes a state transition from
z = (s, s−, e−) to z′ = (s′, s, e∗), where s− denotes the state prior to s and e− denotes
the event that triggered the transition from s− to s. If e′ ∈ N(s′; s, e∗) in the original
GSMP then, at the corresponding transition from z to z′ as described previously, the
clock for event u = (e′; s′, s, e∗) is set according to F( · ; u), which coincides with the
distribution function F( · ; s′, e′, s, e∗) from the original GSMP. The notion of mimicry
can be formalized as in Haas [2002, Sec. 4].
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For a GSMP with simple events, let H be the (possibly empty) subset of events in
E such that e ∈ H if and only if

∫ ∞
0 t dF(t; e) = ∞. Thus H is the set of “heavy-tailed”

events. Set η(H) = maxs∈S |E(s) ∩ H|, so that η(H) is the maximum number of heavy-
tailed events that can be active simultaneously. In the following sections, we consider
three possible scenarios: η(H) = 0, η(H) = 1, and η(H) ≥ 2.

In applications, a heavy-tailed clock reading might correspond to the time required
to process or transmit a computer file [Resnick and Rootzén 2000], the time between
extreme geophysical events [Benson et al. 2007], or the time to deal with a financial
loss [Moscadelli 2004], insurance claim [Powers 2010], extreme event in a highly opti-
mized physical system [Carlson and Doyle 1999], or natural disaster such as a forest
fire [Holmes et al. 2008]—in the latter examples we assume that these times are pro-
portional to the loss amount, claim amount, magnitude of physical-system deviation,
number of acres burned, and so on. In general, infinite-mean distributions are used
to model situations in which there is a relatively large chance of seeing values much
greater than any seen previously.

2.3. Hazard-Rate Representation

It is sometimes convenient to use an alternative construction of a GSMP based on
“hazard rates” (see, e.g., Glasserman [1991, Ch. 6] or Glynn [1989]). Consider a GSMP
for which each clock-setting distribution F(x; e) has a density function f (x; e), and define
the corresponding hazard-rate function by h(x; e) = f (x; e)/F̄(x; e), where F̄ = 1 − F
and we take 0/0 = 0. With probability 1, events never occur simultaneously for such a
GSMP. Also observe that if h(x; e) ≥ h for some h > 0 and all x ∈ (0,∞), then f (x; e) > 0
for all x ∈ (0,∞) and F( · ; e) has finite moments of all orders.

The hazard-rate construction rests on the following fact. Let F be a distribution
function having a density f and hazard rate h, and let Q be distributed according to a
unit exponential distribution function. The random variable τ defined by τ = inf{ t ≥
0 : Q − ∫ t

0 h(x) dx = 0 } has distribution function F. That is, we can simulate a clock-
setting distribution F for an event e by sampling from a unit exponential clock-setting
distribution and running the corresponding new clock reading down to 0 at a time-
varying rate given by h. To see this, observe that h(t) = f (t)/F̄(t) = −d/dt(ln F̄(t)), so
that

∫ x
0 h(t) dt = − ln F̄(x) and

P{ τ ≥ x } = P
{ ∫ x

0
h(t) dt ≤ Q

}
= exp

(
−

∫ x

0
h(t) dt

)
= F̄(x)

for x ∈ . More generally, if we set τ = inf{ t ≥ 0 : Q − ∫ t
a h(x) dx = 0 } for some a > 0,

then P{ τ ≥ x } = F̄(x)/F̄(a) = P{ Y > x | Y > a } for x ≥ a, where Y is distributed
according to F. Thus τ is distributed as a clock reading for an event e with clock-
setting distribution F in a conventionally defined GSMP, conditional on the fact that
the current “age” of the clock in such a GSMP is a. (The age of a clock is the amount of
time that the clock has been running down.)

Continuing further, it follows from the memoryless property of the exponential dis-
tribution that if a clock for an event e has a unit exponential clock-setting distribu-
tion, then—conditional on the past history of GSMP states, holding times, and trigger
events—the clock reading C̃ at a state-transition time ζ̃ also has a unit exponential
distribution (provided that the corresponding event is active at time ζ̃ ). This assertion
can be established rigorously by directly applying Lemma 3.4.10 in Haas [2002]; in-
deed, the argument shows that if multiple such clocks are active at ζ̃ , then the clock
readings are independent and identically distributed (i.i.d). exponential, whether the
clocks run down at a constant or time-varying rate. Thus, denoting by ζ̃ α the time when
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the clock for e was most recently set, we can take the previous a = ζ̃ − ζ̃ α and Q = C̃ to
see that

τ = inf
{

t ≥ 0 :
∫ t

ζ̃

h(x − ζ̃ α) dx = C̃
}

= inf
{

t ≥ ζ̃ α : C̃ −
∫ t−ζ̃ α

ζ̃−ζ̃ α

h(x) dx = 0
}

satisfies P{ τ ≥ x } = P{ ζ̃ α + Y > x | ζ̃ α + Y > ζ̃ } where Y
D∼ F as before. That is, the

random time τ is distributed precisely as the scheduled occurrence time for event e in
a conventional GSMP, assuming that the clock for e was set according to F at time ζ̃ α

and given that e occurs after observation time ζ̃ .
These results suggest an alternate algorithm for simulating a GSMP in which new

clocks are always set according to a unit exponential distribution but clocks run down
at time-varying rates specified by their hazard-rate functions. Specifically, consider the
algorithm given in the following, where we use tildes to distinguish the hazard-rate
construction from the standard GSMP construction. In the algorithm, the quantity
α(n, i) denotes the random index of the most recent event-occurrence time at or prior to
ζ̃ n at which the clock for ei ∈ E(S̃n) was set; by convention, α(n, i) = 0 for ei �∈ E(S̃n).

