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Abstract In constructing debiased multi-level Monte Carlo (MLMC) estimators,
one must choose a randomization distribution. In some algorithmic contexts, an
optimal choice for the randomization distribution leads to a setting in which the
mean time to generate an unbiased observation is infinite. This paper extends the
well known efficiency theory for Monte Carlo algorithms in the setting of a finite
mean for this generation time to the infinite mean case. The theory draws upon
stable law weak convergence results, and leads directly to exact convergence rates
and central limit theorems (CLTs) for various debiased MLMC algorithms, most
particularly as they arise in the context of stochastic differential equations. Our CLT
theory also allows simulators to construct asymptotically valid confidence intervals
for such infinite mean MLMC algorithms.
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1 Introduction

In comparing Monte Carlo algorithms, a key result in the literature concerns the
efficiency trade-off between the variance of an estimator, and the computer time
required to compute that estimator. In particular, suppose that a quantity z = E(X)

is to be computed. The associatedMonte Carlo estimator is constructed by generating
independent and identically distributed (iid) copies X1, X2, . . . of X ; the computer
time required to generate Xi is given by τi , a positive random variable (rv). The
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(Xi , τi ) pairs are then iid in i , where Xi and τi are generally correlated. Given a
computer time budget c, let N (c) be the number of Xi ’s generated in c units of
computer time, so that N (c) = max{n ≥ 0 : τ1 + · · · + τn ≤ c}. The estimator for z
that is available with computational budget c is then X̄ N (c), where X̄n = n−1(X1 +
· · · + Xn). It is well known that when E(τ1) < ∞ and Var(X1) < ∞, the central
limit theorem (CLT)

c1/2
(
X̄ N (c) − z

) ⇒ √
E(τ1) · Var(X1) N (0, 1) (1)

holds as c → ∞, where⇒ denotes weak convergence, and N (0, 1) denotes a normal
rv with mean 0 and variance 1. With (1) in hand, one can now compare the efficiency
of different algorithms (as associated with two rv’s X and Y for which E(X) = z =
E(Y )) for a given (large) computational budget c. The result (1) is discussed in [7],
but is worked out in much greater detail in [5]. In the latter reference, the theory
focuses on settings in which E(τ1) < ∞; an extension to Var(X1) = ∞ can also be
found there.

In this paper, we extend this efficiency framework to the setting in which
E(τ1) = ∞. As we shall argue in Sect. 3, this extension is useful in some applica-
tions of debiased MLMC; see [10]. In particular, there are various debiased MLMC
algorithms which lead naturally to E(τ1) = ∞; such algorithms are believed to con-
verge at a rate slower than the “canonical” c−1/2 rate associated with (1), so that they
exhibit “subcanonical rates.” However, theoretical analysis of such algorithms has
been hampered by the fact that no analog to (1) existswhen E(τ1) = ∞. For example,
much of the theory on subcanonical MLMC establishes upper bounds on the rate of
convergence, but not lower bounds. Such lower bounds would follow automatically,
in the presence of an analog to (1). Other references which study estimators based on
Multilevel Monte Carlo (MLMC) via weak convergence methods include [1, 6, 9]
(but they do not analyze debiased estimators, nor do they focus on the subcanonical
case studied here).

It is worth noting that the act of terminating a debiased computation at a fixed
computational budget inevitably introduces bias. This bias is theoretically inevitable,
since any part of the sample space for the underlying random variables that takes
more computation than provided by the budget can not be sampled within the given
budget. Fortunately, the bias of the estimators discussed here typically goes to zero
rapidly; see [4]. Furthermore, in the limit theorems described in this paper, the bias
is always of smaller order than the sampling variability, as suggested by the fact that
the limit random variables in all our theorems have mean zero.

This paper establishes limit theory for such subcanonical rate algorithms in Sect. 2
for both the case in which X has finite variance (Theorems 1 and 2) and when X is in
the domain of attraction of a finitemean stable law (Theorem 3). Section3 shows how
the theory applies specifically to the debiased MLMC setting, and provides theory
that slightly improves upon the known convergence rates for such algorithms in the
stochastic differential equation context, and shows how the theory can be used to
obtain asymptotically valid confidence intervals for such infinite mean procedures.
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2 The Key Limit Theorems When E(τ1) = ∞

In the setting inwhich E(τ1) = ∞, limit theory for sums and averages typically fail to
hold unless onemakes strong assumptions about the tail behavior of τ1. Consequently,
we now require that τ1 satisfy the tail condition:

A1. There exists α ∈ (0, 1] and a slowly varying function L(·) such that

P(τ1 > x) = x−αL(x)

for x ≥ 0.

