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Abstract

This paper studies the departure process from a single-server queue in heavy-traffic over time
cales that are of diffusion time scale, and over time scales that are both shorter and longer than
iffusion time scale. In addition, the paper shows how one can compute the variance of such Brownian
eparture processes using stochastic calculus methods. Furthermore, the paper studies the implications
f these results for downstream queues that are fed by such departure processes, and shows that
ownstream equilibrium congestion depends on upstream departure variability over the downstream
ueue’s characteristic heavy traffic time scale. These results also shed further light on the discontinuity
n departure process asymptotic variability that is known as the BRAVO effect.

2023 Elsevier B.V. All rights reserved.
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1. Introduction

When considering the behavior of a network of queues, the departure process from a station
s an object of central interest, since such processes generate the endogenous input traffic to
ther stations in the network. For example, the Queueing Network Analyzer proposed by Whitt
26] uses two-moment approximations to describe the departure processes from stations in a
etwork to develop numerical approximations to congestion measures within the network. The
tudy of departure processes has a long history, with early contributions by Burke [2], Finch
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[9], Chang [3], Reich [22], Daley [6], Daley [7], and Vlach and Disney [25]. In this paper, we
will focus on two-moment approximations to the departure process from a single-server station,
framed within the context of heavy-traffic limit theory. We will study this departure process
both for a single-station network and for a two-station tandem network. The latter network is
of particular interest, since it is the simplest network in which one can explore the impact of
the first station’s departure variability on downstream stations.

Our contribution centers on the behavior in heavy traffic, because such heavy-traffic limit
heory arises naturally in the setting of heavily congested networks, and because its associated

athematical theory allows us to develop Brownian approximations for the departure process
n which the dependence on the mean and variability coefficients is especially visible. In
articular, depending on the time scale at which one is studying the departures, one may see
eparture limit distributions that depend on the station’s arrival and service time distributions
nly through those of the arrival process (over long time scales), on all the first and second
oment parameters of both distributions (over moderate time scales), or only on variability

haracteristics of the arrival and service time distributions (over short time scales). Our theory
s intended to expose the degree to which the choice of time scale affects the way a queue’s
rrival and service time distribution parameters feed into departure time behavior. In particular,
hile the departure process of a single station queue in heavy traffic has been studied in

diffusion time scale” by earlier authors (see, for example, Hanbali et al. [12]), our discussion
n Sections 3 through 5 also encompasses shorter and longer time scales than those studied
reviously in the heavy traffic literature.

Another main motivation in this paper is to offer insight into an intriguing phenomenon
dentified by Nazarathy and Weiss [18] in their study of the variability of the M/M/1 queue’s
eparture process. They showed that when the queue is started empty, the cumulative number
f departures ND(t) over [0, t] satisfies

lim
t→∞

Var ND(t)
E ND(t)

=

{
1, λ ̸= µ

2
(
1 −

2
π

)
, λ = µ,

here λ and µ are the arrival and service rates to the queue, respectively. In view of the
act that the value at the discontinuity is less than 1, this reduction in variability is called the
RAVO effect, for “balancing reduces average variability of outputs”. For the general single-

erver G/G/1 queue with independent streams of independent and identically distributed (iid)
nter-arrival and service times, Hanbali et al. [12] show that

lim
t→∞

Var ND(t)
E ND(t)

=

⎧⎪⎨⎪⎩
c2
χ , λ < µ(
1 −

2
π

)
(c2

χ + c2
V ), λ = µ

c2
V , λ > µ,

(1.1)

here c2
χ and c2

V are the squared coefficients of variation of the inter-arrival and service time
istributions, respectively. The second limit relation (1.1) makes clear that balancing need not
ecessarily reduce long-run variability.

Nevertheless, it does point to a discontinuity that is worth understanding better. Of course,
he discontinuity appears because of a limit interchange issue, having to do with interchanging
he limit in time tending to infinity with the limit in λ tending to µ. This regime is exactly the
eavy traffic setting that is studied in this paper. In particular, the various departure process
ime scales studied in Sections 3 through 5 clarify the settings in which one can expect to see

he BRAVO phenomenon. These limit theorems show that BRAVO manifests itself for stable

2
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G/G/1 queues only at short time scales and, even then, only if the system is initialized with
elatively little work. Furthermore it should be noted that even for G/G/1 systems that are in

precise balance, the BRAVO variability behavior is seen only when the system is initialized
with a small amount of work.

As noted above, Sections 3 through 5 clarify the differing behaviors of the departure
process over different time scales, and make clear which system parameters primarily affect
the departure behavior over each time scale. However, our paper makes two additional
contributions:

1. We show how to use stochastic calculus methods to compute the asymptotic variance
parameter for the Brownian limit of the departure process for the perfectly balanced
G/G/1 queue. This was previously derived by Hanbali et al. [12] via an argument based
on using the form of the limit distribution to reduce the calculation to one involving the
known distribution of the maximum of a Brownian bridge. Our approach, discussed
in Section 6, can be extended to more general Brownian departure process settings. In
particular, Theorem 8 provides a new formula for the departure variance parameter when
the arrival and service streams are correlated.

2. We show in Section 7 how the theory of Sections 3 through 5 applies to the downstream
queue in a two station tandem queueing network. We note that such tandem networks
have previously been studied via diffusion limits. In particular, both Harrison [13],
Harrison and Shepp [15] take this perspective. A distinguishing feature of this paper is
that we adopt a multiscale perspective in which we put both stations into heavy traffic,
but allow either the first or second station to be much more congested than the other. To
our understanding, this is the first such multiscale analysis for queueing networks. The
analysis shows that the downstream queue is affected by departure process variability
from the first station that is aligned with the heavy traffic time scale that goes with the
second station. This implies, for example, that when the second station is less heavily
loaded, its equilibrium depends on the first station’s departure process over a time scale
that is short as compared to the first station’s heavy traffic time scale. This translates
into a departure process that behaves as if the server at the first queue is always busy.
So, the equilibrium then has no dependence on the parameters of the arrival process to
the first station.

We believe this multiscale perspective, illustrated in this paper in the two station tandem
network setting, can be useful in other network modeling environments as well.

2. The Brownian approximation for the departure time sequence

We have the choice of studying departures from a queue either via an approximation to the
sequence of departure times, or via an approximation to the departure counting process. We
choose to study the departure time sequence, because it can be expressed directly in terms of the
Skorohod reflection map acting upon the model primitives (i.e. the arrival and service times).
In contrast, the departure counting process involves a more complex interaction between the
Skorohod reflection map and a random time change corresponding to the cumulative “busyness”
process; see, for example, p.146 of Chen and Yao [4]. Consequently, the counting process is
more challenging to represent directly in terms of the model primitives. As we shall see, we

can recover departure counting process approximations from the departure time sequence.

3
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We now describe the departure time sequence (D(n) : n ≥ 0), where D(n) is the departure
ime of the nth customer to arrive to the system. Clearly,

D(n) = An + W (n) + Vn, (2.1)

here An is the arrival time of the nth customer, W (n) is its waiting time (exclusive of service),
nd Vn is its service time. We set A0 = 0 and recall that for a single-server queue with an
nfinite capacity waiting room that serves customers according to a first-in/first-out (FIFO)
ueue discipline,

W (n + 1) = [W (n) + Vn − χn+1]+

or n ≥ 0, where [x]+ = max(x, 0) and χn+1 = An+1 − An is the (n + 1)’st inter-arrival time.
t is well-known that

W (n) = S(n) + Y (n), (2.2)

here

S(n) = W (0) +

n∑
k=1

[Vk−1 − χk]

= W (0) +

n−1∑
j=0

V j − An,

nd

Y (n) = max
1≤k≤n

[−S(k)]+;

ee p.96 of Asmussen [1]. We note that the mapping sending (S(n) : n ≥ 0) into
(W (n), Y (n)) : n ≥ 0) is precisely the (discrete time) Skorohod reflection map.

