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Abstract

We study the convergence properties of a Monte Carlo estimator proposed in the physics
literature to compute the quasi-stationary distribution on a transient set of a Markov
chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)).
Using the theory of stochastic approximations we verify the consistency of the estimator
and obtain an associated central limit theorem. We provide an example showing that
convergence might occur very slowly if a certain eigenvalue condition is violated.
We alleviate this problem using an easy-to-implement projection step combined with
averaging.
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1. Introduction

A quasi-stationary distribution can be characterized as the principal (left) eigenvector of a
substochastic matrix. Consequently, it is natural to use numerical linear algebra methods [15]
for computing such a principal eigenvector. Nevertheless, the application of these methods,
and related Monte Carlo variations, such as [13], [18], [19], and [22], becomes difficult when
the underlying matrix is large.

In [9], [10], and [12] the authors proposed an iterative Monte Carlo procedure to estimate
the quasi-stationary distribution of very large Markov chains. A key feature of the procedure
is that in each iteration only a small portion of the matrix is used.

The Fleming–Viot (FV) method, [6], [14], [16], [21], provides a powerful alternative.
It consists of N particles evolving according to suitable dynamics in continuous time. As both
time, t , and the number of particles, N , tend to ∞, the empirical measure of the positions of
the particles at time t converges almost surely to the underlying quasi-stationary distribution.
A significant advantage of the FV method is that it can be run in parallel. A disadvantage is
that, for a fixed value t , if only N is sent to ∞, the method will be biased.
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Stochastic approximations for quasi-stationary distributions 793

In contrast to the FV method, the method in [9], [10], and [12], which we analyze here, is
asymptotically unbiased as the number of iterations, N , tends to ∞. Moreover, as we shall
show, a small modification can be made to the method to ensure convergence at rate N−1/2.
Note that such a rate of convergence is impossible to achieve in the FV method because of the
presence of the bias appearing by truncating the evolution at time t .

The method suggested in [9], [10], and [12], it turns out, is equivalent to a class of algorithms
studied in the context of urn processes, [1], [2], [23]. So, the convergence of the sampling
procedure has been rigorously established in the urn process literature. Moreover, in [2],
some results on rates of convergence have been obtained. These results involve a central
limit theorem (CLT) for the inner product of the following two quantities: any nonprincipal
eigenvector (or linear combinations thereof) and the estimated quasi-stationary vector (i.e. the
estimated principal eigenvector). One of our contributions in this paper is the development of
a multidimensional CLT for the estimated quasi-stationary vector. Therefore, we can obtain a
CLT for the inner product between the estimated quasi-stationary vector and any other vector.
More generally, our main contributions are as follows.

• Our paper recognizes the algorithm in [9], [10], and [12] as a stochastic approximation
algorithm, [25], (Section 3.2).

• Using the stochastic approximation connection we prove the convergence of the under-
lying estimator and provide sufficient conditions for a multidimensional CLT (Theo-
rem 3.1).

• We illustrate the very slow convergence rate that might occur if the CLT conditions fail
to apply (Section 4).

• More importantly, using Polyak–Ruppert averaging [24], we suggest an improved algo-
rithm (Section 4.2) which exhibits a valid CLT with optimal rate of convergence assuming
only irreducibility of the underlying substochastic matrix.

• We provide an estimator which allows us to compute the variance in the CLT, see
Section 4.2.1.

The vanilla version of the algorithm analyzed here (without averaging) has independently
been studied in [3]. In contrast to [3], our focus is more algorithmic. In particular, our emphasis
on exploring the close connection of the algorithm to stochastic approximation leads naturally to
a Polyak–Ruppert averaging variant that generally exhibits an optimal square root convergence
rate, in contrast to the original algorithm which may display sub-square root convergence rates.
Numerical experiments showing the dramatic improvement obtained by introducing averaging
are given in [4], and [26]; see also Section 5.

We study discrete-time Markov chains. The adaptation to continuous-time Markov chains is
relatively straightforward and was given in [26]. The convergence of the estimator for uniformly
ergodic Markov chains taking values on a compact space was also studied in [26]. The work
of [16] provides a modern survey of stochastic approximations for countable state-spaces.

The rest of the paper is organized as follows. In Section 2 we introduce notation and the
definition of a quasi-stationary distribution. In Section 3 we review stochastic approximation
methods and sketch the proof of Theorem 3.1 (the full proof is given in Sections 6.1 and 6.2).
In Section 4.2 we discuss the averaging improvement. All the technical results are elaborated
in Section 6.
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794 J. BLANCHET ET AL.

2. Quasi-stationary distribution: basic notions

Let {Xn : n ≥ 0} be a discrete-time, finite-state-space, Markov chain {Xn : n ≥ 0} with
transition matrix P . We assume that 0 is an absorbing state and that 1, . . . , d are nonabsorbing.
We shall write P (i, j) = Q(i, j) for i, j ∈ {1, . . . , d} so that Q defines a substochastic
transition matrix of size d by d . We impose the following assumption on Q.

Assumption 2.1. Throughout the rest of the paper we shall assume that Q is irreducible and
that Qn → 0 as n → ∞.

Under this assumption the Perron–Frobenius theorem [17] guarantees the existence of a
unique positive probability vector μ∗ such that μ�∗ Q = λ∗μ�∗ , where λ∗ ∈ (0, 1). (Throughout
the rest of the paper we use ‘�’ to denote transposition.) Precisely, the vector μ∗ is the quasi-
stationary distribution of P . Early reference for quasi-stationary distributions are [7] and [8];
see also [16] and [21] for a discussion on quasi-stationary distributions on infinite spaces.

3. Stochastic approximations analysis of the algorithm

3.1. Basic notions of stochastic approximations

Given θ0, the standard stochastic approximations recursion takes the form

θn+1 = θn + εnWn for n ≥ 0, (3.1)

where {εn}n≥0 is a (deterministic) step-size sequence of nonnegative numbers satisfying
∑

εn =
∞ but

∑
ε2
n < ∞. And the nth noise observation, Wn, is measurable with respect to Fn =

σ {(θk, Wk−1) : 1 ≤ k ≤ n}. Moreover, it is assumed that E(Wn | Fn) = g(θn) for some
function g(·). Under mild regularity conditions, to be reviewed momentarily in our setting, we
have the fact that θn converges almost surely to the stable attractors of the ordinary differential
equation (ODE) θ̇ (t) = g(θ(t)); see, for example, [20, Theorem 5.2.1].

3.2. The precise algorithm in stochastic approximation form

Suppose that we have d bins (one for each element in the underlying transient set). At the
beginning of the nth iteration we have a certain distribution of balls across the bins and we select
an initial position according to such distribution. For example, if d = 2 and there are three
balls in the first bin and five balls in the second bin, then state 1 is selected with probability 3

8
and state 2 is selected with probability 5

8 . The nth iteration then proceeds by running a Markov
chain starting from the selected state i∗ ∈ {1, . . . , d} according to the underlying dynamics,
until absorption (i.e. until hitting state 0) and we call such a trajectory a tour. We count the
number of times state j (for j ∈ {1, . . . , d}) is visited during such a tour; note, for example,
that the state i∗ is visited at least once. We then update the distribution of balls across bins by
adding these counts. So, for instance, back to the earlier example with d = 2, if during the nth
tour state 1 was visited twice, while state 2 was visited four times, then the distribution of balls
at the beginning of the (n + 1)th iteration will be (5 = 3 + 2, 9 = 5 + 4). The output of the
algorithm is the normalized distribution of balls (in order to obtain a probability vector) after
many iterations.