Remark 1 We note that a function L(·) is said to be slowly varying if for each q > 0,
L(qx)/L(x) → 1 as x → ∞.

The assumption A1 is a strong requirement on the tail of τ1 that comes close to
asserting that τ1 has a parametric-type Pareto tail. For typical Monte Carlo algo-
rithms, there is no reason to believe that A1 will hold. However, in the debiased
MLMC setting, the simulator must specify a randomization that strongly controls
the distribution of τ1. In this specific context, the randomization can be designed so
that Var(X1) < ∞, with A1 describing the tail behavior of τ1; see Sect. 3 for further
discussion. (Requiring that Var(X1) < ∞ simplifies the construction of confidence
intervals and the development of sequential procedures; see [10]).

In viewof the above,wewill focusfirst on the casewhereA1holdswithVar(X1) <

∞. The case in which α = 1 is qualitatively different from the case in which α ∈
(0, 1). As it turns out, themost important applications of our theory in Sect. 3 concern
the α = 1 setting. Consequently, we start with this case. We assume here that L(·)
takes the specific form

L(x) = a(log x)γ (log log x)δ (2)

for x ≥ x0 and a > 0. If γ < −1 or if γ = −1 with δ < −1, E(τ1) < ∞ and so this
is covered by the theory presented in [5]. We therefore restrict our analysis to the
case where γ > −1 or γ = −1 with δ ≥ −1.

Let Sα(σ, β, μ) be a stable rvwith indexα, scale parameter σ , skewness parameter
β, and shift parameter μ, with corresponding characteristic function

E(exp(iθ Sα(σ, β, μ)))

=
{
exp (−σα |θ |α (1 − iβ(sign θ) tan(πα/2)) + iμθ) , α �= 1;
exp

(−σ |θ | (1 + iβ 2
π
(sign θ) log(|θ |)) + iμθ

)
, α = 1.

Theorem 1 Suppose σ 2 = Var(X1) < ∞. If α = 1 and L(·) is as in (2), then
√

c

r(c)

(
X̄ N (c) − z

) ⇒ σ N (0, 1)

as c → ∞, where
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r(c) =
⎧
⎨

⎩

a
1+γ

(log c)1+γ (log log c)δ, γ > −1;
a

1+γ
(log log c)1+δ, γ = −1 < δ;

a log log log c, γ = −1 = δ.

Proof We start by noting that Theorem 4.5.1 of [11] implies that

∑n
i=1 τi − mn

cn
⇒ S1(1, 1, 0) (3)

as n → ∞, where (cn : n ≥ 1) is any sequence for which

nL(cn)

cn
→ 2

π
(4)

as n → ∞, and (mn : n ≥ 1) is chosen as

mn = ncnE(sin(τ1/cn)). (5)

Given (2), (4) is satisfied by setting

cn = πa

2
n(log n)γ (log log n)δ.

As for mn , fix w > 0 and write

mn = ncn (E(sin(τ1/cn)I (τ1 ≤ wcn)) + E(sin(τ1/cn)I (τ1 > wcn))) ,

where I (A) denotes the indicator functionwhich is 1when A occurs and 0 otherwise.
Note that

ncn |E(sin(τ1/cn)I (τ1 > wcn))| ≤ ncn P(τ1 > wcn) = O(cn) (6)

as n → ∞, where O(an) denotes any sequence for which (|O(an)| /an : n ≥ 1) is
bounded.