We now wish to study the departure sequence in the “heavy traffic” regime. We start by
ntroducing the parameter ρ ∈ R+, the so-called traffic intensity of the queue, and scale the
ervice times in the ρth system by ρ. We will also later want to study the joint dependence
f the departure times as a function of ρ, n, and the initial condition W (0) = x . In view of
hese considerations, let Dρ(n, x), Wρ(n, x), Sρ(n, x), and Yρ(n, x) denote the corresponding
alues of D(n), W (n), S(n), and Y (n) in the ρth system when it is initialized with W (0) = x .
n particular,

Dρ(n, x) = An + Wρ(n, x) + ρVn,

Wρ(n, x) = Sρ(n, x) + Yρ(n, x),
Sρ(n, x) = x + ρ

∑n−1
j=0 V j − An,

nd

Yρ(n, x) = max
1≤k≤n

[−Sρ(k, x)]+.

e note that Dρ(n, x) can be re-expressed as

Dρ(n, x) = x + ρ

n∑
j=0

V j + Yρ(n, x).

To obtain our Brownian approximation for the departure time sequence, we shall impose a
trong approximation assumption on the An’s and Vn’s. In particular, we make the following
ssumption:
4
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(A1) There exist r ∈ (0, 1/2), α > 0, and a probability space supporting a two-dimensional
mean zero Brownian motion process (Z1, Z2) = ((Z1(t), Z2(t)) : t ≥ 0) and a sequence
((V ′

k−1, A′

k) : k ≥ 1) such that:

(i) ((Vk−1, Ak) : k ≥ 1) D
= ((V ′

k−1, A′

k) : k ≥ 1), where D
= denotes equality in

distribution;
(ii)

∑n−1
k=0 V ′

k = αn + Z1(n)+o(nr ) a.s. as n → ∞, where o(nr ) denotes a sequence
of random variables (En : n ≥ 0) for which En/nr

→ 0 a.s. as n → ∞;
(iii) A′

n = αn + Z2(n) + o(nr ) a.s. as n → ∞.

n view of the fact that the same “centering constant” αn appears on the right-hand side of
oth (ii) and (iii) above, it follows that when ρ = 1, the arrival rate to the queue is perfectly
alanced with its service rate. We therefore refer to ρ = 1 as the balanced case. Thus, when
< 1, this should correspond to a stable queue, whereas when ρ > 1, this corresponds to an

nstable queue.
Loosely speaking, the strong approximation assumption A1 holds in great generality when

he (V j−1, χ j )’s evolve in a stationary environment. For example, when (V j : j ≥ 0) is an iid
equence independent of the iid sequence (χ j : j ≥ 1), A1 holds whenever EV 1/r

0 + Eχ
1/r
1 <

; see [16]. In this context, α = EV0 = Eχ1, Var Z1(1) = Var V0, Var Z2(1) = Var χ1,
nd Cov(Z1(1), Z2(1)) = 0. We shall henceforth refer to this setting as the fully independent
ssumption on the model primitives. We can also allow the (V j−1, χ j )’s to be iid, but permit
ependence between V j−1 and χ j , provided r < 1/3 and EV 1/r

0 + Eχ
1/r
1 < ∞; see [8].

ere, α = EV0 = Eχ1, Var Z1(1) = Var V0, Var Z2(1) = Var χ1, and Cov(Z1(1), Z2(1)) =

ov(V0, χ1). assumption A1 also often holds when the χ j ’s and V j ’s are dependent in j . For
xample, if (V j : j ≥ 0) and (χ j : j ≥ 1) are independent sequences that can each be
escribed as bounded functionals of geometrically ergodic Markov chains, one can apply the
esults of Csáki and Csörgő [5] or Merlevède and Rio [17].

We henceforth take the view that our original probability space supporting the An’s and
Vn’s also supports Z1 and Z2 satisfying A1 (ii) and (iii), so we need not differentiate between
(V ′

k−1, A′

k) : k ≥ 1) and ((Vk−1, Ak) : k ≥ 1) in the sequel. Let

Xρ(t, x) = x − α(1 − ρ)t + ρZ1(t) − Z2(t) + Lρ(t, x),

here

Lρ(t, x) = max
0≤s≤t

[−x + α(1 − ρ)s − ρZ1(s) + Z2(s)]+.

e note that (Xρ(t, x) : t ≥ 0) is a one-dimensional reflected Brownian motion (RBM)
atisfying the stochastic differential equation (SDE)

d X (t) = −α(1 − ρ)dt + ρd Z1(t) − d Z2(t) + d L(t),

here (L(t) : t ≥ 0) is the local time (at the origin) that is non-decreasing and satisfies

I(X (t) > 0)d L(t) = 0.

ote that (Xρ(t, x) : t ≥ 0) is the Brownian analog to (Wρ(⌊t⌋, x) : t ≥ 0). This suggests that

D̃ρ(t, x) = x + ραt + ρZ1(t) + Lρ(t, x)

s the natural Brownian approximation to Dρ(⌊t⌋, x). The result below makes precise the sense
n which (D̃ (t, x) : t ≥ 0) approximates (D (⌊t⌋, x) : t ≥ 0).
ρ ρ

5
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Theorem 1. Fix ρ0 ∈ (0, ∞). Under A1, Dρ(n, x) = D̃ρ(n, x)+o(nr ) a.s. as n → ∞, where
he term o(nr ) is uniform in x ∈ R+ and ρ ∈ [0, ρ0].

roof. In view of A1, it is easy to see that

Dρ(n, x) = x+ραn+ρZ1(n)+ max
1≤k≤n

[−x+αk(1−ρ)−ρZ1(k)+Z2(k)]++o(nr ) a.s. (2.3)

s n → ∞. Note that⏐⏐⏐⏐ max
0≤s≤n

[−x + αs(1 − ρ) − ρZ1(s) + Z2(s)]+ − max
0≤k≤n

[−x + αk(1 − ρ) − ρZ1(k) + Z2(k)]+
⏐⏐⏐⏐

≤ α|ρ − 1| + max
0≤k≤n

(
ρ max

0≤s≤1
|Z1(k + s) − Z1(k)|, max

0≤s≤1
|Z2(k + s) − Z2(s)|

)
.

Since E exp
(
θ max0≤s≤1 |Z1(s)|

)
< ∞ for some θ > 0 (which follows easily from the

xplicit distributions that are known for

max
0≤s≤1

Z1(s) and max
0≤s≤1

−Z1(s);

ee, for example, [14] p. 13–14), it follows from Markov’s inequality and the Borel–Cantelli
emma that

max
0≤k≤n

max
0≤s≤1

|Z1(k + s) − Z1(k)| = O(log n) a.s.

s n → ∞. We similarly conclude that

max
0≤k≤n

max
0≤s≤1

|Z2(k + s) − Z2(k)| = O(log n) a.s.

s n → ∞, from which Theorem 1 follows from (2.3). □

The RBM-quantity D̃ρ(n, x) has a magnitude of order n, with stochastic fluctuations of
rder n1/2, each of which is of larger order than o(nr ). As a consequence, Theorem 1 ensures
hat the Brownian approximation to Dρ(n, x) is suitable for n large, uniformly in x and
∈ [0, ρ0].

. Setting 1: Diffusion time scale

We now develop some consequences of Theorem 1, in the setting that the time scale n
orresponds to what is conventionally called the diffusion time scale. Suppose ρ ̸= 1, so that
he RBM Xρ(·, x) has non-zero drift. In the diffusion time scale, the effect of the stochastic
olatility in ρZ1 − Z2 is roughly of the same order of the magnitude as that induced by the
on-zero drift. In particular, we are considering a time scale n in which the volatility, which
s of order n1/2, is of the same order as the cumulative drift contribution αn(1 − ρ), so that

is of the order of 1/(1 − ρ)2. In this temporal scale, both the stochastic variability and the
umulative effect of the drift are of the order 1/|1 − ρ|.