(0) (Initialization) Set n = 0, ζ̃ 0 = 0, and α(0, i) = 0 for ei ∈ E. Select S̃0 according
to ν. For each e ∈ E(S̃0), generate C̃n,i according to a unit exponential distribution
F(x) = (1 − exp(−x))I[x ≥ 0].

(1) For ei ∈ E(S̃n), set τn,i = inf{ t ≥ 0 :
∫ t
ζ̃n

h(x − ζ̃ α(n,i); ei) dx = C̃n,i }. Then set ζ̃ n+1 =
min{i:ei∈E(S̃n)} τn,i, t̃∗

n = ζ̃ n+1 − ζ̃ n, and ẽ∗
n+1 = ei such that τn,i = ζ̃ n+1.

(2) Generate S̃n+1 according to p( · ; S̃n, ẽ∗
n+1).

(3) For each ei ∈ N(S̃n+1; S̃n, ẽ∗
n+1), set α(n+ 1, i) = n+ 1 and generate C̃n+1,i according

to a unit exponential distribution.
(4) For each ei ∈ O(S̃n+1; S̃n, ẽ∗

n+1), set α(n+ 1, i) = α(n, i) and C̃n+1,i = C̃n,i − ∫ ζ̃n+1
ζ̃n

h(x −
ζ̃ α(n,i); ei) dx.

(5) For each ei ∈ (E(S̃n) \ {ẽ∗
n}) \ E(S̃n+1), set C̃n+1,i = α(n + 1, i) = 0.

(6) Set n ← n + 1 and go to Step 1.

In Step 1, we can see from the previous discussion that the τn,i random variables
are distributed as the scheduled occurrence times (in a standard GSMP) of the events
currently active at ζ̃ n, so that the minimum of these times (ζ̃ n+1) is correctly distributed
as the time of the next event occurrence and ζ̃ n+1 − ζ̃ n as the holding time in the current
state. After generating clock readings for the new events in Step 3, the clock for each
old event ei—which was originally set to a value of C̃α(n,i),i—is decremented in Step 4
to a value of

C̃n+1,i = C̃α(n,i),i −
∫ ζ̃n+1−ζ̃ α(n,i)

0
h(x; ei) dx

= C̃α(n,i),i −
∫ ζ̃n−ζ̃ α(n,i)

0
h(x; ei) dx −

∫ ζ̃n+1−ζ̃ α(n,i)

ζ̃n−ζ̃ α(n,i)

h(x; ei) dx

= C̃n,i −
∫ ζ̃n+1−ζ̃ α(n,i)

ζ̃n−ζ̃ α(n,i)

h(x; ei) dx = C̃n,i −
∫ ζ̃n+1

ζ̃n

h(x − ζ̃ α(n,i); ei) dx.

Using this algorithm, we can define a continuous-time process { X̃(t) : t ≥ 0 } in a
manner analogous to the usual definition of a GSMP by setting X̃(t) = S̃Ñ(t), where
Ñ(t) = sup{ n ≥ 0 : ζ̃ n ≤ t }.

Consider the sequences U = (S0, t∗
0 , e∗

1, S1, t∗
1 , e∗

2, . . .) and Ũ = (S̃0, t̃∗
0, ẽ∗

1, S̃1, t̃∗
1,

ẽ∗
2, . . .), where U is defined for the standard GSMP as at the end of Section 2.1 and
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Ũ is the corresponding sequence for the hazard-rate construction. We have the follow-
ing result.

PROPOSITION 2.1. U and Ũ are identically distributed, as are { X(t) : t ≥ 0 } and
{ X̃(t) : t ≥ 0 }.

The proof of the proposition combines the foregoing results in a straightforward
inductive argument very similar to the proof of Theorem 3.4.21 in Haas [2002]. When
using the hazard-rate construction in what follows, we suppress the tilde notation.

2.4. Irreducibility and Positive Density Conditions

In the following sections, we restrict attention to a certain class of “irreducible” finite-
state GSMPs with simple events whose clock-setting distributions satisfy a “positive
density” condition. To make our assumptions precise, we give a couple of definitions.
For a GSMP with state space S and event set E and for s, s′ ∈ S and e ∈ E, write s

e→ s′

if p(s′; s, e) > 0 and write s → s′ if s
e→ s′ for some e ∈ E(s). Also write s � s′ if either

s → s′ or there exist states s1, s2, . . . , sn ∈ S (n ≥ 1) such that s → s1 → · · · → sn → s′.

Definition 2.2. A GSMP is said to be irreducible if s � s′ for each s, s′ ∈ S.

Recall that a nonnegative function G is a component of a distribution function F if G
is not identically equal to 0 and G ≤ F. If G is a component of F and G is absolutely
continuous, so that G has a density function g, then we say that g is a density component
of F.

Definition 2.3. Assumption PD(q) holds for a specified GSMP and real number q ≥ 0
if

(1) the state space S of the GSMP is finite;
(2) the GSMP is irreducible; and
(3) there exists x̄ ∈ (0,∞) such that each clock-setting distribution function F( · ; , e′)

of the GSMP has finite qth moment and a density component that is positive and
continuous on (0, x̄).