On the other hand,

ncnE(sin(τ1/cn)I (τ1 ≤ wcn))

= ncnE

(∫ τ1/cn

0
cos(y)dy I (τ1 ≤ wcn)

)

= ncn

∫ w

0
cos(y)P(ycn < τ1 ≤ wcn)dy

= ncn

∫ w

0
cos(y)P(τ1 > ycn)dy − ncn sin(w)P(τ1 > wcn)
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= ncn

∫ w

0
cos(y)P(τ1 > ycn)dy + O(cn) (7)

as n → ∞. But

n cos(w)

∫ wcn

0
P(τ1 > y)dy ≤ ncn

∫ w

0
cos(y)P(τ1 > ycn)dy (8)

≤ n
∫ wcn

0
P(τ1 > y)dy

for w ∈ [0, π/2]. The upper and lower bounds in (8) follows from a change-of-
variable arguement and the fact that cos(w) ≤ cos(y) for any 0 ≤ y ≤ w ≤ π/2. We
shall argue below that ∫ wcn

0
P(τ1 > y)dy ∼ r(cn) (9)

as n → ∞, where we write an ∼ bn as n → ∞ whenever an/bn → 1 as n → ∞. It
is easily verified that nr(cn)/cn → ∞, so it follows from (6), (7), and (8) that

cos(w) ≤ lim
n→∞

mn

nr(cn)
≤ lim

n→∞
mn

nr(cn)
≤ 1. (10)

By sending w → 0 in (10), we conclude that

mn ∼ nr(cn)

as n → ∞.
Because mn/cn → ∞, (3) implies that

1

mn

n∑

i=1

τi ⇒ 1

as n → ∞, from which we find that

1

cη


cη/r(cη)�∑

i=1

τi ⇒ 1 (11)

as c → ∞ for any η > 0, where 
x� is the floor of x . If we choose η = 1 + ε and
η = 1 − ε in (11), and use the fact that r(·) is slowly varying, we are led to the
conclusion that

N (c)r(c)

c
⇒ 1 (12)

as c → ∞.
Donsker’s theorem implies that
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√
c

r(c)

(
X̄
tc/r(c)� − z

) ⇒ σ
B(t)

t

as c → ∞ in D(0,∞), where B(·) is standard Brownian motion; see [2]. A standard
random time change argument (see, for example, Sect. 14 of [2]) then proves that

√
c

r(c)

(
X̄ N (c) − z

) ⇒ σ B(1)

as c → ∞ proving our theorem.
It remains only to prove (9). For γ > −1, write

∫ wcn

0
P(τ1 > y)dy =

∫ wcn

wcε
n

P(τ1 > y)dy +
∫ wcε

n

0
P(τ1 > y)dy

for 1 > ε > 0. On [wcε
n,wcn], log log y/ log logwcn → 1 uniformly in y, so

∫ wcn

wcε
n

P(τ1 > y)dy ∼ a(log log cn)
δ

∫ wcn

wcε
n

(log y)γ

y
dy ∼ a(log log cn)

δ (log cn)γ+1

γ + 1
(13)

as n → ∞. On the other hand,

∫ wcε
n

x0∨1
P(τ1 > y)dy ≤ a(log logwcε

n)

∫ wcε
n

x0∨1
(log y)γ

y
dy

= a(log logwcε
n)

(ε log cn + logw)γ+1

γ + 1
. (14)

Since the right-hand side of (14) can be made arbitrarily small relative to the right-
hand side of (13), by choosing ε small enough, we obtain (9) for γ > −1.

As for the cases where γ = −1, F̄(·) can then be exactly integrated, and the exact
integration yields the rest of (9). �

We turn next to the casewhereα ∈ (0, 1). To simplify our discussion, we assume here
that the algorithm has been designed so that L(x) ≡ a for x ≥ x0. For 0 < α < 1,
define the constant Cα as

Cα = 1 − α

Γ (2 − α) cos(πα/2)
; (15)

here Γ (·) is the gamma function.

Theorem 2 Suppose σ 2 = Var(X1) < ∞ and assume α ∈ (0, 1). Set κ =
(a/Cα)1/α . Then,

(c/κ)α/2
(
X̄ N (c) − z

) ⇒ σ B(να)

να
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as c → ∞, where να is independent of the standard Brownian motion B and has the
distribution of 1/Sα(1, 1, 0)α .

Proof We start by noting that Theorem 4.5.3 of [11] implies that

Yn(·) �
∑
n·�

i=1 τi

cn
⇒ Yα(·)

as n → ∞ in D[0,∞), where Yα = (Yα(t) : t ≥ 0) is a Lévy process with Yα(1)
D=

Sα(1, 1, 0) and
D= means “equality in distribution.” The constants cn are given by

cn = (a/Cα)1/αn1/α = κn1/α.