In addition, the initial condition x plays a significant role. If x ≫ 1/|1 − ρ|, it is unlikely
hat the RBM Xρ(·, x) will hit the origin over [0, n] (when n is of the order of 1/(1−ρ)2), so
he increasing process Lρ(·, x) will then be identically zero over [0, n]. As a consequence, we
xpect Dρ(n, x) to then approximately equal x +ραn +ρZ1(n) in this setting. In other words,
he departure process from the queue behaves as if there is an infinite supply of customers
resent in the queue, so that the Brownian approximation Z2 to the arrival process is irrelevant
n this context. On the other hand, if x ≪ 1/|1 − ρ|, it is likely that the stochastic fluctuations
6
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in ρZ1 − Z2 will cause the RBM Xρ(·, x) to hit the origin early in [0, n], so that Dρ(n, x)
ill then effectively behave in the same way as Dρ(n, 0). For x of the order of 1/|1 − ρ|, the
eparture quantity Dρ(n, x) will be significantly influenced by the initial condition x .

The following result summarizes this behavior.

heorem 2. Assume A1. If x |1 − ρ| → y ∈ R+ as ρ → 1, then

|1 − ρ|

(
Dρ

(⌊
t

(1 − ρ)2

⌋
, x
)

− x −
αt

(1 − ρ)2

)
⇒ −αt + Z1(t) + max

0≤s≤t
[−y + αs − Z1(s) + Z2(s)]+ (3.1)

s ρ ↗ 1 (where ⇒ denotes weak convergence) and

|1 − ρ|

(
Dρ

(⌊
t

(1 − ρ)2

⌋
, x
)

− x −
αt

(1 − ρ)2

)
⇒ αt + Z1(t) + max

0≤s≤t
[−y − αs − Z1(s) + Z2(s)]+ (3.2)

s ρ ↘ 1. If x |1 − ρ| → ∞ as ρ → 1, then

|1 − ρ|

(
Dρ

(⌊
t

(1 − ρ)2

⌋
, x
)

− x −
αt

(1 − ρ)2

)
⇒ −αt + Z1(t) (3.3)

as ρ ↗ 1 and

|1 − ρ|

(
Dρ

(⌊
t

(1 − ρ)2

⌋
, x
)

− x −
αt

(1 − ρ)2

)
⇒ αt + Z1(t) (3.4)

s ρ ↘ 1.

Remark 1. We note that if Wρ(0, x) = x , then the departure time for the customer arriving
t A0 = 0 is x + V0, so all the subsequent departure times are offset by the same x . As a
onsequence, our limit theorems “center” the departure times by x .

emark 2. The departure time limit in (3.3) is smaller than that in (3.4), because our limit
egime is obtained by scaling the service times by the factor ρ. Consequently, the service times

when ρ ↗ 1 are slightly smaller than those arriving when ρ ↘ 1.

Proof. We note that for n = ⌊t/(1 − ρ)2
⌋, the term o(nr ) in Theorem 1 satisfies

|1 − ρ|o(nr ) = |1 − ρ|o((1 − ρ)−2r ) → 0 a.s.

s ρ → 1, so that

|1 − ρ||Dρ(⌊t/(1 − ρ)2
⌋, x) − D̃ρ(⌊t/(1 − ρ)2

⌋, x)| → 0 a.s. (3.5)

niformly in x ∈ R+ and ρ ∈ [0, ρ0]. The scaling properties of Brownian motion guarantee
hat

|1 − ρ|

(
D̃ρ

(
t

(1 − ρ)2 , x
)

− x −
αt

(1 − ρ)2

)

D
=

{
−αt + ρZ1(t) + max0≤s≤t [−x |1 − ρ| + αs − ρZ1(s) + Z2(s)]+, ρ < 1

+
(3.6)
αt + ρZ1(t) + max0≤s≤t [−x |1 − ρ| − αs − ρZ1(s) + Z2(s)] , ρ > 1.

7
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Sending ρ to 1 and applying (3.5) then yields (3.1) and (3.2). On the other hand, if x |1 − ρ| →

,

max
0≤s≤t

[−x |1 − ρ| − αs − ρZ1(s) + Z2(s)]+ → 0

as ρ → 1, so that (3.5) and (3.6) together imply (3.3) and (3.4). □

When ρ is exactly 1 (so that the queue is precisely balanced), the drift in ρZ1−Z2 is exactly
zero. In this case, the analog to Theorem 2 is our next result.

Theorem 3. Assume A1. If xn−1/2
→ y ∈ R+ as n → ∞, then

n−
1
2 (D1(n, x) − x − αn) ⇒ Z1(1) + L1(1, y)

s n → ∞, while if xn−1/2
→ ∞ as n → ∞, then

n−
1
2 (D1(n, x) − x − αn) ⇒ Z1(1)

s n → ∞.

We note that in the balanced case,

n−1/2(D1(n, x) − D̃1(n, x)) = n−1/2o(nr ) → 0 a.s.

niformly in x ∈ R+. The proof of Theorem 3 then follows immediately from the scaling
roperties of Brownian motion.

When ρ = 1 and the queue is started empty (so y = 0), the Brownian approximation to
Dρ(n, 0) has the scaling property

Z1(t) + L1(t, 0) = max
0≤s≤t

(Z2(s) + Z1(t) − Z1(s))

D
=

√
t max

0≤s≤1
(Z2(s) + Z1(1) − Z1(s)). (3.7)

his is precisely the rv that arises in the perfectly balanced setting analyzed by Hanbali et al.
12], and within the BRAVO literature.

We conclude this section with a brief discussion of how to recover a Brownian departure
ounting process approximation from a departure time approximation, as promised in Section 2.
e start by noting that the cumulative number of departures of customers indexed by n ≥ 0

p to time Wρ(0, x) is zero. So, the departure counting process is interesting only for times
≥ Wρ(0, x) = x . So, for s ≥ x , consider

∆ρ(s, x) = max{n ≥ 0 : Dρ(n, x) ≤ s}.

n what follows, we will consider ∆ρ(x + t/(1 −ρ)2, x), so that time is again measured in the
iffusion time scale.

heorem 4. Assume A1. If x |1 − ρ| → y ∈ R+ as ρ → 1, then

|1 − ρ|

(
∆ρ

(
x +

t
(1 − ρ)2 , x

)
−

t
α(1 − ρ)2

)
⇒

t
α

− α−
3
2 Z1(t) − max

0≤s≤t

[
−

y
α

+
s
α

− α−
3
2 Z1(s) + α−

3
2 Z2(s)

]+

(3.8)
8
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|1 − ρ|

(
∆ρ

(
x +

t
(1 − ρ)2 , x

)
−

t
α(1 − ρ)2

)
⇒ −

t
α

− α−
3
2 Z1(t) − max

0≤s≤t

[
−

y
α

−
s
α

− α−
3
2 Z1(s) + α−

3
2 Z2(s)

]+

(3.9)

as ρ ↘ 1. If x |1 − ρ| → ∞ as ρ → 1, then

|1 − ρ|

(
∆ρ

(
x +

t
(1 − ρ)2 , x

)
−

t
α(1 − ρ)2

)
⇒

t
α

− α−
3
2 Z1(t) (3.10)

s ρ ↗ 1 and

|1 − ρ|

(
∆ρ

(
x +

t
(1 − ρ)2 , x

)
−

t
α(1 − ρ)2

)
⇒ −

t
α

− α−
3
2 Z1(t) (3.11)

s ρ ↘ 1.

roof. For the purposes of this argument, we abbreviate ∆ρ(x + t/(1 − ρ)2, x) as ∆ρ . Then,

Dρ(∆ρ, x) ≤ x +
t

(1 − ρ)2 ≤ Dρ(∆ρ + 1, x)

or t ≥ 0. It follows from A1 that

Dρ(∆ρ, x) = x +
t

(1 − ρ)2 + o(∆r
ρ) a.s. (3.12)

s ρ → 1. As a consequence of Theorem 1 and the fact that |Z i (t)| = O(t2/3) a.s. as t → ∞,
e find that

x +
t

(1 − ρ)2 = x + ρα∆ρ + O(∆
2
3
ρ ) a.s.

as ρ → 1, so that

(1 − ρ)2∆ρ →
t
α

a.s.

as ρ → 1.
Theorem 1 and (3.12) then imply that if ρ ↗ 1,

x +
t

(1 − ρ)2 = x + ρα∆ρ + ρZ1

(
t

α(1 − ρ)2

)
+ max

0≤s≤t

[
−x +

s
1 − ρ

− ρZ1

(
s

α(1 − ρ)2

)
+ Z2

(
s

α(1 − ρ)2

)]+

+ o((1 − ρ)−2r ) a.s.

nd hence

(1 − ρ)
(
∆ρ −

t
αρ(1 − ρ)2

)
= −

ρ(1 − ρ)
α

Z1

(
t

α(1 − ρ)2

)
−

1
α

· max
0≤s≤t

[
−x(1 − ρ) + s − ρ(1 − ρ)Z1

(
s

α(1 − ρ)2

)
+ (1 − ρ)Z2

(
s

2

)]+

+ o((1 − ρ)−2r ).