We now explain how this procedure can be described in terms of a stochastic approximation
recursion.

Notation. We set μn as the sequence of probability vectors of the transient set {1, . . . , d}
obtained at the nth iteration of the algorithm. This vector will store the cumulative empirical
measure up to, and including, the nth iteration of the algorithm. We use μn(x) to denote the
particular value at the transient state x.
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Stochastic approximations for quasi-stationary distributions 795

We set {X(n)
k }k≥0 as the Markov chain that is realized during the nth iteration of the algorithm.

These Markov chains are conditionally independent (given the values Xn
0 ). The nth Markov

chain has an initial position drawn from the vector μn.
We define τ (n) = inf{k ≥ 0 : X

(n)
k = 0}. (Recall that 0 is the underlying absorbing state.)

We are interested in analyzing the recursion

μn+1(x) =
(∑n

k=0 τ (k)
)
μn(x) + (∑τ (n+1)−1

k=0 1 {X(n+1)
k = x | X

(n)
0 ∼ μn}

)
(∑n+1

k=0 τ (k)
) (3.2)

for all x ∈ {1, . . . , d}, where the notation 1 {X(n+1)
k = x | X

(n)
0 ∼ μn} describes the indicator

of the event {X(n+1)
k = x} and we emphasize that X(n)

0 is sampled using the distribution μn. We
may select the initial probability distribution μ0 supported on {1, . . . , d} in an arbitrary way
and set τ (0) = 0 by convention.

We transform μn into a more familiar stochastic approximation form by writing

μn+1(x) = μn(x) + 1

n + 1

(∑τ (n+1)−1
k=0

(
1 {X(n+1)

k = x | X
(n)
0 ∼ μn} − μn(x)

)
(∑n+1

j=0 τ (j)
)
/(n + 1)

)
.

Compared to the standard form in (3.1) we recognize that εn = 1/(n+1); however, if we attempt
to make a direct translation into (3.1) we see that the denominator is somewhat problematic
because its conditional expectation (given the whole history of the algorithm up to the end of
the nth iteration) is not only a function of μn. To address this issue, we add another variable, Tn,
leading to the recursions (assuming T0 = 0),

Tn+1 = Tn + 1

n + 2
(τ (n+1) − Tn) = 1

n + 1

n∑
j=0

τ (j), (3.3)

μn+1(x) = μn(x) + 1

n + 1

(∑τ (n+1)−1
k=0

(
1 {X(n+1)

k = x | X
(n)
0 ∼ μn} − μn(x)

)
Tn + τ (n+1)/(n + 1)

)
.

In order to provide a more succinct notation let us define

Yn(μ
�, T )(x) :=

∑τ−1
k=0(1 {Xk = x | X0 ∼ μ} − μ(x))

T + τ/(n + 1)
, Z(μ�, T ) := (τ − T ), (3.4)

where {Xl : l ≥ 0} denotes a generic Markov chain with transition matrix P , X0 is distributed
according to μ (supported on {1, . . . , n}), and τ corresponds to the first hitting time to 0 of the
chain {Xl : l ≥ 0}. We also write

Y (μ�, T )(x) :=
τ−1∑
k=0

1 {Xk = x | X0 ∼ μ} − μ(x)

T
.

Note that Y is time homogeneous whereas Yn is not. Then, we can write the stochastic
approximation recursion in distribution via

μn+1(x) = μn(x) + 1

n + 1
Yn(μn, Tn)(x), Tn+1 = Tn + 1

n + 2
Z(μn, Tn).

If we let θn = (μ�
n , Tn) we now have a setting very close to that described in (3.1), except for

the fact that g(·) is time homogeneous (i.e. of the form gn(·)).
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796 J. BLANCHET ET AL.

We note the following.

• As mentioned earlier, Yn is not time homogeneous because of the presence of the term
τ/(n + 1). It is not difficult to argue (as we shall do in Lemma 6.1) that such a term is
asymptotically negligible because τ (n) = O(log(n)) almost surely.

• During the course of the algorithm, each μn is a probability vector; that is, μn ∈ H :=
{x ∈ R

d+ : e�x = 1}, where e is the vector of 1s. So, the boundedness requirement in
[20, Theorem 5.2.1] holds automatically for μn. We only need to argue boundedness for
the coordinate Tn.

3.2.1. Convergence result: consistency and CLT. We now state the main result of this section.

Theorem 3.1. Suppose that μ0 is any probability vector supported on {1, . . . , n} and pick
T0 ≥ 1. Then (μ�

n , Tn) → θ∗ := (μ�∗ ,1/(1 −λ∗)) almost surely (a.s.), where the left principal
eigenvector μ�∗ of Q is normalized so that μ�∗ e = 1. Finally, if λ̄ is any nonprincipal eigenvalue
of Q (i.e. λ̄ 
= λ∗) and

Re((1 − λ̄)−1) < 1
2 (1 − λ∗)−1, (3.5)

then n1/2(μn − μ∗)
d−→ N(0, V0) for some V0, explicitly characterized by (6.11), where ‘

d−→’
denotes convergence in distribution.

Proof of Theorem 3.1 (sketch). The full proof is in Sections 6.1 and 6.2, here we outline
the main ideas. We use the ODE method [20, Theorem 5.2.1], which involves studying the
behavior, as t → ∞, of the pair (μ(t), T (t)) satisfying

Ṫ (t) = E(τ | X0 ∼ μ(t)) − T (t) = μ(t)�Re − T (t),

μ̇(t)T (t) = E

(τ−1∑
k=0

[1 {Xk = · | X0 ∼ μ(t)} − μ(t)]
)

= (μ(t)�R − (μ(t)�Re)μ(t)�)�,

where R = (I −Q)−1. In Section 6.1 we are able to show, using Duhamel’s principle, that for a
given initial position in the probability simplex H , the solution to a suitably reduced dynamical
system (obtained by assuming that T (t) = 1) exists and converges as t → ∞ to its stationary
point. This stationary point is the unique solution to the eigenvalue problem μ�∗ R = ρ∗μ�∗ ,
μ�∗ e = 1, and μ∗ ≥ 0, where ρ∗ = 1/(1 − λ∗). Uniqueness follows from Perron–Frobenius’
theorem. The complete dynamical system, for μ(t) and T (t), is a time change of the reduced
one, so we can connect them via a simple transformation.

Thus, applying [20, Theorem 5.2.1] we can conclude thatμn converges to the quasi-stationary
distribution for all initial configurations (μ0, T0) ∈ H × [1, ∞).