Observe that Assumption PD(q) implies Assumption PD(r) whenever q ≥ r. Moreover,
Assumption PD(0) imposes finite-state, irreducibility, and positive density conditions,
but does not impose any conditions on the means of the clock-setting distributions.
The role of the positive density assumption is to rule out pathological situations in
which, for example, the clocks for events ei and e j are always set at the same time at a
transition to a given state s, but the maximum possible clock reading for ei is less than
the minimum possible clock reading for e j , so that ei always occurs before e j . Thus we
might have p(s′; s, e j) > 0 for some state s′, but, with probability 1, e j will never actually
trigger a transition from s to s′, so that the GSMP may be reducible with probability 1
even though it is nominally irreducible in the sense of Definition 2.2.

2.5. Recurrence in GSMPs

Consider a GSMP having state space S and defined in terms of an underlying Markov
chain { (Sn, Cn) : n ≥ 0 } with state space �. The underlying chain is said to be φ-
irreducible if φ is a nontrivial measure on subsets of � and, for each (s, c) ∈ � and
subset A ⊆ � with φ(A) > 0, there exists n > 0—possibly depending on both (s, c) and
A—such that Pn((s, c), A) > 0. The chain is Harris recurrent with recurrence measure
φ if the chain is φ-irreducible and P(s,c){(Sn, Cn) ∈ A i.o.} = 1 for all (s, c) ∈ � and A ⊆ �
with φ(A) > 0. A Harris recurrent chain admits an invariant distribution π0 that is
unique up to constant multiples. If π0(�) < ∞, then π ( · ) = π0( · )/π0(�) is the unique
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invariant probability distribution for the chain. A Harris recurrent chain that admits
such a probability distribution is called positive Harris recurrent. Roughly speaking,
Harris recurrence means that any “dense enough” set of states is hit infinitely often
with probability 1; positive Harris recurrence means that the expected time between
successive hits is finite. A GSMP state s ∈ S is recurrent if and only if Pμ { Sn = s i.o. } =
1. Observe that if {(Sn, Cn) : n ≥ 0} is Harris recurrent with a recurrence measure φ
such that φ({s} × C(s)) > 0 for each s ∈ S, then each s ∈ S is a recurrent state of the
GSMP.

3. NO HEAVY-TAILED EVENTS

The following Proposition 3.1 gives the basic recurrence result when Assumption PD(0)
holds and every clock-setting distribution has finite mean. Denote by Jn(s) and Tn(s)
the nth hitting time of state s (in discrete and continuous time, respectively) by the
processes {Sn : n ≥ 0} and {X(t) : t ≥ 0}.

PROPOSITION 3.1. Suppose that Assumption PD(1) holds for a GSMP, so that all clock-
setting distributions have finite mean. Then, for any initial distribution μ, (i) every state
of the GSMP is recurrent and (ii) Eμ[Jn(s)] < ∞ and Eμ[Tn(s)] < ∞ for s ∈ S and n ≥ 0.

The assertion in (ii) can be viewed as a form of “positive” recurrence.

PROOF. By Theorem 6.4 in Haas [1999], the underlying chain is positive Harris
recurrent with recurrence measure equal to φ̄, where φ̄ is the unique measure on
subsets of � such that

φ̄
({ s } × [0, x1] × [0, x2] × · · · × [0, xM]

) =
∏

{i:ei∈E(s)}
min(xi, x̄)

for all s ∈ S and x1, x2, . . . , xM ≥ 0. (If, for example, a set B ⊆ � is of the form
B = { s } × A with E(s) = E, then φ̄(B) is equal to the Lebesgue measure of the set
A ∩ [0, x̄]M.) Applying this result to sets of the form {s}×C(s) for s ∈ S establishes that
every state of the GSMP is recurrent.

To establish the remaining assertions, fix s ∈ S and n ≥ 0. By a standard “splitting”
construction—see, for example, Glynn and Haas [2006, Prop. 5.1.1]—the positive Har-
ris recurrence of the underlying chain implies that there exists a positive integer q and
a sequence {θ (k) : k ≥ 0} of “od-regeneration points” such that (a) the points divide the
sample paths of the chain into one-dependent stationary cycles of length at least q and
(b) Sθ(k)−q = s for k ≥ 0. For a function g : � �→ , set Yk(g) = ∑θ(k)−1

j=θ(k−1) g(Sj, C j)
for k ≥ 0, where we take θ (−1) = 0. The random variables { Yk(g) : k ≥ 1 } are
identically distributed, and Theorem 5.2.1 in Glynn and Haas [2006] implies that
Eμ[Y0(|g|)] ∨ Eμ[Y1(|g|)] < ∞ if

sup
(s,c)∈�

|g(s, c)|/(1 + t∗(s, c)) < ∞. (2)

(Recall that t∗ is the holding-time function.) For a nonnegative function g that satisfies
(2), define Un(g) = ∑γ (n)−1

i=0 g(Si, Ci), where γ (n) is the random index corresponding to the
nth hitting time of state s. Observe that Un(g) ≤ ∑θ(n)−1

i=0 g(Si, Ci) = ∑n
k=0 Yk(g), so that

Eμ[Un(g)] ≤ Eμ[Y0(g)] + nEμ[Y1(g)] < ∞. The final two assertions of the proposition
now follow by taking g ≡ 1 and g = t∗, respectively.

4. ONE HEAVY-TAILED EVENT

In this section we focus on GSMPs with simple events for which η(H) = 1. We first
show by means of a couple of examples that the hitting times for a specified state may
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Fig. 2. State-transition diagram for a simple GSMP.

or may not have finite means. We then show that, in any case, each state in a GSMP
with η(H) = 1 is recurrent.