α(1 − ρ)

9
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The scaling properties of Z1(·) and Z2(·) then immediately yield (3.8), upon recognizing that
t

ρ(1 − ρ)
=

t
1 − ρ

+ t + o(1)

s ρ ↗ 1. The proofs of (3.9) through (3.11) follow a similar argument. □

. Setting 2: Short time scales

In this section, we study the departure time sequence in time scales shorter than diffusion
ime scale. In particular, when ρ ̸= 1, we consider time scales n in which n is large, ρ is close
o 1, but n ≪ (1−ρ)−2. In this setting, the magnitude of the cumulative drift αn(1−ρ) is then
mall relative to the stochastic variability n1/2 that is present in the pre-limit and Brownian
pproximation. As a consequence, the limit processes that arise in this setting all essentially
nvolve RBM with zero drift, and the result closely resembles Theorem 3.

heorem 5. Assume A1 and suppose that n → ∞ with n(1 − ρ)2
→ 0. If xn−1/2

→ y ∈ R+

s n → ∞, then

n−
1
2 (Dρ(n, x) − x − αn) ⇒ Z1(1) + L1(1, y)

s n → ∞, while if xn−1/2
→ ∞ as n → ∞, then

n−
1
2 (Dρ(n, x) − x − αn) ⇒ Z1(1)

as n → ∞.

The proof of this result closely resembles that of Section 3, so is omitted. We note that
when y = 0, this is precisely the limit rv associated with the BRAVO literature.

5. Setting 3: Long time scales

We now consider the remaining case, in which the time n is long compared to diffusion
time scale, so that n ≫ (1−ρ)−2 when ρ ̸= 1. In this setting, the magnitude of the cumulative

rift αn(1 −ρ) is large compared to the stochastic variability
√

n that is present at time n. For
a stable queue with ρ < 1 and initial work x , the drift will empty the queue at a time roughly
of order x/((1 − ρ)α). Hence, if x/((1 − ρ)α) is small enough relative to n, the system will
hen empty repeatedly prior to time n, so that the queue will effectively be in equilibrium at
ime n. In this case, we expect the departure characteristics to be those associated with the

arrival process, as is characteristic of a stable queue. On the other hand, if x/((1 − ρ)α) is
arge relative to n, then the likelihood that the queue will empty prior to n is small, so that
he departure characteristics then should be those associated with a queue that effectively starts
ith infinite work, so that the service time process dominates the departure behavior.
For an unstable queue with ρ > 1, the effect of the cumulative drift αn(ρ − 1) will be

uch larger than the stochastic variability n1/2, so that any emptying time of the system would
ave to occur early in [0, n]. As a consequence, the queue’s departure process again behaves
s if the system effectively started with infinite work, so that the service time process again
ominates the departure behavior.

Our next theorem makes rigorous this discussion.

2
heorem 6. Assume A1 with n(1 − ρ) → ∞ as n → ∞.

10
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(a) If ρ ↗ 1 as n → ∞ and limn→∞x/(n(1 − ρ)) < α, then

n−
1
2 (Dρ(n, x) − x − αn) ⇒ Z2(1) (5.1)

as n → ∞.
(b) If ρ ↗ 1 as n → ∞ and limn→∞

x/(n(1 − ρ)) > α, then

n−
1
2 (Dρ(n, x) − x − ραn) ⇒ Z1(1) (5.2)

as n → ∞.
(c) If ρ ↘ 1 as n → ∞, then

n−
1
2 (Dρ(n, x) − x − ραn) ⇒ Z1(1) (5.3)

as n → ∞.

emark 3. We observe that over long time scales, the departure time sequence inherits either
he behavior of the arrival sequence (when the system starts with a moderate amount of work)
r that of the service time sequence (when the system starts with a substantial amount of work).
n no long time scale setting does the BRAVO limit (3.7) arise.

roof. We start by noting that

Dρ(n, x) − αn = Z2(n) + X ′

ρ−1(n, x) + o(n
1
2 ) a.s. (5.4)

s n → ∞, where X ′
µ(·, z) is an RBM with initial position z that satisfies

X ′

µ(t, z) = z + µαt + Z1(t) − Z2(t) + max
0≤s≤t

[−z − µαs − Z1(s) + Z2(s)]+. (5.5)

hen, (5.1) follows if X ′

ρ−1(n, x)/
√

n ⇒ 0 as n → ∞.
Due to the scaling properties of Brownian motion, it is evident that

X ′

ρ−1(n, z) D
=

1
1 − ρ

X ′

−1(n(1 − ρ)2, z(1 − ρ)), (5.6)

where X ′

−1(·, z) has drift −α. Since X ′

−1 is a positive recurrent diffusion, there exists a
finite-valued random variable X ′

−1(∞) such that for each z ≥ 0,

X ′

−1(t, z) ⇒ X ′

−1(∞) (5.7)

as t → ∞. Hence, if x = O((1 − ρ)−1), (5.6) immediately implies that 1
√

n X ′

ρ−1(n, x) ⇒ 0
s n → ∞. On the other hand, if x(1 − ρ) → ∞ with lim x/(n(1 − ρ)) < α, we note that

X ′

−1(·, x(1 − ρ)) then hits the origin prior to time n(1 − ρ)2(1 − δ) for some δ > 0 with
robability converging to 1 as n → ∞, by virtue of the explicit distribution for the first hitting
imes of Brownian motion with drift; see, for example, [14] p.14. It follows from the strong

arkov property applied at the hitting time, and (5.7), that X ′

ρ−1(n, x)/
√

n ⇒ 0 as n → ∞.
For (5.2), we note that the emptying time of X ′

−1(·, x(1 − ρ)) will, with probability
onverging to 1, occur after n(1 − ρ)2 when

limn→∞

x
n(1 − ρ)

> α.

Hence, with probability converging to 1,

D (n, x) = αn + Z (n) + x + (ρ − 1)αn + Z (n) − Z (n) + o(n
1
2 )
ρ 2 1 2

11
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= x + ραn + Z1(n) + o(n
1
2 )

as n → ∞, yielding (5.2).
For (5.3), (5.4) remains valid, with (5.6) replaced by

X ′

ρ−1(n, z) D
=

1
ρ − 1

X ′

1(n(ρ − 1)2, z(ρ − 1)).

ince X ′

1(·, z) is now an RBM with positive drift α, it is evident that X ′

1(·, z) either never
isits the origin, or last visits at some finite time. Hence,

X1(t, z) = z + αt + Z1(t) − Z2(t) + O(1) a.s.

s t → ∞. Consequently, we find that

Dρ(n, x) = x + ραn + Z1(n) + op(n
1
2 )

as n → ∞, yielding (5.3). □

6. Computing moments for the Brownian departure process

We now show how stochastic calculus can be used to compute various moments of the
Brownian departure process. All of the limits derived in Sections 3 through 5 can be expressed
in terms of the process

D(t) = m At + Z2(t) + X (t) − X (0),

here (X (t) : t ≥ 0) is an RBM for which X (0) = x and satisfies

d X (t) = mdt + d Z (t) + d L(t),

where L satisfies I(X (t) > 0)d L(t) = 0 and (Z (t) : t ≥ 0) is a mean zero Brownian motion
that can be expressed as

Z (t) = Z1(t) − Z2(t),

with Var Z1(1) = σ 2
S , Var Z2(1) = σ 2

A, and Cov(Z1(1), Z2(1)) = τσAσS with the coefficient
f correlation τ lying in [−1, 1]. Let σ 2 ∆

= Var Z (1) = σ 2
S − 2τσSσA + σ 2

A. Note that m A
nd σ 2

A are the mean and variance of the Brownian motion corresponding to arrivals, while

S
∆
= m A + m and σ 2

S are the mean and variance parameters of the service time sequence
rownian motion.

emark 4. In order to streamline notation, we utilize the symbol D(·) to represent the
rownian departure process. This quantity is analyzed entirely within Section 6, and should
ot cause confusion with our earlier usage of the same symbol for pre-limit departure times.