For the CLT we invoke [20, Theorem 10.2.1]. Because the recursion in (3.3) uses step
size εn = 1/(n + 1), we need to verify that the Jacobian matrix of the ODE vector field,
evaluated at the stability point, has spectral radius less than − 1

2 . As we show in Section 6.2
this is equivalent to requiring (3.5). The expression for V0 is extracted from the variance of an
associated Ornstein–Uhlenbeck process as in [20, p. 332]. �

4. Variations on the algorithm with improved rate of convergence

We study the (dramatic) deterioration that can occur in the rate of convergence if (3.5) is not
satisfied. We focus on a simple example consisting of two states, the phenomenon is not unique
to this example but to the implicit selection of εn = O(1/n) in the stochastic approximations
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Stochastic approximations for quasi-stationary distributions 797

form, and the importance of the constant multiplying 1/n in these cases. Moreover, we note
there are natural algorithmic ‘tricks’ that one might attempt to use, and which are likely to
induce a violation of (3.5). For example, observe that the eigenvectors of Q and φQ coincide
for any φ ∈ (0, 1). So we can choose φ > 0 small in order to shorten the expected size of
each iterate, since absorption now occurs with probability at least 1 −φ in each step. However,
because of the nonlinearity of the 1/(1 − λ̄) as a function of λ̄ and its presence in (3.5), we
can see that choosing φ > 0 too small might result in a significant deterioration in the rate of
convergence (despite the gain in speed at each iteration).

4.1. Counterexample to square root convergence

Consider the Markov chain with states {0, 1, 2}, the state 0 is absorbing and the matrix Q

satisfies

Q =

⎛
⎜⎜⎝

1 − ε

2

1 − ε

2
1 − ε

2

1 − ε

2

⎞
⎟⎟⎠

By symmetry the recursion that we analyze, namely (3.2), can be tracked by a simple process,
{X̄m : m ≥ 0}, which we describe now. Assume that the distribution of X̄0 is given. At step m,
the value of X̄m is decided as follows. First we sample a Bernoulli trial which we call the type.
The type has success with probability equal to 1 − ε.

If the type is a success, we sample a second Bernoulli trial with probability 1
2 of the success,

if the second trial is successful we let X̄m = 1, if it is a failure we let X̄m = 2.
If the type is a failure (which occurs with probability ε), we sample state 1 or 2 according

to the empirical measure of {X̄k : 0 ≤ k ≤ m − 1}.
Let Tn be the time at which the nth failure type occurs. Then (3.2) is equivalent to

studying μn(x) = ∑Tn

k=0 1 {(X̄k = x)/Tn}. The process {X̄m : m ≥ 0} is known as a self-
interacting Markov chain, see [11]. Equation (3.5) in Theorem 3.1 applied to this case
corresponds to requiring that ε < 1

2 . Of course, μ = ( 1
2 , 1

2 ). Del Moral and Miclo [11]
is applicable to this example and shows that if f 
= 0 there exists δ > 0 such that, for
n ≥ 1, δn−2(1−ε) ≤ E((μ�

n f − μ�f )2) ≤ δ−1n−2(1−ε). So the rate of convergence is not
O(n−1/2) but rather O(n−(1−ε)).

4.2. Projection and averaging

Now that the method is under the stochastic approximation umbrella, we can modify the
algorithm to enforce an optimal CLT rate regardless of the eigenvalues of Q. So, we consider
the recursion

μ̄n+1 = 
H

(
μ̄n + εn

(τ (n+1)−1∑
k=0

(
1 {X(n+1)

k = · | X
(n)
0 ∼ μn} − μ̄n(·)

)))
,

where 
H denotes the L2-projection into the probability simplex H . We still require
∑

εn = ∞
and

∑
ε2
n < ∞. As we now explain, we only need to perform a small number of projections.

The vector inside the projection operator is equal to

μ̄n(1 − εnτ
(n+1)) + εn

τ (n+1)−1∑
k=0

1 {X(n+1)
k = · | X

(n)
0 ∼ μ̄n},
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798 J. BLANCHET ET AL.

so it always has components which add up to 1. Moreover, for a component to become negative,
it is necessary that τ (n+1) > ε−1

n . We shall argue in Lemma 6.1(iii), that there exists δ > 0
such that τ (n+1) > δ log(n) for only finitely many values of n ≥ 1 with probability 1; thus,
τ (n+1) > ε−1

n occurs only finitely many times if εn = O(n−α) for α > 0. Finally, it is quite
easy to perform the L2 projection into a probability simplex. In particular,

μ̄n+1 =
(

μ̄n(1 − εnτ
(n+1)) + εn

τ (n+1)−1∑
k=0

1 {X(n+1)
k = · | X

(n)
0 ∼ μ̄n} − un+1e

)
+
,

where un+1 > 0 is the unique constant such that μ̄�
n+1e = 1 (see [5]).

The advantage of the projection version is that we are free to choose slower step sizes so
that we can weaken the condition for the required CLT to hold. In particular, when εn = n−α

and α ∈ ( 1
2 , 1) we always obtain a ε

−1/2
n -CLT. We summarize this observation in the following

result proved in Section 7.

Proposition 4.1. If εn = n−α for α ∈ ( 1
2 , 1), it follows that ε

−1/2
n (μ̄n − μ∗)

d−→N(0, V1),
where V1 can be characterized via (7.1).

The Polyak–Ruppert averaging technique [24] can be applied jointly with the projection
algorithm to ensure ‘square root convergence’, regardless of whether (3.5) holds or not, as the
next theorem shows. Its proof, given in Section 7, is based on [24] and it uses the analyses
behind Proposition 4.1 and Theorem 3.1.

Theorem 4.1. Suppose that μ0 is any probability vector supported on {1, . . . , n} and pick
T0 ≥ 1. Selecting εn = n−α for α ∈ ( 1

2 , 1), let vn = ∑n
k=1 μ̄k/n. Then, n1/2(vn − μ∗)

d−→
N(0, V̄1), where V̄1 is given in (8.1).

We can apply Theorem 4.1 in the estimation of quasi-stationary expectations of the form
E(s(X) | X ∼ μ∗) = μ�∗ s, using the estimator μ�

n s (note that we are encoding the function s(·)
as a column vector). As a consequence of our CLT, we have the following corollary.

Corollary 4.1. Under the notation defined in Theorem 3.1, we have n1/2(v�
n s − μ�∗ s)

d−→
N(0, σ 2

s ), where σ 2
f = s�V̄1s.

4.2.1. Estimating the asymptotic variance. In the next result (proved in Section 8) we indicate
how to estimate V1 using the outcomes of the improved algorithm, which we ultimately advocate
using.

Proposition 4.2. Set vn as in Theorem 4.1. For εn = n−α with α ∈ ( 1
2 , 1), let nk = [kβ/α] and

Nn = [nα/β ], with β ∈ (α, 1). Then

1

Nn

Nn∑
k=0

ε−1
nk

(μ̄nk
− vnk

)(μ̄nk
− vnk

)� P−→ V̄1 as n → ∞,

where ‘
P−→’ denotes convergence in probability.
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Stochastic approximations for quasi-stationary distributions 799

Figure 1: The M/M/1/100 queue with ρ = 1.25. Averaging plus projection (circles) significantly
outperforms the original algorithm (solid line), and the projection-only algorithm (crosses).