Let

Zn(·) =
∑
n·�

i=1 Xi − ze(n·)√
n

,

where e(t) = t . We will now prove that Zn is asymptotically independent of Yn as
n → ∞. To establish the independence, we will “Poissonify.” Specifically, let R =
(R(t) : t ≥ 0) be a unit rate Poisson processwith associated event times (Tn : n ≥ 1).
Put

Z̃n(t) = Zn(R(nt)/n), Ỹn(t) = Yn(R(nt)/n)

and set

Z̃ (1)
n (t) =

R(nt)∑

i=1

(Xi − z)I (τi ≤ an)/n
1/2,

Ỹ (1)
n (t) =

R(nt)∑

i=1

τi I (τi ≤ an)/cn,

Z̃ (2)
n (t) =

R(nt)∑

i=1

(Xi − z)I (τi > an)/n
1/2,

Ỹ (2)
n (t) =

R(nt)∑

i=1

τi I (τi > an)/cn.

Because of the Poissonification, Z̃ (1)
n is independent of Ỹ (2)

n . Note that

E

(
sup
0≤s≤t

Ỹ (1)
n (s)

)
= E

(
Ỹ (1)
n (t)

)
≤ nt E(τ1 I (τ1 ≤ an))

cn
.

If we choose an = n1/(2α)−1/2, we find that nE(τ1 I (τ1 ≤ an))/cn → 0, so that
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sup
0≤s≤t

Ỹ (1)
n (s) ⇒ 0

as n → ∞. Similarly, Kolmogorov’s inequality implies that

sup
0≤s≤t

|Z̃ (2)
n (s)| ⇒ 0

as n → ∞. Since
Z̃n = Z̃ (1)

n + Z̃ (2)
n ⇒ σ B

and
Ỹn = Ỹ (1)

n + Ỹ (2)
n ⇒ Yα

as n → ∞ in D[0,∞),
(Z̃n, Ỹn) ⇒ (σ B,Yα)

as n → ∞, where B is independent of Yα . We now recover Zn and Yn via the
representation

Zn(t) = Z̃n(T
nt�/n),

Yn(t) = Ỹn(T
nt�/n).

Since T
n·�/n ⇒ e(·) in D[0,∞), it follows that

(Zn,Yn) ⇒ (σ B,Yα) (16)

as n → ∞; see Theorem 13.2.2 of [11].
If f is a bounded continuous function on D[0,∞), (16) implies that

E
(
f (Z
(c/κ)α�)I (Y
(c/κ)α�(y) > 1)

) → E ( f (σ B)I (Yα(y) > 1)) (17)

as c → ∞, since Yα(y) is a continuous rv (so its distribution is continuous); see [3,
11]. But

{Y
(c/κ)α�(y) > 1} =
{
(c/κ)α y�∑

i=1

τi > κ(
(c/κ)α�)1/α
}

and hence (17) implies that

E

(
f (Z
(c/κ)α�)I

(
N (c)

(c/κ)α
< y

))
→ E( f (σ B))P(Yα(y) > 1) (18)

as c → ∞. Also,
Y
(c/κ)α�(y) = Y
(c/κ)α y�(1)(y1/α + o(1))
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(where o(an) is a function for which o(an)/an → 0 as n → ∞), so that

E( f (Z
(c/κ)α y�)I (Y
(c/κ)α�(y) > 1)) → E( f (σ B))P(Yα(1) > y−1/α)

= E( f (σ B))P(Sα(1, 1, 0) > y−1/α)

= E( f (σ B))P(να < y) (19)

as c → ∞. Combining (18) and (19), we have that

E

(
f (Z
(c/κ)α y�)I

(
N (c)

(c/κ)α
< y

))
→ E ( f (σ B)) P(να < y)

as c → ∞, so that (
Z
(c/κ)α�,

N (c)

(c/κ)α

)
⇒ (σ B, να)

as c → ∞, where να is independent of σ B. The continuousmapping principle, based
on a time substitution, then yields the theorem. �

We finish this section with a brief discussion of the rate of convergence of Monte
Carlo algorithms in the setting in which Var(X1) = ∞ = E(τ1), when both X1 and
τ1 lie in the domain of attraction of a stable law. Of course, we need E(|X1|) < ∞
in order that z = E(X1) be well-defined, so we are considering here a stable index
ρ for X1 lying in the interval (1, 2). To simplify our exposition, we postulate that X1

is in the normal domain of attraction of Sρ(1, β, 0), so that

P(|X1| > x) ∼ bx−ρ (20)

as x → ∞, where b > 0.