We start by deriving a partial differential equation (PDE) that computes the moment
enerating function (mgf) of D(t). For θ ∈ R, let ϕ(t, x) = Ex exp(θ D(t)) be the mgf of

D(t), where Ex (·) is the expectation operator defined by Ex (·) = E(· | X (0) = x). We note
hat if Ft = σ ((Z1(s), Z2(s))| : 0 ≤ s ≤ t), then for s ≤ t ,

Ex
[
exp(θ D(t)) | Fs

]
= exp(θ D(s))ϕ(t − s, X (s)) ∆

= M(s)

nd M(·) should be a martingale adapted to (Fs : 0 ≤ s ≤ t). Then, if ϕ is smooth,

d M(s) = d(exp(θ D(s))ϕ(t − s, X (s))) + exp(θ D(s))dϕ(t − s, X (s))
12
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+ d(exp(θ D(s)))dϕ(t − s, X (s)),

where

d(exp(θ D(s))) = θ exp(θ D(s))[m Ads + d Z2(s) + (mds + d Z (s) + d L(s))]

+
θ2

2
exp(θ D(s))σ 2

S ds

= exp(θ D(s))
[(

θmS +
θ2

2
σ 2

S

)
ds + θd Z1(s) + θd L(s)

]
,

dϕ(t − s, X (s)) = −
∂

∂s
ϕ(t − s, X (s))ds +

∂

∂x
ϕ(t − s, X (s))[mds + d Z (s) + d L(s)]

+
1
2

∂2

∂x2 ϕ(t − s, X (s))σ 2ds,

nd

d(exp(θ D(s)))dϕ(t − s, X (s)) = exp(θ D(s))θ
∂

∂x
ϕ(t − s, X (s))d Z1(s)d Z (s)

= exp(θ D(s))θ
∂

∂x
ϕ(t − s, X (s))(σ 2

S − σSσAτ )ds.

t follows that

d M(s) = exp(θ D(s))
[(

θmS +
θ2σ 2

S

2

)
ϕ(t − s, X (s)) −

∂

∂s
ϕ(t − s, X (s))

+
∂

∂x
ϕ(t − s, X (s))[m + θ (σ 2

S − σSσAτ )] +
σ 2

2
∂2

∂x2 ϕ(t − s, X (s))
]

ds

+ exp(θ D(s))
[
θϕ(t − s, X (s)) +

∂

∂x
ϕ(t − s, X (s))

]
d L(s)

+ exp(θ D(s))
[
θϕ(t − s, X (s))d Z1(s) +

∂

∂x
ϕ(t − s, X (s))d Z (s)

]
.

ence, if ϕ satisfies the PDE

∂

∂s
ϕ(s, x) = [m +θ (σ 2

S −σSσAτ )]
∂

∂x
ϕ(s, x)+

σ 2

2
∂2

∂x2 ϕ(s, x)+
(

θmS +
θ2

2
σ 2

S

)
ϕ(s, x)

(6.1)

or (s, x) ∈ R+ × R+, subject to the boundary condition

θϕ(s, 0) +
∂

∂x
ϕ(s, 0) = 0 (6.2)

or s ∈ R+, M(·) will be a stochastic integral (and consequently a martingale under suitable
ntegrability conditions). Finally, it is evident that ϕ must satisfy the initial condition ϕ(0, x) =

for x ∈ R+, in view of the fact that ϕ(t, x) = Ex exp(θ D(t)).
This, of course, is a special case of the constant coefficient linear PDE

∂

∂t
w(t, x) = cw(t, x) + b

∂

∂x
w(t, x) + a

∂2

∂x2 w(t, x), (6.3)

ubject to

w(0, x) = 1, (6.4)
13
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θw(t, 0) +
∂

∂x
w(t, 0) = 0, (6.5)

or (t, x) ∈ R+ ×R+. The PDE (6.3), with initial condition (6.4) and boundary condition (6.5),
an be explicitly solved. The solution takes the form

w(t, x) =

∫
∞

0

1
2
√

πat
exp

[
b(ξ − x)

2a
+

(
c −

b2

4a

)
t
]

×

{
exp

[
−

(x − ξ )2

4at

]
+ exp

[
−

(x + ξ )2

4at

]
− 2s

∫
∞

0
exp

[
−

(x + ξ + η)2

4at
− sη

]
dη

}
dξ,

here s = −θ +
b

2a ; see [20] Section 1.1.5. This simplifies to

w(t, x) =
aθ

b − aθ
ect− bx

a Φ

(
bt − x
√

2at

)
+ ectΦ

(
bt + x
√

2at

)
+

b − 2aθ

b − aθ
e−xθ+(c−bθ+aθ2)tΦ

(
−

(b − 2aθ )t + x
√

2at

)
(6.6)

henever b ̸= aθ and

w(t, x) = ect−xθΦ

(
bt − x
√

2at

)
+ ectΦ

(
bt + x
√

2at

)
whenever b = aθ , where

Φ(x) ∆
= P(N (0, 1) ≤ x),

with N (0, 1) representing a normal random variable (rv) with mean 0 and unit variance. We
are now ready to state our theorem that summarizes this discussion.

Theorem 7. For (t, x) ∈ R+ × R+, Ex exp(θ D(t)) equals w(t, x) as given by (6.6), where
= σ 2/2, b = m + θ (σ 2

S − σSσAτ ), and c = θmS + θ2σ 2
S /2.

roof. Put M̃(s) = exp(θ D(s))w(t − s, X (s)). In view of the arguments above, the main
emaining issue involves establishing that (M̃(s) : 0 ≤ s ≤ t) possesses the integrability
ecessary to ensure that its stochastic integral representation is a martingale. But w(s, ·) and
∂
∂x w(s, ·) have uniformly (in s) bounded exponential growth at infinity, whereas the distribution
of X (s) has Gaussian tails that are uniform over s ∈ [0, t] (see, for example, Section 2 of Glynn
and Wang [10]), so that

sup
0≤s, u≤t

Ex

[
w(s, X (u))2

+

(
∂

∂x
w(s, X (u))

)2
]

< ∞,

hereby proving that (M̃(s) : 0 ≤ s ≤ t) is a square-integrable martingale. Hence,

Ex exp(θ D(s)w(t − s, X (s)))

is independent of s ∈ [0, t], so that

E exp(θ D(t)) = w(t, x). □
x

14
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We can now (in principle) compute any moment of D(t) through successive differentiation
f its mgf. As a consequence, we have the ability to compute “finite time” moments of
he Brownian departure time approximations for arbitrary initial conditions x and arbitrary
orrelation structures for Z1 and Z2. The existing literature provides such a first and second
oment computation only in the special case in which x = 0, m = 0, and τ = 0; see [12].
Given the complexity of these derivatives (in θ ) for w, we now provide an alternative

pproach that allows us to compute the first two moments of D(t). The first moment is easy
o derive, since

Ex D(t) = m At + Ex X (t), (6.7)

here Ex X (t) can be computed explicitly, since Px (X (t) ∈ ·) is known in closed form (where
Px (·) = P(· | X (0) = x)); see, for example, Section 2 of Glynn and Wang [10], where both
he spectral representation and representation in terms of Φ(·) can be found.

For the variance, we note that

Varx D(t) = Var Z2(t) + Varx X (t) + 2Ex Z2(t)X (t), (6.8)

here Varx W ∆
= Ex W 2

− (Ex W )2 for any square-integrable rv W . Again, Varx X (t) can be
btained from the known closed form for Px (X (t) ∈ ·). Since Var Z2(t) = σ 2

At , this leaves the
omputation of the covariance term Ex Z2(t)X (t).