In the context of Corollary 4.1, we can take advantage of Proposition 4.2 in order to estimate
the asymptotic variance σ 2

f = s�V̄1s using the relationship

1

Nn

Nn∑
k=0

ε−1
nk

s�(μ̄nk
− vnk

)(μ̄nk
− vnk

)�s = 1

Nn

Nn∑
k=0

ε−1
nk

((μ̄nk
− vnk

)�s)2.

5. Numerical example

We simulated the embedded discrete-time Markov chain induced by an absorbing M/M/1/100
queue. That is, a birth–death chain with a reflecting boundary at 100 and an absorbing state
at 0. The traffic intensity of the system ρ = 1.25 (i.e. up rate is 1.25, down rate is 1).
The expected time to absorption E(τ ) is large, so we introduce the trick of replacing Q by
0.95 × Q; so the transformed chain does not satisfy (3.5). In Figure 1 we show that the
projection-with-averaging algorithm significantly outperforms both the original algorithm and
the projection-only algorithm.

6. Proofs of main results

6.1. Proof of Theorem 3.1: convergence

We first restate a series of assumptions and notations that are used in [20, Theorem 5.2.1].
We adopt the abstract form of the recursion θn+1 = θn + εnWn. In our setting θn = (μ�

n , Tn)

and Wn = (Yn(θn), Z(θn)) as defined in (3.4). Recall that Fn is the σ -field generated by the
iterates of the algorithm, namely, Fn = σ(θ0, θi, Wi−1 : 1 ≤ i ≤ n).

To show that μn
P−→ μ∗ a.s. we must verify that

(C.1)
∑

εn = ∞,
∑

ε2
n < ∞. This is immediately satisfied with the choice εn = 1/(n+1), as

in our case. Moreover, define tn =∑n
j=1 εj (with t0 =0), and let m(s)= max{n : tn ≤ s}.

(C.2) Uniformly bounded variance: supn E‖Wn‖2∞ < ∞. This is shown in Lemma 6.4 below.
(We can use any norm, but we choose the norm ‖x‖∞ = maxi |xi |.)
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(C.3) Local averaging condition: define gn(θn) := E(Wn | Fn). The family of functions
{gn(·)}n≥0 must be uniformly equicontinuous, and there must exist a continuous function
g(·) such that, for each θ , and each t > 0,

∑m(tn+t)
k=n εk(gk(θ) − g(θ))

P−→ 0, a.s. This
local averaging condition is proved in Lemma 6.3 below.

In our setting, we write θ = (μ�, T ) and define g(θ) = (f �(θ), h(θ)), where f and h are
given via

f (μ�, T ) = 1

T
E

(τ−1∑
k=0

(1 {Xk = ·} − μ) | X0 ∼ μ

)
= 1

T
(μ�R − (μ�Re)μ�)�, (6.1)

h(μ�, T ) = E(τ | X0 ∼ μ) − T = μ�Re − T , (6.2)

with R = (I − Q)−1. We also define

fn(μ
�, T ) = E

(τ−1∑
k=0

(1 {Xk = ·} − μ)

T + τ/(n + 1)

∣∣∣∣ X0 ∼ μ

)

and set gn(θ) = (f �
n (θ), h(θ)).

Under (C.1)–(C.3), [20, Theorem 5.2.1] indicates that if the ODE θ̇ (t) = g(θ(t)) has an
attractor (asymptotically stable point) in some domain D and the sequence {θn} visits a compact
subset within the domain D infinitely often with probability 1, then θn converges to the attractor
with probability 1.

In our situation it turns out that the entire probability simplex H is the domain of attraction
for an attractor which is precisely the quasi-stationary vector. So we just need to study {Tn}.
We will compute the functions {gn(·)}, verify (C.3), then (C.2), and finally the asymptotic
stability behavior of the ODE. We will show that {Tn} stays within a compact set throughout
the course of the algorithm, and the uniform continuity of the functions {gn(·)} holds for every
compact set in H × [1, ∞). First, however, we obtain auxiliary results for {τ (n)}.
6.1.1. Auxiliary results. Define τ̄ (x) to be a random variable with the distribution of the first
passage time to the absorbing state 0 given that the initial condition of the chain is the transient
state x ∈ {1, . . . , d}. Suppose that the random variables {τ̄ (j) : 1 ≤ j ≤ d} are all independent.
Then, let τ̄ = max{τ̄ (j) : 1 ≤ j ≤ d}. We have the following simple but useful result.

Lemma 6.1. The following claims hold:

(i) τ (n+1) is stochastically bounded by τ̄ ;

(ii) there exists δ > 0 such that E exp(δτ̄ ) < ∞;

(iii) P(τ (n+1) > log(n) infinitely often ) = 0;

(iv) almost surely we have 1 ≤ lim
∑n

k=1 τ (k)/n ≤ E(τ̃ ) < ∞.

Proof. It is clear that (i) follows regardless of any assumption. For (ii)–(iv), we need
Qn → 0 as n → ∞ because this ensures that τ̄ (x) has a finite moment generating function in
a neighborhood of the origin. �

We also have a useful expression for fn(μ
�, T ). Define v(x, s) := E(exp(−sτ ) | X0 = x).
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Lemma 6.2. For each (μ�, T ) ∈ H × (0, ∞), the xth component of fn(μ
�, T ), namely,

fn(μ
�, T )(x), is equal to

∫ ∞

0
e−T uμ�

[
v

(
x,

u

n + 1

)
(I − e−u/(n+1)Q)−1ex

− (I − e−u/(n+1)Q)−1v

(
·, u

n + 1

)
μ(x)

]
du,

where ex denotes the vector which has 1 in the xth coordinate and zeroes elsewhere.

Proof. First note that (T + τ/(n + 1))−1 = ∫ ∞
0 e−(T +τ/(n+1))u du. So, applying Fubini’s

theorem, since
∫ ∞

0 E(e−T uτ | X0 ∼ μ) du < ∞,

fn(μ
�, T )(x) =

∫ ∞

0
E

(
e−(T +τ/(n+1))u

τ−1∑
k=0

(1 {Xk = x} − μ(x))

∣∣∣∣ X0 ∼ μ

)
du.

Again, another application of Fubini’s theorem (also valid because E(τ | X0 ∼ μ) < ∞) yields
that the previous expression equals

∫ ∞

0
E

(
e−(T +τ/(n+1))u

∞∑
k=0

1 {τ > k}(1 {Xk = x} − μ(x))

∣∣∣∣ X0 ∼ μ

)
du

=
∫ ∞

0
e−T u

∞∑
k=0

e−ku/(n+1)
E(e−u((τ−k)/(n+1)) 1 {τ > k}

× (1 {Xk = x} − μ(x)) | X0 ∼ μ) du

=
∫ ∞

0
e−T u

∞∑
k=0

e−ku/(n+1)
E

(
v

(
Xk,

u

n + 1

)
(1 {Xk = x} − μ(x))

∣∣∣∣ X0 ∼ μ

)
du

=
∫ ∞

0
e−T u

∞∑
k=0

e−ku/(n+1)

[
v

(
x,

u

n + 1

)
μ�Qkex −

(
μ�Qkv

(
·, u

n + 1

))
μ(x)

]
du.