Let Yρ = (Yρ(t) : t ≥ 0) be the Lévy process in which Yρ(1)
D= Sρ(1, β, 0).

Theorem 3 Suppose that X1 lies in the domain of attraction of Sρ(1, β, 0) and
satisfies (20).

(a) If τ1 satisfies the hypotheses of Theorem 1, then

(
c

r(c)

)1−1/ρ (
X̄ N (c) − z

) ⇒ d Yρ(1)

as n → ∞, where d = (b/Cρ)
1/ρ .

(b) If τ1 satisfies the hypotheses of Theorem 2 (so that α ∈ (0, 1)), then

( c

κ

)α(1−1/ρ) (
X̄ N (c) − z

) ⇒ d Yρ(να)

να

as c → ∞, where Yρ is independent of να .
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Proof We note that under our hypotheses,

(
c

r(c)

)1−1/ρ (
X̄
 c

r(c) ·� − z
)

⇒ d Yα(·)
e(·)

in D[0,∞). We now utilize (12) and the stochastic continuity of Yρ to apply the
continuous mapping principle, thereby obtaining (a).

For part (b), we argue as in Theorem 2 that

(

n1−1/ρ (
X̄
n·� − z

)
,

∑
n·�
i=1 τi

n1/α

)

⇒
(
d Yρ(·)
e(·) , κYα(·)

)

as n → ∞, where Yρ and Yα are independent and Yα is as in Theorem 2. It follows
that (

(c/κ)α(1−1/ρ)
(
X̄
(c/κ)α ·� − z

)
,

N (c)

(c/κ)α

)
⇒

(
d Yρ(·)
e(·) , να

)

as c → ∞, where να is independent of Yρ . We finish the proof with a continuous
mapping argument based on use of the obvious composition mapping. �

We remark that this theorem is more challenging to apply in the Monte Carlo setting,
than are Theorems 1 and 2, because it requires verifying that X1 is in the domain of
attraction of a stable law.

3 Applications to Debiased MLMC

Suppose that z = E(W ), whereW can not be simulated in finite time, but an approx-
imating sequence (Wn : n ≥ 1) is available, in which the Wn’s can be simulated in
finite time. In particular, suppose that Wn converges to W in L2, so that

‖Wn − W‖2 → 0

as n → ∞, where ‖U‖2 = √
E(U 2) for a generic rv U .

SetW0 = 0 andputΔi = Wi − Wi−1 for i ≥ 1. Then, under appropriate regularity
conditions (see below),

X =
M∑

i=1

Δi

P(M ≥ i)
(21)

is an unbiased estimator for z, when M is generated independently of the Δi ’s.
Specifically, Theorem 1 of [10] shows that if
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∞∑

n=1

‖Wn−1 − W‖22
P(M ≥ n)

< ∞,

then X is unbiased, and

E(X2) =
∞∑

n=1

‖Wn−1 − W‖22 − ‖Wn − W‖22
P(M ≥ n)

.

An important application of such “debiasedMLMC” estimator is numerical com-
putation for stochastic differential equations (SDE’s). In that context, the simplest
and most natural approximation to W is to use the sequence {Wn : n ≥ 1} obtained
by Euler discretization of the SDE. Specifically, we letWn be the Euler discretization
to W associated with a time step of order 2−n , and couple the Wn’s via the use of a
common driving Brownian motion across all the approximations in n. If we do this,
it is known in significant generality that for problems involving Lipschitz functions
of the final value, ‖Wn − W‖22 = O(2−n) as n → ∞; see [8].