We start by recalling that u(t, x) = Ex X (t) satisfies the Kolmogorov backwards partial
ifferential equation

∂

∂t
u(t, x) = m

∂

∂x
u(t, x) +

σ 2

2
∂2

∂x2 u(t, x),

ubject to u(0, x) = x and ∂
∂x u(t, 0) = 0 for t > 0 and x ∈ R+. It follows that

du(t − s, X (s)) =

[
−

∂

∂s
u(t − s, X (s)) + m

∂

∂x
u(t − s, X (s))

+
σ 2

2
∂2

∂x2 u(t − s, X (s))
]

ds

+
∂

∂x
u(t − s, X (s))d L(s)

+
∂

∂x
u(t − s, X (s))d Z (s)

=
∂

∂x
u(t − s, X (s))d Z (s).

onsequently,

u(0, X (t)) − u(t, X (0)) =

∫ t

0

∂

∂x
u(t − s, X (s))d Z (s),

o that conditional on X (0) = x ,

X (t) = u(t, x) +

∫ t

0

∂

∂x
u(t − s, X (s))d Z (s).

Then,

Ex Z2(t)X (t) = Ex Z2(t)
∫ t ∂

u(t − s, X (s))d Z (s).

0 ∂x

15
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The integration by parts formula for semimartingales (see, for example, p.60 of Protter [21])
hen implies that

Z2(t)
∫ t

0

∂

∂x
u(t − s, X (s))d Z (s) =

∫ t

0

∫ s

0

∂

∂x
u(t − r, X (r ))d Z2(r )d Z (s)

+

∫ t

0
Z2(s)

∂

∂x
u(t − s, X (s))d Z (s)

+

∫ t

0

∂

∂x
u(t − s, X (s))d[Z2, Z ](s), (6.9)

here [Z2, Z ](·) is the quadratic covariation of Z2 and Z . In particular,

[Z2, Z ](s) = (σAσSτ − σ 2
A)s

or s ≥ 0. The integrability arguments used in the proof of Theorem 7 again apply here, so
hat the local martingale stochastic integrals in (6.9) are true martingales, yielding the identity

Ex Z2(t)X (t) = (σAσSτ − σ 2
A)
∫ t

0
Ex

∂

∂x
u(t − s, X (s))ds. (6.10)

Since the right-hand side of (6.10) can be evaluated in terms of the known closed form for
Px (X (t) ∈ ·), we have arrived at an alternative formula for Varx D(t) (in view of (6.8)).

We now show that (6.10) can be easily computed when x = 0 (i.e. the queue starts empty)
nd m = 0 (i.e. the queue is perfectly balanced, corresponding to ρ = 1). It is known that
hen m = 0, X (·) D

= |σ B(·)|, where B(·) is a standard Brownian motion; see p.27 of Rogers
nd Williams [23]. As a consequence,

u(t, x) = E |x + σ B(t)|

=

∫
∞

−x
(x + y)φ

(
y

σ
√

t

)
dy

σ
√

t
−

∫
−x

−∞

(x + y)φ
(

y
σ
√

t

)
dy

σ
√

t
,

here φ(·) is the density of a N (0, 1) rv. It follows that
∂

∂x
u(t, x) = 1 − 2P(σ B(t) ≤ −x)

= P(|σ B(t)| ≤ x)

for t > 0 and x ≥ 0. Then,

E0
∂

∂x
u(t − s, X (s)) = P(|σ B(t − s)| ≤ |σ B ′(s)|),

here (B ′(t) : t ≥ 0) is a standard Brownian motion independent of (B(t) : t ≥ 0) (since
X (s) D

= |σ B ′(s)|). Note that∫ t

0
P(|B(t − s)| ≤ |B ′(s)|)ds =

∫ t
2

0
P(|B(t − s)| ≤ |B ′(s)|)ds

+

∫ t

t
2

P(|B(t − s) ≤ |B ′(s)|)ds

=

∫ t
2

0
P(|B(t − s)| ≤ |B ′(s)|)ds

+

∫ t
2

P(|B(r ) ≤ |B ′(t − r )|)dr

0

16
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=

∫ t
2

0
[P(|B(t − s)| ≤ |B ′(s)|)

+ P(|B ′(s) ≤ |B(t − s)|)]ds

=
t
2
.

t follows from (6.10) that

E0 Z2(t)X (t) = (σAσSτ − σ 2
A)

t
2
.

Also, in this setting in which m = 0,

E0 X2(t) = E0σ
2 B(t)2

= σ 2t,

and

E0 X (t) = E |σ B(t)| =

√
2
π

σ t
1
2 .

onsequently, (6.8) yields the formula

Var0 D(t) =

[
(σ 2

A − 2τσAσS + σ 2
S )
(

1 −
2
π

)
+ σAσSτ

]
t. (6.11)

e conclude our above discussion with the following theorem.

heorem 8. When m = 0, Var0 D(t) is given by (6.11).

This result generalizes the Brownian calculation established by Hanbali et al. [12] for the
pecial case τ = 0 to a general dependence structure. We further note that our argument relies
n very different ideas than the Brownian bridge derivation developed there. Unlike [12], we
o not show that the Brownian variance is the heavy-traffic limit obtained from the pre-limit
ariances. However, our argument does compute the distributional variability of D(t) which is
qually important.

We note that the exact finite-time variance of the departure process for the Brownian limit
n stationarity has been computed by Whitt and You [27] when τ = 0 and the RBM drift is
egative (so that a stationary version exists). They also show that the pre-limit G/G/1 departure
ariance converges to the Brownian limit.

. Implications for downstream stations

We now study the implication of the limit theory developed in Sections 3 through 5 on
ueueing at downstream stations that are fed by the departure process thus far analyzed in this
aper. In particular, we consider a tandem network of two queues, in which customers from
tation 1 are immediately fed into station 2 upon their departure from station 1. We assume
hat both stations are single server systems with infinite capacity waiting rooms that process
heir respective customers according to a FIFO queue discipline.

In this setting, we will need to add in a service time sequence at station 2 to complement the
nter-arrival and service time sequences at station 1. In particular, we will assume throughout
his section that we have three independent iid sequences (χk : k ≥ 1), (Vk : k ≥ 0), and
Ṽk : k ≥ 0), where the Ṽk’s correspond to the service times at station 2. Since we will be
onsidering these stations in heavy traffic, we require that these sequences are all “in balance”
17
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with one another, so that

Eχ1 = EV0 = EṼ0 = α.

We now follow the approach of Section 2 in scaling the service times at stations 1 and 2
y ρ1 and ρ2, respectively. At station 1, we can again define the random variables Wρ1 (n, x),

Dρ1 (n, x), etc. (in which the Vi ’s are scaled by ρ1). Our main interest here will be in the
ueueing effects at the downstream station 2, as measured by the waiting time sequence
W̃ρ2 (n, x, y) : n ≥ 0), where our notation emphasizes the fact that the nth waiting time
t station 2 depends on both the initial work x (= Wρ1 (0, x)) at station 1 and also the initial
ork y = (W̃ρ2 (0, x, y)) at station 2. We can now study the network in heavy traffic, so that
1 and ρ2 both converge to 1, with limits taken so that

1 − ρ1

1 − ρ2
→ c (7.1)

s ρ1 → 1. We allow c to take on the value 0 (so that station 1 is more congested than station
) or the value ∞ (so that station 2 is more congested than station 1).

We will argue in this section that the behavior of the second station depends on the first
tation’s departure process over time scales that are of the same order as the second station’s
ntrinsic “diffusion time scale” (that is of order (1 − ρ2)−2). For example, this implies that
hen c = 0, the first station is likely to be consistently busy over the time scale (1 −ρ2)−2, so

hat the queueing effects at the second station depends only on the variability characteristics of
he first station’s service times (and not on the variability characteristics of the arrival process
o station (1). This occurs even though part (a) of Theorem 6 asserts that the long time scale
ehavior of station 1’s departure process is determined by the arrival sequence’s variability.
Recall that in equilibrium, the amount of work held at station 1 is of order (1 − ρ1)−1.)