The infinite series inside the integral of the last term can be simplified following the same logic
behind the first equality in the display; hence, we obtain the conclusion of the lemma. �
6.1.2. Local averaging and uniformly bounded variance. We first verify the uniformly bounded
variance condition.

Lemma 6.3. It holds that {gn(·)} is a sequence of uniformly equicontinuous functions on H ×
[1, ∞) and we have, for each t > 0,

lim
n→∞

m(tn+t)∑
k=n

εk(gk(μ
�, T ) − g(μ�, T )) = 0.

Proof. Clearly, it holds that |fk(μ
�, T )(x) − f (μ�, T )(x)| is bounded by

E

(τ−1∑
k=0

|(1 {Xk = x} − μ(x))|τ
T (T (k + 1) + τ)

∣∣∣∣ X0 ∼ μ

)
≤ E

(
τ̄ 2

k + 1

)
.
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Therefore,

m(tn+t)∑
k=n

εk|(fk(μ
�, T ) − f (μ�, T ))| ≤ E

(
τ̄ 2

n + 1

) m(tn+t)∑
k=n

εk ≤ tE

(
τ̄ 2

n + 1

)
→ 0

as n → ∞. Finally, we need to argue that gn(·) is uniformly equicontinuous on compact sets
in H × [1, ∞). This follows easily by noting, from the expression obtained in Lemma 6.2,
that the Jacobian (Dfn)(μ

�, T ) is uniformly bounded for a neighborhood around any point
(μ�, T ) ∈ H × [1, ∞).

The coordinate of gn corresponding to h does not depend on n and, thus, the result follows
immediately in this case. �

Now we turn our attention to (C.2), namely, uniformly bounded variance.

Lemma 6.4. We have that supn E‖Wn‖2∞ < ∞.

Proof. It holds that ‖Yn(μn, Tn)‖∞ ≤ τ (n+1). By Lemma 6.1(i), we have E|Z(μn, Tn)| ≤
2Eτ̄ 2. Thus, Lemmas 6.1(i) and 6.1(ii) yield E‖Wn‖2∞ ≤ 3Eτ̄ 2 < ∞, thus concluding the
proof. �
6.1.3. Stability of the dynamical system and final convergence argument. The dynamical system
of interest, namely, θ̇ (t) = g(θ(t)) takes the form

μ̇(t)� = f (μ(t), T (t)) = 1

T (t)
(μ(t)�R − (μ(t)�Re)μ�(t)), (6.3)

Ṫ (t) = h(μ(t), T (t)) = μ(t)�Re − T (t).

In the proof of [20, Theorem 5.2.1] it was shown that any converging subsequence of the suitably
normalized iterates converges to a function θ(·, ω) which is a solution to the ODE θ́ (t) =
g(θ(t)). We only need to show that these solutions converge as t → ∞ to (μ∗, 1/(1 − λ∗)).

Define an associated reduced ODE as

v̇(t) = (v(t)�R − (v(t)�Re)v�(t))�, v(0) = μ0 ∈ H. (6.4)

Note that the gradient of the vector field in (6.4) is continuously differentiable in H , there-
fore v(·) has a unique solution given v(0) ∈ H .

Suppose that T0 ≥ 1 and let (μ(·), T (·)) be a solution to (6.3) obtained by the subsequence
procedure in [20, Theorem 5.2.1], then define �(t) = ∫ t

0 (1/T (s)) ds. It follows by formal
differentiation that v(t) = μ(�−1(t)) solves (6.4). The following result ensures regularity
properties of �(·).
Lemma 6.5. It holds that �(t) > 0, �(·) is strictly increasing, and �(t) → ∞ as t → ∞.

Proof. Clearly, we have T (s) ≥ 1 so �(·) is strictly increasing and nonnegative. Now,
suppose that �(∞) < ∞, this implies that

T (t) = T0 exp

(∫ t

0

E(τ | X0 ∼ μ(s))

T (s)
ds − t

)

≤ T0 exp

(
E(τ̄ )

∫ t

0

ds

T (s)
− t

)

≤ T0 exp(E(τ̄ )�(∞)) ∈ (0, ∞).
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This bound would imply that there exists δ > 0 so that 1/T (t) > δ, obtaining a contradiction
to the assumption that �(∞) < ∞. Thus, we must have �(∞) = ∞. �
Lemma 6.6. Any solution to the reduced ODE in (6.4) (regardless of v(0) ∈ H ) converges to
the quasi-stationary distribution μ as t → ∞.

Proof. By applying the inner product with the vector e we can see that the entire trajectory
stays in H . We let R = (I − Q)−1 = ∑∞

k=0 Qk which has only nonnegative entries (actually,
the entries are strictly positive if Q is irreducible). By Duhamel’s principle all the solutions
v(·) can be represented by

v(t)� = v(0)� exp

(
Rt −

∫ t

0
(v(s)�Re) ds

)
. (6.5)

Because R has nonnegative entries it follows that exp(Rt) has nonnegative entries and, thus,
v(t) ≥ 0 (in fact the entries are strictly positive if Q is irreducible). Rearranging (6.5), we
arrive at

v(t)� exp

(∫ t

0
(v(s)�Re) ds − λRt

)
= v(0)� exp(Rt − λRt), (6.6)

where λR > 0 is the principal eigenvalue of R. The matrix exp(R)/ exp(λR) is a matrix with
strictly positive entries and it has spectral radius equal to 1. By the Perron–Frobenius theorem
(see [17]) it follows that there exists a strictly positive vector w such that v(0)� exp(Rn −
λRn) → w� as n → ∞, where w is a principal eigenvector of R − λRI . The convergence
holds also along real numbers t (not only natural numbers n) by virtue of a continuity argument
noting that (R − λRI)/m has the same eigenvectors regardless of the value of m > 0.

Now, take the inner product with e in both sides of (6.6) to obtain (because v(t) ∈ H )

exp

(∫ t

0
(v(s)�Re) ds − λRt

)
→ γ := w�e ∈ (0, ∞).

Finally, write (6.5) as

v(t)� = v(0)� exp(Rt − λRt) exp

(
−

∫ t

0
(v(s)�Re) ds + λRt

)
→ w�

γ
.

The lemma follows by noting that the Perron–Frobenius eigenvectors of R and Q are identical,
so we see that v(t) converges to the quasi-stationary distribution as t → ∞. �

Now we are ready to conclude the consistency portion of Theorem 3.1 by invoking [20,
Theorem 5.2.1] together with the following proposition.