Hence, a sufficient condition on the distribution of M ensuring that Var(X) < ∞
is to choose M so that ∞∑

n=1

2−n

P(M ≥ n)
< ∞. (22)

However, we also need to consider the computer time τ for generating X . If we
take the (reasonable) view that generating a discretization with time step 2−n takes
computational effort 2n , then τ = 2M . So,

P(τ > x) = P(M > 
log2 x�).

Suppose we now choose M so that P(M > n) = 2−αn for n ≥ n0, with α ∈ (0, 1);
this choice of α guarantees that Var(X) < ∞. Hence, P(τ > x) = 2−
log2 x�α for x
sufficiently large. However, τ does not have a regular varying tail, so the theory of
Sect. 2 does not directly apply. But we can always choose to randomly delay the
completion time of X . Specifically suppose that we start by generating τ so that

P(τ > x) = x−α (23)

for x ≥ 1. With τ in hand, we set M = 
log2 τ�. Note that P(M > i) = P(τ ≥ 2i )
so P(M ≥ i) = P(τ ≥ 2i−1) = 2(1−i)α for i ≥ 1.We now delay the completion of X
from time 2M = 2
log2 τ� to time τ . With this convention in place, our theory applies
and Theorem 2 establishes that

(c/κ)α/2
(
X̄ N (c) − z

) ⇒ σ B(να)

να
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as c → ∞, where κ = C−1/α
α . Hence, the rate of convergence of X̄ N (c) to z is of order

c−α/2 with this choice of randomization for M .
The above CLT-type theorem also allows us to construct confidence intervals

for z in this setting in which E(τ ) = ∞. In particular, if we select ã such that
P (−ã ≤ B(να)/να ≤ ã) = 0.9 (say), then the interval

[
X̄ N (c) − ãσ̂ (c)

(κ

c

)α/2
, X̄ N (c) + ãσ̂ (c)

(κ

c

)α/2
]

(24)

is an asymptotic 90% confidence interval for z, where σ̂ (c) is the sample standard
deviation estimator given by

σ̂ (c) =
√√√√ 1

N (c) − 1

N (c)∑

i=1

(
Xi − X̄ N (c)

)2
. (25)

Other choices for the randomization distribution are also possible. In the case α,
suppose that we generate τ so that

P(τ > x) = x−1(log x)γ (log log x)δ

for x sufficiently large. Again, we let M = 
log2 τ� and again note that P(M > i) =
P(τ ≥ 2i−1) for i ≥ 1. In order that Var(X) < ∞, we choose either γ > 1 or γ = 1
with δ > 1. Applying Theorem 1, we find that

√
c

r(c)

(
X̄ N (c) − z

) ⇒ σ N (0, 1) (26)

as c → ∞, where r(c) = (1 + γ )−1(log c)1+γ (log log c)δ . The best convergence rate
is attained when γ = 1 with δ > 1 but close to 1. In this case, the exact convergence
rate is of order c−1/2(log c)(log log c)δ/2, and the computational budget required to
obtain an accuracy ε is of order ε−2(log(1/ε))2(log log(1/ε))δ with δ > 1. This
complexity estimate for debiased MLMC is slightly better than that provided by
Proposition 4 of [10], in which the estimate takes the form ε−2(log(1/ε))q with
q > 2.

As for the case where τ is chosen so that (23) holds, confidence intervals for z
can again be generated. The CLT (26) implies that if ã is chosen so that P(−ã ≤
N (0, 1) ≤ ã) = 0.9, then

[

X̄ N (c) − ãσ̂ (c)

√
r(c)

c
, X̄ N (c) + ãσ̂ (c)

√
r(c)

c

]

is an asymptotic 90% confidence interval for z, as c → ∞.
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If one prefers an analysis in which no delay in generating X is introduced, one can
observe that τ/2 ≤ 2M ≤ τ when M = 
log2 τ�. If N∼ (c) = max{n ≥ 0 : ∑n

i=1 τi ≤
c} andwemodel the time required to generate Xi as 2Mi , then N∼ (c) ≤ N (c) ≤ N∼ (2c)

for c ≥ 0. Furthermore, when α = 1 so that Theorem 1 applies, then

√
c

r(c)
|X̄ N (c) − z| ≤

√
c

r(c)
|X̄ N∼ (c) − z|

N∼ (2c)

N∼ (c)
+

√
c

r(c)

| ∑N (c)
k=N∼ (c)(Xi − z)|

N (c)
.