First consider a GSMP with state space S = { 1, 2 } and event set E = { e1, e2 } such
that E( j) = {e j} for j = 1, 2. Thus exactly one event is active in each state. Suppose
that p(2; 1, e1) = p(1; 2, e2) = 1 and that Pμ{X(0) = 1} = 1 (see Figure 2). Also suppose
that at least one of the clock-setting distributions for e1 and e2 has infinite mean. Set
T0 = 0 and Tn = inf{t > Tn−1 : X(t−) = 2 and X(t) = 1}, so that Tn is the nth hitting
time for state 1. Then each Tn is a.s. finite (because each new clock reading is a.s. finite
as per Section 2.1) but Eμ[Tn] = ∞ for n > 0. Each hitting time for state 2 is also a.s.
finite with infinite mean.

The foregoing example shows that the hitting times to a state may be infinite when
η(H) = 1. To see that hitting times need not be infinite, define an event e to be uninflu-
ential if e ∈ E(s) and p(s; s, e) = 1 for s ∈ S. The occurrence of an uninfluential event e
does not change the state of the GSMP and does not cause the scheduling or cancella-
tion of any event other than e. Observe that a GSMP having one or more uninfluential
events behaves essentially identically to a GSMP in which the uninfluential events
are not present. More precisely, the original GSMP can be “strongly mimicked”—in a
sense almost identical to Haas [2002, Ch. 4]—by a GSMP in which the uninfluential
events have been dropped. If the original GSMP satisfies Assumption PD(0) and only
uninfluential events have infinite means, then the mimicking GSMP satisfies Assump-
tion PD(1) and the conclusion of Proposition 3.1 holds. Moreover, the transience and
recurrence behavior of states in the two GSMPs is identical. Less trivial examples can
be constructed along the same lines.

We now consider the question of recurrence in a GSMP with simple events for
which η(H) = 1. For definiteness and ease of exposition, we assume that e1 ∈ H and
e2, e3, . . . , em �∈ H. We strengthen Assumption PD(0) by requiring that the clock-setting
distributions for events e2, e3, . . . , em have hazard rates that are bounded from above
and below. (Recall that such clock-setting distributions have density functions that are
positive on (0,∞) and have finite moments of all orders.)

THEOREM 4.1. Suppose that Assumption PD(0) holds for a GSMP. Also suppose that
all events are simple, that e1 ∈ H, and that, for 2 ≤ i ≤ m, the clock-setting distribution
function F( · ; ei) has a hazard rate h( · ; ei) with 0 < hi ≤ h(t; ei) ≤ hi < ∞ for t ≥ 0. Then
each state s of the GSMP is recurrent.

To prove this result, we use the hazard-rate construction throughout, with the slight
modification that the heavy-tailed event e1 is set according to F( · ; e1) and runs down
at unit rate. We assume throughout that there are no “single states” s∗ such that
E(s∗) = { e1 }. This assumption also entails no loss of generality. If the GSMP contains
such a state s∗, we can construct a modified GSMP {X∗(t) : t ≥ 0} such that (a) s∗ does
not belong to the state space of the modified GSMP and (b) each state in {X(t) : t ≥ 0}
is recurrent if each state in {X∗(t) : t ≥ 0} is recurrent. In the modified GSMP, the
transition probabilities are altered so that p∗(s′; s, e) = p(s′; s, e) + p(s∗; s, e)p(s′; s∗, e1)
for all s′, s, and e. It is as if we simply take sample paths of the original GSMP and
delete all intervals in which the GSMP is in state s∗.
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As detailed in Section A of the Appendix, our proof makes repeated use of a condi-
tional geometric trials lemma: if {Fn} is an increasing sequence of σ -fields and {An} a
sequence of events such that An ∈ Fn, then P{An i.o.} = 1 if infn P{An | Fn−1} > δ for
some δ > 0 (see Haas [2002, p. 88] or Hall and Heyde [1980, Cor. 2.3]). The idea is to
choose the {An} sequence so that the recurrence of these events implies the recurrence
of the GSMP states. Specifically, a “trial” begins at a state transition at which the clock
for e1 has just been set to a value in an interval [u, u]. Denote by s the state just after
this state transition and let s′ ∈ S be a specified state (possibly depending on s) that
satisfies e1 ∈ E(s′); we allow s′ to coincide with s. The trial is a “success”—that is, an
event An occurs—if (a) while the e1 clock runs down, the occurrence of events in E\ {e1}
causes the GSMP to visit all states reachable from s and end up in s′, all within u time
units, and (b) upon arriving in s′ the clock reading for each event e ∈ E(s′)\{e1} equals or
exceeds u, guaranteeing that e1 triggers the transition from state s′. The reason for the
requirement in (b) is that not all states in S may be reachable from s via occurrences of
events in E \ {e1}; when this is the case, the state s′ is chosen such that the occurrence
of e1 in s′ causes the chain to jump to a previously inaccessible part of the state space
(with positive probability). An additional complication is that e1 may be canceled and
rescheduled one or more times during the excursion described previously. For a trial
to be a “success” we therefore also require that (c) the clock for e1 be set to a value
in [u, u] at each such rescheduling; this requirement guarantees that there will be no
occurrences of e1 to interrupt the excursion through the states driven by the events in
E \ {e1} and that, when the GSMP arrives in s′, event e1 is still guaranteed to trigger
the next state transition. The boundedness of the hazard rates for the events in E\ {e1}
allows us to bound the probability of a “success” away from 0 uniformly in n, so that
there are infinitely many successes with probability 1 by the geometric trials lemma.