Proposition 6.1. Any subsequence solution (obtained as in [20, Theorem 5.2.1]) of the system
(6.3) satisfies μ0 ∈ H and T0 ≥ 1 and it is such that μ(t) → μ∗ and T (t) → (1 − λ∗)−1 =
E(τ | X0 ∼ μ∗) as t → ∞. The sequence {(μ�

n , Tn)} stays in a compact set of the attractor
domain H ×[1, ∞) eventually. Therefore, μn → μ∗ and Tn → (1 −λ∗)−1 with probability 1.

Proof. We have μn ∈ H and Tn ≥ 1 because Tn is the average of the τ (n) which are
greater than 1, so the subsequence procedure in [20, Theorem 5.2.1] produces trajectories
that lie in H × [1, ∞) and which are solutions to (6.3). Now, we have noted that �(·) is
nonnegative and strictly increasing, according to Lemma 6.5 and, thus, Lemma 6.6 implies
that v(t) = μ(�−1(t)) → μ∗. Moreover, Lemma 6.5 indicates that �−1(t) → ∞; therefore,
we have μ(t) → μ∗ as t → ∞.
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Note that

T (t) = e−t

∫ t

0
E(τ | X0 ∼ μ(s))es ds + e−t T0, E(τ | X0 ∼ μ(t)) → E(τ | X0 ∼ μ∗).

So, we can use l’Hôpital’s rule to conclude that

lim
t→∞ T (t) = E(τ | X0 ∼ μ(t)) = E(τ | X0 ∼ μ∗) = (1 − λ∗)−1.

The fact that {(μ�
n , Tn)} stays in a compact set of H × [1, ∞) follows from Lemma

6.1(iv). �
6.2. Proof of Theorem 1: CLT

In order to prove the CLT portion of Theorem 3.1, we shall invoke [20, Theorem 10.2.1];
this requires verifying the following conditions.

(C.4) The sequence {Wn 1 {‖θn − θ∗‖ ≤ δ}} is uniformly integrable. (This follows immedi-
ately because due to Lemma 6.4 we have the fact that Wn is L2-bounded.)

(C.5) That θ∗ is an isolated stable point of the ODE. (This follows from the Perron–Frobenius
theorem and the analysis in Proposition 6.1.)

(C.6) The expansion gn(θ) = gn(θ∗)+ (Dgn)(θ∗)(θ −θ∗)+o(‖θ −θ∗‖) holds uniformly in n.
(This estimate will be elaborated in Lemma 6.7.)

(C.7) We must have limn,m→∞ m−1/2 ∑n+mt−1
k=n (Dgk)(θ∗) = 0, uniformly over t in compact

sets. (See Lemma 6.9.)

(C.8) There exists a matrix A such that limn,m

∑n+m−1
k=n ((Dgk)(θ∗) − A) = 0. (Let A =

(Dg)(θ∗), then this condition will hold by Lemma 6.10 which shows that (Dgn)(θ∗) →
(Dg)(θ∗).)

(C.9) The matrix A must also be such that A + I/2 is Hurwitz (i.e. all its eigenvalues have
a negative real part). (This corresponds precisely to (3.5) and it will be established in
Proposition 6.2.)

(C.10) The sequence {(θn − θ∗)/ε1/2
n } is tight. (See Lemma 6.12.)

(C.11) Define δMn = Wn − gn(θn), then there exists p > 0 such that supn E‖δMn‖2+p∞ < ∞,
and a nonnegative matrix � such that E(δMn(δMn)

� | Fn)
P−→� as n → ∞. (This is

established in Lemma 6.13.)

6.2.1. Analysis of the Jacobian: (C.6)–(C.8).

Lemma 6.7. We have

lim‖θ−θ∗‖∞→0
sup
n≥1

∣∣∣∣gn(θ) − gn(θ∗) − (Dgn)(θ∗)(θ − θ∗)
‖θ − θ∗‖∞

∣∣∣∣ = 0.

Proof. We consider the analysis only for fn(μ
�, T ) because h is a simpler quantity and

does not depend on n. The analysis follows as an application of the representation derived
in Lemma 6.2. It is easy to justify the interchange of differentiation and integration in the
representation given in Lemma 6.2 because the integrand consists of products of a second
degree polynomial in μ, the exponential factor exp(−uT ) on the region of interest which is
T ≥ 1, and the term including v(x, s) ∈ (0, 1]. Thus, the second derivatives of fn will be
bounded uniformly in n around a neighborhood of the stationary point θ∗. �

Next we turn to (C.7), but first we have an auxiliary result.
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Lemma 6.8. It follows that gn(θ∗) = O(1/n).

Proof. Note that h(θ∗) = 0, so we only focus on fn(θ∗). On the other hand, we observed
in the proof of Lemma 6.3 that |fn(μ

�, T )(x) − f (μ�, T )(x)| ≤ E(τ̄ 2)/(n + 1), but (with
R = (I − Q)−1)

f (μ�∗ , T∗) = 1

T∗
(μ�∗ R − (μ�∗ Re)μ�∗ )� = 1

T ∗

(
1

1 − λ
μ�∗ − 1

1 − λ
μ�∗

)�
= 0.

Hence, Lemma 6.8 follows. �
Lemma 6.9. We have limn,m→∞ m−1/2 ∑n+mt−1

k=n (Dgk)(θ∗) = 0, uniformly over compact sets
in t .

Proof. Using Lemma 6.8, it follows that there exists c ∈ (0, ∞) (independent of n) such
that

m−1/2
n+mt−1∑

k=n

‖(Dgk)(θ∗)‖∞ ≤ cm−1/2 log

(
1 + mt

n

)
.

Let u = mt/n, then

cm−1/2 log

(
1 + mt

n

)
≤ ct1/2n−1/2 sup

u≥0
u−1/2 log(1 + u).

Since supu≥0 u−1/2 log(1 + u)/u1/2 < ∞, we can send n → ∞ to conclude the statement of
Lemma 6.9. �
Lemma 6.10. We have limn→∞(Dgn)(θ∗) = (Dg)(θ∗).

Proof. Once again, it suffices to concentrate on fn. Because of Lemma 6.7, we know that
fn(θ) = fn(θ∗) + (Dfn)(θ∗)(θ − θ∗) + o(θ − θ∗). Taking the limit as n → ∞, we arrive
at f (θ) = limn→∞(Dfn)(θ∗)(θ − θ∗) + o(θ − θ∗). Expanding the left-hand side, we have
f (θ) = (Df )(θ∗)(θ − θ∗) + o(θ − θ∗). Matching these terms and noting that θ − θ∗ can have
any direction, we conclude the result of the lemma. �
6.2.2. The Hurwitz property: (C.9).

Proposition 6.2. Let A = (Dg)(θ∗), then A + I/2 is Hurwitz assuming that the eigenvalues
of Q satisfy (3.5).

Proof. Recall that g(μ�, T ) = (f �(μ�, T ), h(μ�, T )) and (6.1) and (6.2). Letting B =
R� = (I − Q�)−1, it follows that the Jacobians are given by (using Dμ and DT to denote the
derivatives with respect to μ and T , respectively),

Dμf (μ�, T ) = 1

T
[B − (μ�Be)I − μe�B],

DT f (μ�, T ) = − 1

T 2 [Bμ − (μ�Be)μ],
Dμh(μ�, T ) = e�B, DT h(μ�, T ) = −1.