We start by noting that because the departures from station 1 are the arrivals to station 2,

W̃ρ2 (n + 1, x, y) =

[
W̃ρ2 (n, x, y) + ρ2Ṽn − (Dρ1 (n + 1, x) − Dρ1 (n, x))

]+

=

[
W̃ρ2 (n, x, y) + ρ2Ṽn − χn+1 − (Wρ1 (n + 1, x) − Wρ1 (n, x))

− ρ(Vn+1 − Vn)]+ . (7.2)

onsequently, the triplet (Wρ1 (n, x), W̃ρ2 (n, x, y), Vn) satisfies a stochastic recursion in n
hat ensures that the triplet forms an R3

+
-valued Markov chain. (We have added Vn to the

tate in order to ensure that the “noise” sequence defining the recursion is independent across
.) According to [19], this Markov chain is aperiodic and positive Harris recurrent when
1 < 1 and ρ2 < 1. As such, it has a unique equilibrium distribution described by the triplet
Wρ1 (∞), W̃ρ2 (∞), V∞), where V∞

D
= V0. Furthermore, it is known that when Eχ

1/r
1 +EV 1/r

0 <

for r < 1/2,

(1 − ρ1)Wρ1 (∞) ⇒ E (7.3)

s ρ1 ↗ 1, where E is exponentially distributed; see [1] p.287.
Our focus, in this section, is on the behavior of the second station when it is stable (in

solation), so that ρ2 < 1. We start with the setting in which the entire network is stable, so
hat ρ < 1 as well as ρ < 1. Suppose then that ((W (n), W̃ (n), V ) : n ≥ 0) is a stationary
1 2 n

18
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version of our Markov chain, so that (W (n), W̃ (n), Vn) D
= (Wρ1 (∞), W̃ρ2 (∞), V∞). Also,

W (n) − W (n + 1) = W (n) − [W (n) + ρ1Vn − χn+1]+

≤ W (n) − (W (n) + ρ1Vn − χn+1)
= χn+1 − ρ1Vn. (7.4)

et g(w, w̃, v) = w̃2. Then (7.2) and (7.4) imply that

g(W (1), W̃ (1), V1) =

([
W̃ (0) + ρ2Ṽ0 − χ1 + W0 − W1 + ρ1V0 − ρ1V1

]+
)2

≤

([
W̃ (0) + ρ2Ṽ0 − χ1 + χ1 − ρ1V0 + ρ1V0 − ρ1V1

]+
)2

=

([
W̃ (0) + ρ2Ṽ2 − ρ1V1

]+
)2

≤

(
W̃ (0) + ρ2Ṽ0 − ρ1V1

)2
,

o that if f (w, w̃, v) ∆
= w̃, then

E
[
g(W (1), W̃ (1), V1)

⏐⏐W (0), W̃ (0), V0

]
≤ W̃ (0)2

+ 2(ρ2 − ρ1)αW̃ (0)

+ E(ρ2Ṽ0 − ρ1V1)2

= g(W (0), W̃ (0), V0)
− 2|ρ1 − ρ2|α f (W (0), W̃ (0), V0)
+ E(ρ2Ṽ0 − ρ1V1)2, (7.5)

rovided that ρ1 > ρ2. According to [11], (7.5) implies that

EW̃ρ2 (∞) ≤
E(ρ2Ṽ0 − ρ1V1)2

2|ρ1 − ρ2|α
, (7.6)

hen ρ1 > ρ2.
Suppose that c = 0 in (7.1). Then, (7.6) implies that W̃ρ2 (∞) = O((1 − ρ2)−1) as ρ1 ↗ 1.

f N0 is the index of the first customer to experience no waiting at station 1, then (7.3)
mplies that (1 − ρ1)2 N0 converges in distribution to a positive rv, from which it is evident
hat (1 − ρ2)2 N0 → ∞ in probability as ρ1 ↗ 1. Hence, for any t > 0 and (measurable)

∈ R+,

P(W̃ρ2 (∞) ∈ C) = P(W̃ρ2 (n) ∈ C) + o(1)

= P(W̃ρ2 (n) ∈ C, N0 > n) + o(1),

rovided that n = ⌊t/(1−ρ2)2
⌋ for t > 0. If Ñ0 is the index of the first customer to experience

o waiting time at station 2, then

P(W̃ρ2 (∞) ∈ C) = P(W̃ρ2 (n) ∈ C, Ñ0 ≤ n < N0) + O(P(Ñ0 > n)) + o(1)

= E(P(W̃ρ2 (n) ∈ C, N0 > n|Ñ0)I(Ñ0 ≤ n)) + O(P(Ñ0 > n)) + o(1). (7.7)

n {Ñ0 = k} with k ≤ n,

P(W̃ρ2 (n) ∈ C, N0 > n | Ñ0 = k) = P(W̃ρ2 (n − k) ∈ C | W̃ρ2 (0) = 0) + o(1)

= P
(

max S̃ j ∈ C
)

+ o(1),

0≤ j≤n−k

19
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where

S̃ j =

j−1∑
ℓ=0

(ρ2Ṽℓ − ρ1V j ).

Since it is well known (see, for example, [1] p.287) that

(1 − ρ2) max
j≥0

S̃ j ⇒
Var(Ṽ0 + V0)

2α
E (1),

where E (1) is an exponential rv with mean 1, our next theorem follows from (7.6) and (7.7)
(upon choosing t arbitrarily large).

Theorem 9. If c = 0 with ρ1 ↗ 1, then

(1 − ρ2)W̃ρ2 (∞) ⇒
Var(Ṽ0 + V0)

2α
E (1)

s ρ1 ↗ 1.

The key point in Theorem 9 is that the equilibrium distribution at the second station has no
dependence on the inter-arrival distribution in this setting, as predicted by the analysis earlier
in this section.

We turn next to the case where c ∈ (0, ∞], so that the second station holds a significant
fraction of the network’s total work in equilibrium. We recall that if the network starts empty
(so that Wρ1 (0) = W̃ρ2 (0) = 0), then the nth departure time Dρ1 (n) at station 1 is given by

Dρ1 (n) = An + Wρ1 (n) + ρ1Vn

= ρ1

n∑
j=0

V j + max
1≤ j≤n

[
A j − ρ1

j−1∑
i=0

Vi

]+

= max
0≤ j≤n

⎡⎣ρ1

n∑
i= j

Vi + A j

⎤⎦+

.

imilarly, because the j th arrival time to station 2 is Dρ1 ( j), it follows that the nth departure
ime D̃ρ2 (n) from station 2 is given by

D̃ρ2 (n) = max
0≤k≤n

[
Dρ1 (k) + ρ2

n∑
i=k

Ṽi

]+

= max
0≤k≤n

⎡⎣max
0≤ j≤k

⎡⎣ρ1

k∑
i= j

Vi + A j

⎤⎦+

+ ρ2

n∑
ℓ=k

Ṽℓ

⎤⎦+

= max
0≤ j≤k≤n

⎡⎣A j + ρ1

k∑
i= j

Vi + ρ2

n∑
ℓ=k

Ṽℓ

⎤⎦+

. (7.8)

he departure time representation (7.8) for tandem networks is well known; see [13] and [24].
n the other hand,

D̃ρ2 (n) = Dρ1 (n) + W̃ρ2 (n) + ρ2Ṽn

˜ ˜
= An + Wρ1 (n) + ρ1Vn + Wρ2 (n) + ρ2Vn, (7.9)
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so the total network time-in-system for customer n is given by

T̃ (n) = D̃ρ2 (n) − An

= max
0≤ j≤k≤n

⎡⎣A j − An + ρ1

k∑
i= j

Vi + ρ2

n∑
ℓ=k

Ṽℓ

⎤⎦+

.