We conjecture that the conclusion of the theorem remains true even in the absence
of the bounded-hazard-rate assumption. As discussed previously, the upper and lower
hazard-rate bounds are jointly used to bound away from 0 the probability of a success-
that is, to bound the probability that certain events occur either “soon enough” or “late
enough” to ensure a complete tour of reachable states before the next occurrence of e1—
so that the sum of success probabilities diverges and hence successes (and thus visits to
each state s) occur infinitely often with probability 1 by the Borel-Cantelli lemma. The
Borel-Cantelli argument only requires, however, that the success probabilities converge
to 0 slowly enough that their sum diverges, which implies that strict bounding may
not be needed. Moreover, there are many other scenarios under which all of the states
are visited besides the one given in the proof, and the probability of the union of
such scenarios might be large enough so as to lead to recurrence without the need for
hazard-rate bounds.

5. TWO OR MORE HEAVY-TAILED EVENTS

We continue to assume that all events are simple, but now suppose that η(H) ≥ 2.
Arguments almost identical to those in the previous section show that the hitting
times for a specified state s may or may not have finite means. The key result of the
current section is that a GSMP can have transient states when η(H) ≥ 2. It may seem
surprising that, in the presence of a finite state space and irreducibility, some sort
of additional moment condition appears necessary to ensure recurrence. We establish
the transience result by means of an example; as mentioned in Section 1, our example
GSMP can be seen as a stylized model of situations corresponding to resource starvation
or overprovisioning.

The GSMP has state space S = {1, 2, 3} and event set E = {e1, e2, e3}. The set of
active events is given by E(s) = E for s = 1, 2, 3. The state-transition probabilities
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Table I. Summary of Recurrence Results for GSMPs with Simple Events

η(H) Recurrent? Positive Recurrent? “Random Walk” Dimension
0 Yes Yes 0
1 Yes? Maybe 1 or 2
≥2 Maybe Maybe ≥2

are given by p(1; s, e1) = 1 for s = 1, 2, 3, p(2; 1, e2) = p(3; 2, e2) = p(3; 3, e2) = 1, and
p(3; s, e3) = 1 for s = 1, 2, 3 (see the state-transition diagram in Figure 1).

For each event ei, the clock-setting distribution function is of the form
F( · ; s′, ei, s, E∗) ≡ Fi(·). In particular,

F1(t) = 1 − (1 + t)−α, t ≥ 0,

F2(t) = 1 − (1 + t)−β, t ≥ 0,

and
F3(t) = t/a, t ∈ [0, a],

where a ∈ (0,∞) and α, β ∈ (0, 1) with β > 1/2 and α + β < 1. Denote by fi the density
function of Fi and observe that f1, f2, and f3 are positive and continuous on (0, a). If
each clock-setting distribution had a finite mean, then Assumption PD(1) would hold
and each state of the GSMP would be recurrent by Proposition 3.1. The clock-setting
distributions F1 and F2 have infinite mean, however, and we show in the following that
state s = 2 is transient.

As mentioned earlier, the only way in which the GSMP can hit state 2 is if event e1
occurs and then event e2 occurs without an intervening occurrence of event e3. That
is, if Tn denotes the nth time at which event e1 occurs and En denotes the first event
to occur after Tn, then state 2 is recurrent if and only if Pμ {En = e2 i.o.} = 1. Roughly
speaking, the clock readings for e1 and e2 must simultaneously be close to 0 infinitely
often with probability 1. The following result, whose proof is given in Section B of the
Appendix, shows that this condition does not hold.

THEOREM 5.1. Under the foregoing assumptions on the clock-setting distribution
functions, Pμ{En = e2 i.o.} = 0.

Note that a GSMP with η(H) ≥ 2 need not have transient states. For example, if only
uninfluential events have infinite means, then Proposition 3.1 implies that every state
s is recurrent (see Section 4).

6. SUMMARY AND CONCLUSION

Table I summarizes our results. The finite-mean requirement in Proposition 3.1 ensures
that each state s is recurrent, and indeed “positive recurrent” in the sense of the propo-
sition. Theorem 4.1 asserts that recurrence (though not positive recurrence) is still
ensured if at most one heavy-tailed event can be active at any time point. (We imposed
a bounded-hazard-rate assumption to facilitate the proof, but we conjecture that the
conclusion holds in the absence of this assumption, hence the “?” in the second row of the
table.) The results in Section 5 show that the requirement of at most one active heavy-
tailed event is “almost necessary” in that a GSMP can have transient states when the
requirement is relaxed. A simple necessary moment condition for recurrence appears
elusive, as does a simple sufficient condition weaker than those in Proposition 3.1
and Theorem 4.1. We expect that obtaining weaker conditions for recurrence would
involve analysis of the detailed structure of the GSMP under consideration. Indeed,
GSMPs contain networks of queues as special cases, and recurrence theory for such
networks is quite intricate [Bramson 2008].
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The rightmost column of the table illustrates a rough analogy to the theory of random
walks on the d-dimensional integer lattice. As is well known [Chung and Fuchs 1951],
the origin is positive recurrent (trivially) when d = 0, null recurrent when d = 1 or
d = 2, and transient when d ≥ 3. Our transience example centers around an event that
occurs only when multiple clock readings are “small” simultaneously, which roughly cor-
responds to a multidimensional random walk being close to the origin. A heavy-tailed
clock-setting distribution-that is, the distribution of the time required for the clock
reading to run down to 0—can be viewed as analogous to the distribution of the time
required for a one- or two-dimensional random walk to return to the origin. The case
η(H) = 1 therefore roughly corresponds to a random walk situation on the one-
dimensional or two-dimensional lattice. The corresponding random walk analogs for
the other cases are displayed in the rows above and below. Thus, in retrospect, it might
not be totally surprising that positive recurrence can be established in the absence of
heavy-tailed events, null recurrence can be established with one heavy-tailed event,
and transience can occur with two or more heavy-tailed events.