We consider the stationary point and note that μ�∗ Be = T∗. Then, define

J := Dμf (μ�∗ , T∗) = 1

T∗
[B − T∗I − μ∗e�B]. (6.7)
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Also, note that DT f (μ�∗ , T∗) = 0. We now establish a one-to-one correspondence between
the eigenvectors of J and the eigenvectors of B. The overall Jacobian in block form takes the
form

A =
[

J 0
e�B −1

]
.

This matrix has the same eigenvalues as J , with the addition of the eigenvalue −1 which has
no effect on the Hurwitz property. Hence, we only need to ensure that J + I/2 is Hurwitz.

Let y be any vector such that Jy = λJ y and such that y is linearly independent of μ∗. Note
that Jy = λJ y is equivalent to

By = T∗λJ y + T∗y + (e�By)μ∗,

and, therefore, if we let x = y + rμ∗, for some r to be characterized momentarily, we have

Bx = By + rT∗μ∗ = T∗(λJ + 1)y + (e�By + rT∗)μ∗.

So, the value of r that would make x an eigenvector of B is such that rT∗λJ = e�By. Since
T∗ > 0 the existence of r is guaranteed if λJ 
= 0 and the corresponding eigenvalue for B

would be λB = T∗(1 + λJ ). On the other hand, if y is a multiple of μ∗, its eigenvalue for the
matrix J equals −1 (the eigenvalue for B is, of course, T∗). In Lemma 6.11 below we will
argue that λJ cannot be 0, so the argument just given shows that every eigenvector of J is an
eigenvector of B.

Conversely, given any vector z, such that Bz = λBz, we can define u = z+rμ∗. If we choose
r = (T∗ + λBe�z)/(T∗ − λB) then we conclude that Ju = (λB/T∗ − 1)u. This selection of
r is valid if z is not the principal right eigenvector of B (i.e. in case z is not μ∗). In case we
select z = μ∗, then trivially Jz = −z.

Consequently, we conclude that there is a one-to-one correspondence between the eigenvec-
tors (and eigenvalues) of J and B, and the relationship between the eigenvalues is

λJ = λB

T∗
− 1 for λB 
= T∗ or λJ 
= 0, λJ = −1 if λB = T∗.

Therefore, in order to ensure that J + I/2 is Hurwitz, we must have Re(λB) < T∗/2 for all
λB 
= T∗, which is precisely (3.5). �

We finish the analysis of the Hurwitz condition, with the following result invoked in the
previous proof.

Lemma 6.11. We have λJ 
= 0.

Proof. Assume that y is such that Jy = 0. This implies that

By = T∗y + μ∗(e�By) = T∗y + (μ∗e�)By.

Therefore,
(I − (μ∗e�))By = T∗y.

We recognize that P̄ = (I − (μ∗e�)) is a (nonorthogonal) projection in the sense that P̄ 2 = P̄ .
Also we have P̄μ∗ = 0 and e�P̄ = 0. This means that T∗ is an eigenvalue of P̄ B, which in
turn implies that there exists a left eigenvector x such that x�P̄ B = T∗x�, or

x�P̄ = T∗x�B−1. (6.8)
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Now let x�P̄ = z� and consider all possible solutions w such that w�P̄ = z� which must
be written as the sum of an element of the null space and a particular solution. Observe,
because P̄ 2 = P̄ , that z�P̄ = z� is a particular solution and, therefore, any solution x (i.e. any
eigenvector corresponding to T∗ for P̄ B) must take the form x = ce + z for some constant c.
Observe from (6.8), multiplying by μ∗ from the right, that

0 = T∗x�B−1μ∗ = T∗x�(I − Q�)μ∗ = x�μ∗.

Therefore, we have c = 0 because x�μ∗ = 0 and 0 = x�μ∗ = c + z�μ∗ = c + 0.
Consequently, x� = z� = T∗xB−1, which implies that x�B = T∗x�, therefore concluding
that x is the principal left eigenvector of B. Consequently, x must have strictly positive entries
and, in turn, we must have x�μ∗ > 0, thus, arriving at a contradiction. So, there is no
eigenvalue T∗ for the matrix P̄ B and, thus, λJ = 0 is not possible. �
6.2.3. Tightness: (C.10).

Lemma 6.12. The sequence {(θn − θ∗)/ε1/2
n } is tight.

Proof. We use the local techniques discussed in [20, Section 10.5.2] and apply them as in
the proof of [20, Theorem 10.4.1], albeit with some modifications. We shall use the Lyapunov
function V (θ) = ‖θ − θ∗‖2

2. However, we now have to deal with the gradient of gn as opposed
to the gradient of g as in the proof of [20, Theorem 10.4.1]. We shall control the changes in gn

by expanding around the stationary point. We have

E(V (θn+1) | Fn) − V (θn)

= 2εn(θn − θ∗)�gn(θn) + O(ε2
n)

= 2εn(θn − θ∗)�gn(θ∗) + 2εn(θn − θ∗)�An(θn − θ∗)� + εno(‖θn − θ∗‖2
2) + O(ε2

n),

where the first equality uses an idea similar to that of the proof of Lemma 6.4 to arrive at the
error term O(ε2

n), and the second inequality is just an expansion of gn around θ∗ followed by
an application of Lemma 6.7. Since 2An has eigenvalues with negative real part less than −1
(i.e. An + I/2 is Hurwitz) for large enough n, we conclude that there exists δ > 0 such that,
for all sufficiently large n,

(θn − θ∗)�An(θn − θ∗)� < −(1 + 2δ)‖θn − θ∗‖2
2.

Moreover, because gn(θ∗) = O(1/n) due to Lemma 6.8, we have

2εn(θn − θ∗)�gn(θ∗) ≤ O(ε2
n(θn − θ∗))

and o(‖θn − θ∗‖2
2) ≤ δV (θn). We then conclude that

E(V (θn+1) | Fn) − V (θn) ≤ −εn(1 + δ)V (θn) + O(ε2
n).

The rest of the proof can now be concluded as in [20, Theorem 10.4.1]. �
6.2.4. Quadratic variation of the martingales: (C.11).

Lemma 6.13. Let δMn = Wn − gn(θn), then

sup
n≥0

E||δMn||42 < ∞. (6.9)

Moreover,
E(δMnδM

�
n | Fn)

P−→ � for some matrix �. (6.10)
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Proof. We use the notation En(·) for E(· | Fn),

||δMn||42 ≤ 2(‖Yn(θn) − EnYn(θn)‖4
2 + |Zn(θn) − EnZn(θn)|4)

≤ 16(‖Yn(θn)‖4
2 + ‖EYn(θn)‖4

2 + |Zn(θn)|4 + |EnZn(θn)|4).

An argument similar to Lemma 6.3 yields that ‖Yn(θn)‖4
2 ≤ τ̄ 4 and |Zn(θn)|4 ≤ τ̄ 4 (stochasti-

cally) and, therefore, by Lemma 6.1 we conclude bound (6.9).
To establish (6.10) note that δMnδM

�
n is equal to

[
(Yn(θn) − fn(θn))(Yn(θn) − fn(θn))

� (Yn(θn) − fn(θn))(Z(θn) − h(θn))

(Z(θn) − h(θn))(Yn(θn) − fn(θn))
� (Z(θn) − h(θn))

2

]
.