(27)
Now, Theorem 1 applies to (c/r(c))1/2|X̄ N∼ (c) − z| and so is stochastically bounded

(i.e. tight) in c. In addition, the proof of Theorem 1 shows that both N∼ (c)r(c)/c and

N∼ (2c)r(c)/c are tight, so that the first term on the right-hand side of (27) is stochas-

tically bounded. Furthermore, Kolmogorov’s maximal inequality and Var(X) < ∞
imply that

√
r(c)

c
|

N (c)∑

k=N∼ (c)

(Xi − z)| ≤
√
r(c)

c
max

N∼ (c)≤k≤N∼ (2c)
|

k∑

i=N∼ (c)

(Xi − z)|

is stochastically bounded, so that the tightness of N (c)r(c)/c yields the stochastic
boundedness of the left-hand side of (27).

This proves that X̄ N (c) (with no delay introduced) does indeed converge to z at
a rate that is at most (r(c)/c)1/2 as c → ∞. Note, however, that we can not get an
asymptotic confidence interval for z directly from this bounding argument.

4 A Numerical Example

In this section, we implement a debiased MLMC estimator with finite variance and
infinite expected computer time and use our theory to construct asymptotically valid
confidence intervals. We consider an option pricing problem in the SDE context,
where the underlying diffusion process obeys the SDE

dX (t) = r X (t)dt + σ X (t)dB(t),

in which the parameters are the interest rate r = 0.05, volatity σ = 0.2 and initial
asset price X (0) = 100. We focus on pricing a European call option with payoff
max(X (t) − K , 0) atmaturity t = 1 at three different strike prices K = 90, 100, 110.
We implement the debiased MLMC estimator described in Sect. 3 Eq. (21), in which
the approximating sequence (Wn : n ≥ 1) is obtained by Euler discretization with
step size 2−nt and the integer-valued randomization M is chosen as P(M > n) =
2−2αn for n ≥ 1with α = 1/2.We delay the completion time such that it has a regular
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Table 1 Computational result for a debiased MLMC estimator with E(τ ) = ∞ and Var(X) < ∞
Strike
price

True
value

Computation
budget

Debiased MLMC estimator

C.I. Coverage (%)

K = 90 16.70 20,000 16.75 ± 4.46 89.0 ± 1.62

80,000 16.73 ± 3.21 89.4 ± 1.60

3,20,000 16.71 ± 2.29 90.1 ± 1.55

K = 100 10.45 20,000 10.41 ± 3.72 88.9 ± 1.63

80,000 10.43 ± 2.70 88.8 ± 1.67

3,20,000 10.43 ± 1.83 89.3 ± 1.60

K = 110 6.04 20,000 6.01 ± 2.95 87.9 ± 1.69

80,000 6.09 ± 2.13 88.9 ± 1.63

3,20,000 6.05 ± 1.52 91.2 ± 1.47

varying tail P(τ > x) = x−α . Our theory applies and Theorem 2 shows that

(c/κ)1/4
(
X̄ N (c) − z

) ⇒ σ B(να)

να

as c → ∞, where κ = C−1/α
α and Cα is defined in Eq. (15). This result establishes

an exact convergence rate of order c−1/4 for the estimator and allows us to construct
confidence intervals following the procedure in Sect. 3; see Eqs. (24) and (25). For
each strike price, we implement the algorithmwith computational budget c = 10000,
20000, 80000 and 320000. Finally, in each experiment, we construct an approximate
90% confidence interval for the mean, based on the limit distribution above, and then
run 1000 independent replications of each experiment.

In Table1, we report the computational results. The columns labeled C.I. report
the average midpoint of the 1000 intervals, together with the average confidence
interval half-width, again averaged over the 1000 replications. The columns labeled
Coverage report 90% confidence intervals (based on the normal approximation) for
the percentage of the 1000 replications in which the confidence interval contains the
true option price. As shown in the table, the confidence intervals are asymptotically
valid. We further note that this debiased MLMC estimator (with parameter α = 1/2)
demonstrates a convergence rate of order c−1/4, as the length of the confidence
interval roughly halves when the sample size is multiplied by a factor of sixteen.
This result agrees with the exact convergence rate established by our CLT.
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