Ultimately, the results in this article serve to illustrate the rich and complex behavior
that can occur in non-Markovian GSMPs, especially those with the sort of heavy-tailed
clock-setting distributions that arise in financial, insurance, internet-traffic, reliability,
and geophysical modeling. Much work remains to be done in gaining a fundamental
understanding of this class of stochastic models. The behavioral complexity of GSMP
models described here also highlights the importance of simulation as a tool for study-
ing such models in the context of practical system design and decision-making.

APPENDIX

A. PROOF OF THEOREM 4.1

We begin the formal proof of Theorem 4.1 by establishing lower bounds for probabilities
of a pertinent class of events, defined as follows. Set K(s) = { j : j ≥ 2 and e j ∈ E(s)} for
s ∈ S, and set t̃∗

n = (mini∈K(Sn) τn,i) − ζn, so that t̃∗
n is the holding time in state Sn if event

e1 does not trigger the state transition out of Sn. Also define the event

Bn(s′, ei, x, z1, z2) = {
Sn+1 = s′, e∗

n+1 = ei, t̃∗
n ≤ x,

and Cn+1,1 ∈ [z1 ∧ z2, z1 ∨ z2] if e1 ∈ N(s′; Sn, e∗
n+1)

}
,

where u ∧ v (u ∨ v, respectively) denotes the minimum (maximum, respectively) of u
and v. The sequence of states σ = (s(1), e(2), s(2), . . . , e(k), s(k)) is called feasible if e( j) ∈
E(s( j−1)) and p(s( j); s( j−1), e( j)) > 0 for 2 ≤ j ≤ k. For any k ≥ 1 and feasible sequence
σ = (s(1), e(2), s(2), . . . , e(k), s(k)) such that e1 ∈ E(s(1)) ∩ E(s(k)), set

Bn(σ, x, y) =
k⋂

l=2

Bn+l−2
(
s(l), e(l), x/(k − 1), x, y

) ∩ {
t̃∗
n+k−1 > y

}
.

The occurrence of event Bn(σ, x, y) implies that, starting from state s(1), the GSMP
visits successive states s(2), s(3), . . . , s(k) in x time units or less, since each of the (k − 1)
holding times is less than or equal to x/(k−1). Moreover, upon arriving in s(k), the clock
reading for each event e ∈ E(s(k)) \ {e1} exceeds y time units. Finally, the clock for event
e1 is set to a value in the interval [x ∧ y, x ∨ y] whenever e1 becomes a new event during
the passage through the states in σ . (Thus if x < y and the clock reading for e1 initially
lies in the interval [x, y] when the GSMP is in state s(1), then e1 is guaranteed to be the
trigger event when the GSMP makes a transition from state s(k).)
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The following Lemma A.1 provides lower bounds on the conditional probability of
event Bn(σ, x, y). To prepare for this lemma, we need to introduce some additional
notation. Set K(s, i) = K(s) \ {i} and h(s, i) = hi + ∑

j∈K(s,i) hj . Then set

δ(s, s′, ei, x, z1, z2) = hi∑
j∈K(s,i) hj

(1 − exp(−h(s, i)x))p(s′; s, ei)

×(I[e1 ∈ N(s′; s, ei)](F(z1 ∨ z2; e1) − F(z1 ∧ z2; e1))
+I[e1 �∈ N(s′; s, ei)]),

where I[A] denotes the indicator of event A. For a feasible sequence σ , set

δ(σ, x, y) = exp

⎛
⎝−y

∑
i∈K(s(k))

hi

⎞
⎠ k∏

l=2

δ
(
s(l−1), s(l), e(l), x/(k − 1), x, y

)
.

Finally, for n ≥ 1, denote by Fn the σ -field generated by (S0, t∗
0 , e∗

1),
(S1, t∗

1 , e∗
2), . . . , (Sn−1, t∗

n−1, e∗
n), Sn, Cn,1, where these variables are defined as in Section

2.3.

LEMMA A.1. Under the conditions of Theorem 4.1,

P{Bγ (σ, x, y) | Fγ } ≥ I
[
Sγ = s(1)]δ(σ, x, y) a.s. (3)

for any random index γ that is a stopping time with respect to {Fn : n ≥ 1}.
PROOF. Fix n ≥ 1 and, as in Section 2.3, denote by ζn the time of the nth state

transition, by α(n, i) the index of the most recent time at or prior to ζn at which the
clock for ei was set, and by τn,i = inf{t :

∫ t
ζn

h(x − ζα(n,i); ei) dx = Cn,i} the time at which
event ei ∈ E(Sn) is scheduled to occur.

Using the boundedness of the hazard rates, the memoryless property of the exponen-
tial distribution and Lemma 3.4.10 in Haas [2002], we have

P{τn,i > x | Fn} = P
{∫ x

ζn

hi(u − ζα(n,i)) < Cn,i
∣∣ Fn

}

≥ P{(x − ζn)hi < Cn,i | Fn}
= exp

(−hi(x − ζn)
)

a.s.