By Lemma 6.8, we have fn(θn) → 0, and h(θn) → 0. Note that the distribution of Z(θ)

and Y (θ) can be written in a way that is continuous in θ (as a mixture of the initial distribution);
therefore, Z(θn)

d−→ Z(θ∗) and Y (θn)
d−→ Y (θ∗); consequently, we also have Yn(θn)

d−→ Y (θ∗).
We observe that each entry of the matrix is stochastically dominated by 2τ̄ and, thus, we can
apply Lemma 6.1 to conclude uniform integrability (since E(τ̄ 2) < ∞), thereby obtaining

En(δMnδM
�
n ) → � := E(

[
Y (θ∗)� Z(θ∗)

]� [
Y (θ∗)� Z(θ∗)

]
).

In turn, due to the equality in [20, p. 332], the asymptotic covariance equals

V0 =
∫ ∞

0
exp

((
J + I

2

)
t

)
� exp

((
J� + I

2

)
t

)
dt, (6.11)

concluding the proof. �

7. Proof of Proposition 4.1

Proof of Proposition 4.1. The proof is almost identical to that of Theorem 3.1. In fact, the
analysis is somewhat simpler because there is no denominator and so we just need to analyze
the reduced ODE in (6.4). The proof of tightness also follows similar steps as the argument
given in [20, Theorem 10.4.1], which distinguishes the cases εn = 1/n and the case εn = n−α

for α ∈ ( 1
2 , 1) as we do here.

Now, recall that J is the Jacobian of the vector field obtained in (6.7), evaluated at the unique
stability point μ∗. We need to ensure that J is Hurwitz (i.e. all the eigenvalues have a strictly
negative real part). This is in contrast to requiring that J +I/2 is Hurwitz — which is a stronger
condition because then one needs that all the eigenvalues have a real part less than − 1

2 , which
leads to (3.5). Instead, requiring that J be Hurwitz is equivalent to the condition that Re(λ̄) < λ∗
for all nonprincipal eigenvalue λ̄ of the matrix Q, which is automatic by the Perron–Frobenius
theorem [17]. Hence, we conclude the result by invoking [20, Theorem 10.2.1]. The asymptotic
covariance matrix in this case takes the form

V1 =
∫ ∞

0
exp(J t)�0 exp(J�t) dt, (7.1)

where �0 = E(Ȳ (μ�∗ )Ȳ (μ�∗ )�), with Ȳ (μ�) = ∑τ−1
k=0(1 {Xk = · | X0 ∼ μ} − μ(·)). �

We are now ready to discuss the proof of Theorem 4.1
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Proof of Theorem 4.1. We shall verify the conditions in [24, Theorem 2]. First, define
f̄ (μ) = f (μ�, 1) and recall that f (·), introduced in (6.1), coincides with f (μ�, 1) = EȲ (μ�).
We must first verify that

(C.12) there exists a function L a (globally) Lipschitz continuous function V (·) such that
L(μ∗) = 0, and for some positive definite matrix G,

DL(μ)Gf̄ (μ�) < 0 for μ 
= μ∗, (7.2)

there exists ε, δ > 0 such that

DL(μ)Gf̄ (μ�) ≤ −δV (μ) (7.3)

if ‖μ − μ∗‖ ≤ ε, and L(μ − μ∗) ≥ δ‖μ − μ∗‖2
2 for some δ > 0.

This condition is satisfied if we construct L(·) by noting that μ∗ is the unique root of
f̄ (μ∗) = 0 and we have established in Lemma 6.2 that J̄ := (Df̄ )(μ∗) = JT∗ is Hurwitz (in
fact J + I/2 = J̄ /T∗ + I/2 is Hurwitz); therefore,

f̄ (μ) = J̄ (μ − μ∗) + O(‖μ − μ∗‖2
2). (7.4)

Now, it is standard in stability of dynamical systems that given a Hurwitz matrix J̄ and a given
symmetric positive definite matrix G (which we might take as G = I , the identity, here), there
is a unique symmetric positive definite matrix K such that J̄�K + KJ̄ = −G = −I , and there
is a positive constant γ > 0 such that I − δK is symmetric and positive definite. We first set
L̄(μ) = (μ − μ∗)�K(μ − μ∗) so that

DL̄(μ)Gf̄ (μ�) = 2(μ − μ∗)�KJ̄ (μ − μ∗) + O(‖μ − μ∗‖3
2)

= (μ − μ∗)�(J̄�K + KJ̄ )(μ − μ∗) + O(‖μ − μ∗‖3
2)

= −‖μ − μ∗‖2
2 + O(‖μ − μ∗‖3

2).

From this bound we obtain the existence of L satisfying (7.2) and (7.3) by modifying L̄ outside
a neighborhood of μ∗ inside the compact set H .

The second condition [24, Theorem 2] follows directly from (7.4) and the fact that J̄ is Hur-
witz. There are two more conditions to check for the application of [24, Theorem 2], the fourth
condition is trivially satisfied for εn = n−α with α ∈ ( 1

2 , 1) and the third condition involves the
martingale difference process and its quadratic variation, the verification is completely parallel
to that of Proposition 6.2. �

8. Proof of Proposition 4.2

In this section we provide the proof of consistency for the estimator of

V̄1 = J−1�0J
−1. (8.1)

Equation (8.1) follows from [20, Theorem 11.1.1].

Proof of Proposition 4.2. We write

ε−1
n (μ̄n − vn)(μ̄n − vn)

� = ε−1
n (μ̄n − μ∗)(μ̄n − μ∗)� + ε−1

n (vn − μ∗)(vn − μ∗)�

− ε−1
n (μ̄n − μ∗)(vn − μ∗)� − ε−1

n (μ̄n − μ∗)(vn − μ∗)�.

(8.2)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/apr.2016.28
Downloaded from http:/www.cambridge.org/core. Stanford University Libraries, on 27 Oct 2016 at 04:36:45, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/apr.2016.28
http:/www.cambridge.org/core


810 J. BLANCHET ET AL.

Note that ε
−1/2
n (μ̄n − μ∗)(εnn)−1/2n1/2(vn − μ∗)�

P−→ 0 as n → ∞ because of Proposi-
tion 4.1 and Theorem 4.1, since εnn → ∞ as n → ∞. A similar argument applies to all
the terms in (8.2) involving (vn − μ∗); so it suffices to study the limit of

N−1
n

Nn∑
nk=1

ε−1
nk

(μ̄nk
− μ∗)(μ̄nk

− μ∗)� as n → ∞.

The rest of the calculation is similar to the analysis of the asymptotic covariance in [20,
Theorem 11.3.1]. The idea is that the sequence {(μ̄nk

− μ∗)ε−1/2
nk

} is weakly dependent and
each term is asymptotically normal (as k → ∞) with variance V̄1. �
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