Since (χ1, . . . , χn) D
= (χn, . . . , χ1), (V0, . . . , Vn) D

= (Vn, . . . , V0), and (Ṽ0, . . . , Ṽn) D
=

Ṽn, . . . , Ṽ0), it follows that

(Wρ1 (n), T̃ (n)) D
=

(
max

0≤k≤n

n−1∑
i=k

[ρ1Vn−i−1 − χn−i ],

max
0≤ j≤k≤n

⎡⎣−

n∑
ℓ= j+1

χn+1−ℓ + ρ1

k∑
i= j

Vn−i + ρ2

n∑
ℓ=k

Ṽn−ℓ

⎤⎦⎞⎠
=

(
max

0≤k≤n

n−k∑
ℓ=1

[ρ1Vℓ−1 − χℓ],

max
0≤ j≤k≤n

[
−

n− j∑
ℓ=1

χn+1−ℓ + ρ1

n− j∑
s=n−k

Vs + ρ2

n−k∑
r=0

Ṽr

])

=

(
max

0≤k≤n

k∑
ℓ=1

[ρ1Vℓ−1 − χℓ],

max
0≤ j≤k≤n

⎡⎣ρ2

j∑
r=0

Ṽr + ρ1

k∑
s= j

Vs −

k∑
ℓ=1

χℓ

⎤⎦⎞⎠
∆
= (M1(n), M2(n)).

learly,

(M1(n), M2(n)) ⇒ (M1(∞), M2(∞)) a.s. (7.10)

s n → ∞. Furthermore, because

1
n

k∑
ℓ=1

χℓ → α a.s.,
1
n

n∑
ℓ=1

Vℓ → α a.s.,
1
n

n∑
ℓ=1

Ṽℓ → α a.s.,

and ρ1, ρ2 < 1, M1(∞) and M2(∞) are finite-valued.
If Eχ

1/r
1 + EV 1/r

0 + EṼ 1/r
0 < ∞ for r < 1/2, then [16] show that we may assume the

existence of independent zero mean Brownian motions for which
n∑

j=0

V j = nα + Z1(n) + o(nr ) a.s.,

An = nα + Z2(n) + o(nr ) a.s.,

and
n∑

j=0

Ṽ j = nα + Z3(n) + o(nr ) a.s.

as n → ∞.
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As a result,

(1−ρ2)(M1(⌊t/(1−ρ2)2
⌋), M2(⌊t/(1−ρ2)2

⌋)) = (M ′

1(t), M ′

2(t))+o(tr (1−ρ2)1−2r ) a.s.,
(7.11)

here

M ′

1(t) = max
0≤s≤t

[
−

(
1 − ρ1

1 − ρ2

)
αs + (1 − ρ2)ρ1 Z1

(
s

(1 − ρ2)2

)
− (1 − ρ2)Z2

(
s

(1 − ρ2)2

)]
and

M ′

2(t) = max
0≤s≤u≤t

[
−αs + (1 − ρ2)ρ2 Z3

(
s

(1 − ρ2)2

)
−

(
1 − ρ1

1 − ρ2

)
α(u − s)

+ (1 − ρ2)ρ1

(
Z1

(
u

(1 − ρ2)2

)
− Z1

(
s

(1 − ρ2)2

))
− (1 − ρ2)Z2

(
u

(1 − ρ2)2

)]
.

Furthermore, by virtue of the law of the iterated logarithm for Brownian motion and the
negative drift, it is evident that when c ∈ (0, ∞],

(1 − ρ2)(M1(∞) − M1(t/(1 − ρ2)κ ), M2(∞) − M2(t/(1 − ρ2)κ )) → 0 a.s. (7.12)

s ρ2 ↗ 1 whenever κ > 2.
Finally, note that the scaling properties of Brownian motion imply that

(M ′

1(t), M ′

2(t)) D
= (M ′′

1 (t), M ′′

2 (t)),

where

M ′′

1 (t) = max
0≤s≤t

[
−

(
1 − ρ1

1 − ρ2

)
αs + ρ1 Z1(s) − Z2(s)

]
(7.13)

nd

M ′′

2 (t) = max
0≤s≤u≤t

[
−αs + ρ2 Z3(s) −

(
1 − ρ1

1 − ρ2

)
α(u − s) + ρ1(Z1(u) − Z1(s)) − Z2(u)

]
.

s a consequence of (7.10) through (7.12), we find that if we choose κ ∈ (2, 1/r ), then

(1 − ρ2)(M1(∞) − M2(∞)) = (1 − ρ2)(M1(⌊t/(1 − ρ2)κ⌋), M2(⌊t/(1 − ρ2)κ⌋)) + o(1) a.s.

= (1 − ρ2)(M ′

1(⌊t/(1 − ρ2)κ⌋), M ′

2(⌊t/(1 − ρ2)κ⌋)) + o(tr (1 − ρ2)1−κr )
D
= (M ′′

1 (t/(1 − ρ2)κ−2), M ′′

2 (t/(1 − ρ2)κ−2)) + op(1)

⇒

(
max
s≥0

[−cαs + Z1(s) − Z2(s)],

max
0≤s≤u

[−αs + Z3(s) − cα(u − s) + Z1(u) − Z1(s) − Z2(u)]
)

(7.14)

∆
= (Λ1, Λ2)

s ρ2 ↗ 1 when c ∈ (0, ∞). On the other hand, when c = ∞, the drift terms converge to
∞, so that

(1 − ρ2)(M1(∞), M2(∞)) ⇒

(
0, max

s≥0
[−αs + Z3(s) − Z2(s)]

)
. (7.15)

The maximum rv appearing on the right hand side is the equilibrium rv associated with
n RBM having drift −α and variance parameter Var χ1 + Var Ṽ0, and hence is exponentially
istributed with mean (Var χ1 + Var Ṽ0)/(2α).

In view of (7.8) and (7.9), we have therefore established the following result.
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Theorem 10. Under the conditions of this section,

(1 − ρ2)(Wρ1 (∞), W̃ρ2 (∞)) ⇒ (Λ1, Λ2 − Λ1)

s ρ2 ↗ 1 when c ∈ (0, ∞), and

(1 − ρ2)(Wρ1 (∞), W̃ρ2 (∞)) ⇒

(
0,

Var χ1 + Var Ṽ0

2α
E (1)

)
as ρ2 ↗ 1 with c = ∞.

Remark 5. This result is essentially that derived by Harrison [13] under different assumptions.
His result does not discuss the case c = ∞ (nor does it deal with c = 0).

Our last result describes the behavior of the second queue when the system as a whole is un-
stable, but the second station is stable. In other words, we consider here the case where ρ1 ≥ 1,
ut ρ2 < 1. In this context, there is no stationary distribution for (Wρ1 (n, x), W̃ρ2 (n, x, y), Vn).
evertheless, there is a limiting distribution for W̃ρ2 (n, x, y), in the sense that

W̃ρ2 (n, x, y) ⇒ W̃ρ2 (∞)

s n → ∞, because when n is large relative to (1 − ρ2)−2, the second queue will empty
ith high probability prior to n, as in the proof of Theorem 9. Furthermore, over the time

pan that elapses between the emptying time and n, the first queue will never empty and its
nter-departure times will match the successive service times at the first queue. Hence,

W̃ρ2 (n, x, y) ⇒ max
j≥0

[ j∑
i=1

(ρ2Ṽi−1 − ρ1Vi )

]
(7.16)

s n → ∞. The limiting rv appearing in (7.16) is, of course, the equilibrium waiting time of a
IFO single-server queue with inter-arrival times given by the ρ1Vi ’s and service times given
y the ρ2Ṽ j ’s.

By applying the heavy-traffic limit theorem (e.g. Asmussen (2003) p.287) to the right-hand
ide of (7.16), we obtain our final result.

heorem 11. Under the conditions of this section,

(ρ1 − ρ2)W̃ρ2 (∞) ⇒
Var V0 + Var Ṽ0

2α
E (1)

when ρ1 = 1 or ρ1 ↘ 1 and ρ2 ↗ 1.

The theorems of this section make clear that none of the equilibrium or limiting distributions
dentified when the downstream station is stable depend upon the BRAVO variance parameter.
n other words, the BRAVO variance reduction that holds for the M/M/1 queue departure
rocess apparently does not manifest itself in the behavior of the downstream queue, no matter
ow close are ρ1 and ρ2 to 1.

These theorems implicitly take into account the departure process variability of the first
tation in equilibrium in the two station tandem setting. Whitt and You [28] compute the
tationary departure variability in a network with feedback, in both the Brownian and pre-
imit settings. In contrast, our theory focuses on the implications of departure variability on
ownstream stations.
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