Thus, conditioned on Fn, the quantity τi,n − ζn is stochastically bounded below by E i,
where E i denotes an exponentially distributed random variable with mean 1/hi. In a
similar manner, it can be shown that τi,n − ζn is conditionally stochastically bounded
above by E i, where E i denotes an exponentially distributed random variable with mean
1/hi.

Recall that t̃∗
n = mini∈K(Sn)(τn,i − ζn) is the holding time in state Sn if event e1 does not

trigger the state transition out of Sn. Then reasoning similar to that given previously
yields

P{t̃∗
n > x | Fn} = P

{
min

i∈K(Sn)
(τn,i − ζn) > x

∣∣ Fn

}
≥ exp

⎛
⎝−x

∑
i∈K(Sn)

hi

⎞
⎠ a.s. (4)
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and

P{e∗
n+1 = ei and t̃∗

n ≤ x | Fn}
= P

{
τn,i − ζn < min

j∈K(Sn,i)
(τn, j − ζn) and τn,i − ζn ≤ x | Fn

}

≥ hi∑
j∈K(Sn,i) hj

(1 − exp(−h(Sn, i)x)) a.s.

for i ≥ 2 such that ei ∈ E(Sn). We have again used Lemma 3.4.10 in Haas [2002], as
well as standard properties of independent exponential random variables. We can take
the foregoing calculations a step further to obtain

P{Bn(s′, ei, x, z1, z2) | Fn} ≥ I[Sn = s]δ(s, s′, ei, x, z1, z2) a.s. (5)

for each s ∈ S. An inductive argument based on (4) and (5) shows that

P{Bn(σ, x, y) | Fn} ≥ I
[
Sn = s(1)]δ(σ, x, y) a.s., (6)

and a standard argument extends (6) from a deterministic index n to a stopping time
γ.

In general, event e1 need not be active in every state, which raises the question
of whether the clock for e1 is set infinitely often with probability 1. The next lemma
answers this question in the affirmative.

LEMMA A.2. Under the conditions of Theorem 4.1, P{e1 ∈ N(Sn; Sn−1, e∗
n) i.o.} = 1.

PROOF. If event e1 is active in every state, or if the set of states Ŝ in which e1 is
not active is visited only a finite number of times, the assertion of the lemma follows
trivially, so assume that Ŝ �= ∅ and that P{Sn ∈ Ŝ i.o.} = 1. The irreducibility assump-
tion in Theorem 4.1 implies that for each state s ∈ Ŝ there exists a feasible sequence
σ (s) = (s(1), e(2), s(2), . . . , e(k), s(k)) of length k = k(s) such that s(1) = s, s(k) ∈ S − Ŝ, and
s(l) ∈ Ŝ for 1 ≤ l ≤ k − 1. Define a sequence of random indices {γ (n) : n ≥ 0} by setting
γ (0) = inf{ j ≥ 0 : Sj ∈ Ŝ} and γ (n) = inf{ j > γ (n − 1) + k(Sγ (n−1)) : Sj ∈ Ŝ}. Observe
that each of these random indices is a.s. finite under our assumptions, and is also a
stopping time with respect to {Fn}. Denote by Dn the event that, at time ζγ (n), the GSMP
proceeds to follow the sequence of states and events specified by σ (Sγ (n)). Observe that,
using Lemma A.1,

P{Dn | Fγ (n)} = P{Bγ (n)(σ (Sγ (n)),∞, 0)
∣∣ Fγ (n)} ≥ min

s∈Ŝ
δ(σ (s),∞, 0) > 0 a.s.

for n ≥ 0. By the geometric trials lemma, P{Dn i.o.} = 1. The desired result now follows,
because the occurrence of Dn implies that the clock for e1 is set at time ζγ (n)+k(Sγ (n))−1.

We can now complete the proof of Theorem 4.1.

PROOF. The proof proceeds by showing that, with a probability bounded away from 0,
each state of the GSMP can be visited while the clock for event e1 is running down. This
proof strategy is complicated by the fact that, even though the GSMP is irreducible
by assumption, the GSMP may behave in a “reducible” manner while the e1 clock is
running down. We show that, nonetheless, the GSMP will visit each “reducible” set of
states infinitely often with probability 1.

For definiteness, suppose that the state space S can be decomposed into disjoint
subsets V1 and V2 such that transitions from V1 to V2 and vice versa occur only when
e1 triggers a state transition, but any two states in Vi (i = 1, 2) are reachable from
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each other via a sequence of state transitions triggered by events in E \ {e1}. Suppose
that one possible state transition from V1 to V2 occurs when the state is s′ ∈ V1 and e1
triggers a state transition. The set V1 is irreducible with respect to the GSMP with e1
removed, so for each state s ∈ V1 we can construct a feasible sequence σ (s, s′) of length
k(s, s′) that starts in s, terminates in s′, contains every state in V1 at least once, and is
such that e1 is never a trigger event.

Fix constants 0 < u < u < ∞ and define a sequence of random indices {γ (n) : n ≥ 0}
by setting

γ (0) = inf{ j ≥ 0 : e1 ∈ N(Sj ; Sj−1, e∗
j ) and C j,1 ∈ [u, u]}

and

γ (n) = inf{ j ≥ γ (n − 1) + k(Sγ (n−1), s′) : e1 ∈ N(Sj ; Sj−1, e∗
j ) and C j,1 ∈ [u, u]}

for n ≥ 1. Each γ (n) is a.s. finite by Lemma A.2 and an (unconditional) geometric trials
argument, and is also a stopping time with respect to {Fn}. Whenever Sγ (n) ∈ V1 for
some n ≥ 0, denote by An the event that, at time ζγ (n),

(1) the GSMP proceeds to follow the sequence of states and events specified by
σ (Sγ (n), s′);

(2) the GSMP reaches s′ in at most u time units;
(3) every new clock reading for e1 during this excursion lies in the range [u, u];
(4) after the GSMP arrives in s′, the clock for each event in E(s′) \ {e1} is scheduled

to take at least u time units to run down to 0, so that e1 triggers the next state
transition; and

(5) when e1 triggers the foregoing state transition in state s′, the GSMP jumps to V2.

Using Lemma A.1,

P{An | Fγ (n)} = P
{
Bγ (n)(σ (Sγ (n), s′), u, u) ∩ {Sγ (n)+k(Sγ (n)) ∈ V2}

∣∣ Fγ (n)
}

≥ mins∈V1 δ(σ (s, s′), u, u)p(V2; s′, e1)
> 0 a.s.

for n ≥ 0, where p(V2; s′, e1) = ∑
s′′∈V2

p(s′′; s′, e1) > 0. Now suppose that Sγ (n) ∈ V2 and
consider the probability, conditional on Fγ (n), that the GSMP will visit every state in
V2 while the clock for event e1 runs down and then jump to V1 when e1 occurs. An
argument similar to the one given previously shows that this conditional probability
is bounded below by some positive constant δ that does not depend on n or Sγ (n). By
the geometric trials lemma, both of the foregoing scenarios occur infinitely often with
probability 1, so that each state in S = V1 ∪ V2 is recurrent. This argument generalizes
in a straightforward way to cases where S can be decomposed into three or more Vi
sets, or where S is irreducible in the absence of e1.

B. PROOF OF THEOREM 5.1

Observe that, for each event ei, the successive occurrence times for ei form a renewal
process; the three renewal processes thus defined are mutually independent. For i =
1, 2, 3, denote by Ci(t) the clock reading for event ei at time t ≥ 0. The random variable
Ci(t) is the residual life at time t for the renewal process associated with the successive
occurrences of ei. Setting Bn = {C2(Tn) ≤ C3(Tn)}, we have

Pμ {En = e2 i.o.} = Pμ{C2(Tn) ≤ min(C1(Tn), C3(Tn)) i.o.} ≤ Pμ {Bn i.o.} .

By the Borel-Cantelli lemma, it therefore suffices to show that
∑∞

n=1 Pμ {Bn} < ∞.
Conditioning on Tn and C3(Tn) and exploiting the independence of the various renewal
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processes yields the representation

Pμ{Bn} =
∫ ∞

0

(∫ a

0
Pμ{C2(t) ≤ y}dGt(y)

)
f ∗n
1 (t) dt ≤

∫ ∞

0
Pμ

{
C2(t) ≤ a

}
f ∗n
1 (t) dt, (7)

where Gt is the distribution function of C3(t) and f ∗n
1 is the n-fold convolution of f1

(and hence the density function of Tn). Denote by u1 the renewal density function that
corresponds to F1 (see, e.g., Asmussen [2003, pp. 147–148]). Using the well known
representation u1(t) = ∑∞

n=1 f ∗n
1 (t), we find that

∞∑
n=1

Pμ {Bn} ≤
∞∑

n=1

∫ ∞

0
h(t) f ∗n

1 (t) dt =
∫ ∞

0
h(t)u1(t) dt, (8)

where h(t) = Pμ{C2(t) ≤ a}. The nonnegativity of the terms in (8) justifies the inter-
change of summation and integration.

To show that the rightmost integral in (8) is finite, we first analyze the term h(t) that
appears in the integrand. Set Q(t) = F2(t + a) − F2(t) for t ≥ 0. A standard renewal
argument [Asmussen 2003, Sec. V] shows that h = U2 ∗ Q, where ∗ denotes convo-
lution and U2 is the renewal function corresponding to F2. Recall that a real-valued
function G is said to be regularly varying at ∞ with index λ if limt→∞ G(tx)/G(t) = xλ

for x > 0, and we write G ∈ RVλ (see, e.g., Feller [1972, Sec. VIII.8] or Resnick [1987,
Sec. 0.4]). Observe that F̄2 ∈ RV−β and that Q(t) = o(1/t). Moreover, Q is directly
Riemann integrable [Asmussen 2003, p. 155]. It then follows from a key renewal the-
orem for random variables with regularly varying tails [Erickson 1970, Th. 3] that
h(t) = O(1/m2(t)), where

m2(t) =
∫ t

0
F̄2(u) du = (1 + t)1−β

1 − β
.

Thus h(t) = O(tβ−1).
We now consider the term u1(t) in (8). Because F̄1 ∈ RV−α, an argument based on

Tauberian theorems shows that U1, the renewal function corresponding to F1, satisfies
U1 ∈ RVα (see Erickson [1970, p. 265] or Feller [1972, p. 417]). A direct application of
Theorem 2 in Topchii [2010] shows that

lim
t→∞ u′

1(t)
[
(α − 1)

tα−2 sin(απ )
π

]−1

= 1,

which implies that u1 is “ultimately monotone,” that is, u1 is decreasing on some interval
of the form [t0,∞). Theorems 2 and 4 in Feller [1972, Sec. XIII.5] then imply that
u1 ∈ RVα−1. To complete the proof, fix ε > 0 such that α + β + ε < 1. It follows from
Feller [1972, p. 277] that u1(t) < tα+ε−1 for sufficiently large t, so that h(t)u1(t) = O(tγ ),
where γ = α + β + ε − 2 < −1. The rightmost integral in (8) therefore converges.
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