Lecture Notes 7: Dynamic Equations Part B: Second and Higher-Order Linear Difference Equations in One Variable

Peter J. Hammond

Latest revision 2020 September 24th, typeset from dynEqLects20B.tex

Lecture Outline

Solving Second-Order Equations

Inhomogeneous Equations

Particular Solutions in Two Special Cases

Method of Undetermined Coefficients

Higher-Order Linear Equations with Constant Coefficients

Stationary States and Stability for Second-Order Equations

Second-Order Equations

A general second-order difference equation specifies the state x_{t} at each time t as a function $x_{t}=F_{t}\left(x_{t-1}, x_{t-2}\right)$ of the state at two previous times.

Suppose we define a new variable defined by $y_{t}:=x_{t-1}$. Then the equation $x_{t}=F_{t}\left(x_{t-1}, x_{t-2}\right)$ can be converted into the coupled pair

$$
\begin{aligned}
x_{t} & =F_{t}\left(x_{t-1}, y_{t-1}\right) \\
y_{t} & =x_{t-1}
\end{aligned}
$$

of first-order equations that express the vector $\left(x_{t}, y_{t}\right)^{\top} \in \mathbb{R}^{2}$ as a function of the vector $\left(x_{t-1}, y_{t-1}\right)^{\top} \in \mathbb{R}^{2}$.

The Linear Case

We focus on linear equations in one variable with constant coefficients, which take the form

$$
x_{t+1}+a x_{t}+b x_{t-1}=f_{t}
$$

Here a, b are scalars, and f_{t} is the forcing term.
We assume that $b \neq 0$ because otherwise
we have the first-order equation $x_{t+1}+a x_{t}=f_{t}$.
If we define $y_{t}=x_{t-1}$, the equation becomes the coupled pair

$$
x_{t+1}=-a x_{t}-b y_{t}+f_{t} ; \quad y_{t+1}=x_{t}
$$

In matrix form, these can be written as

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{rr}
-a & -b \\
1 & 0
\end{array}\right)\binom{x_{t}}{y_{t}}+\binom{f_{t}}{0}
$$

Such vector difference equations are the subject of part C.

The Homogeneous Case

Nevertheless, consider the homogeneous case when the vector equation is

$$
\binom{x_{t+1}}{y_{t+1}}-\left(\begin{array}{rr}
-a & -b \\
1 & 0
\end{array}\right)\binom{x_{t}}{y_{t}}=\binom{0}{0}
$$

The solution in matrix form is evidently

$$
\binom{x_{t}}{y_{t}}=\left(\begin{array}{rr}
-a & -b \\
1 & 0
\end{array}\right)^{t}\binom{x_{0}}{y_{0}}
$$

for an arbitrary initial state $\binom{x_{0}}{y_{0}}$. Inspired by our earlier discussion of matrix powers, consider the case when $\left(\lambda,\left(x_{0}, y_{0}\right)^{\top}\right)$ is an eigenpair, that is

$$
\left(\begin{array}{rr}
-a & -b \\
1 & 0
\end{array}\right)\binom{x_{0}}{y_{0}}=\lambda\binom{x_{0}}{y_{0}} \quad \text { where }\binom{x_{0}}{y_{0}} \neq\binom{ 0}{0}
$$

Solving the Homogeneous Case

In case $\left(\begin{array}{rr}-a & -b \\ 1 & 0\end{array}\right)\binom{x_{0}}{y_{0}}=\lambda\binom{x_{0}}{y_{0}}$, the solution takes the form

$$
\binom{x_{t}}{y_{t}}=\left(\begin{array}{rr}
-a & -b \\
1 & 0
\end{array}\right)^{t}\binom{x_{0}}{y_{0}}=\lambda^{t}\binom{x_{0}}{y_{0}}
$$

For this to work, the initial vector $\binom{x_{0}}{y_{0}}$ must solve the matrix equation $\left(\begin{array}{cc}-a-\lambda & -b \\ 1 & -\lambda\end{array}\right)\binom{x_{0}}{y_{0}}=\binom{0}{0}$.
For a non-trivial solution to exist, the matrix $\left(\begin{array}{cc}-a-\lambda & -b \\ 1 & -\lambda\end{array}\right)$ must be singular, implying that

$$
\left|\begin{array}{cc}
-a-\lambda & -b \\
1 & -\lambda
\end{array}\right|=\lambda^{2}+a \lambda+b=0
$$

The Auxiliary Equation

Instead of treating the second-order equation as a coupled pair, consider directly the homogeneous second-order equation

$$
x_{t+1}+a x_{t}+b x_{t-1}=0
$$

Inspired by our previous analysis using eigenvalues of a suitable matrix, we look for a solution of the form $x_{t}=\lambda^{t} x_{0}$, for suitable constants λ and x_{0}.
It is a solution provided that $\lambda^{t+1} x_{0}+a \lambda^{t} x_{0}+b \lambda^{t-1} x_{0}=0$.
Ignoring the trivial solutions when $x_{0}=0$ or $\lambda=0$, cancel $\lambda^{t-1} x_{0}$ to obtain the auxiliary or characteristic equation

$$
\lambda^{2}+a \lambda+b=0
$$

This, of course, is the condition for λ to be an eigenvalue.

The Auxiliary Equation and Its Roots

The auxiliary equation $\lambda^{2}+a \lambda+b=0$ is quadratic.
It therefore has two roots λ_{1}, λ_{2}
satisfying $\lambda^{2}+a \lambda+b=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$.
In particular $\lambda_{1}+\lambda_{2}=-a$ and $\lambda_{1} \lambda_{2}=b$.
The assumption that $b \neq 0$ implies that the two roots λ_{1}, λ_{2} are both non-zero.

This leaves three cases:

1. two distinct real roots $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, which is true iff $a^{2}>4 b$;
2. two complex conjugate roots $\lambda_{1}, \lambda_{2}=r e^{ \pm i \theta} \in \mathbb{C}$, which is true iff $a^{2}<4 b$;
3. two coincident real roots $\lambda=\lambda_{1}=\lambda_{2} \in \mathbb{R}$, which is true iff $a^{2}=4 b$.

Case 1: Two Distinct Real Roots

In this case $\lambda^{2}+a \lambda+b=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$,
where $\lambda_{1}, \lambda_{2}=-\frac{1}{2} a \pm \frac{1}{2} \sqrt{a^{2}-4 b}$.
Note that $a=\lambda_{1}+\lambda_{2}$ and $b=\lambda_{1} \lambda_{2}$
with $a^{2}-4 b=\left(\lambda_{1}+\lambda_{2}\right)^{2}-4 \lambda_{1} \lambda_{2}=\left(\lambda_{1}-\lambda_{2}\right)^{2}>0$.
There are two degrees of freedom in the difference equation, so we look for two linearly independent solutions $x_{t}^{H(1)}$ and $x_{t}^{H(2)}$ of the homogeneous difference equation $x_{t+1}+a x_{t}+b x_{t-1}=0$.

- that is two solutions for which $A x_{t}^{H(1)}+B x_{t}^{H(2)} \equiv 0$ implies that the two scalars A and B satisfy $A=B=0$.

Two Linearly Independent Solutions

Note that $A \lambda_{1}^{t}+B \lambda_{2}^{t}=0$ for both $t=0$ and $t=1$ if and only if

$$
\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right)\binom{A}{B}=\binom{0}{0}
$$

This has a non-trivial solution in the two constants A and B iff $0=\left|\begin{array}{cc}1 & 1 \\ \lambda_{1} & \lambda_{2}\end{array}\right|$, or if and only if $0=\lambda_{2}-\lambda_{1}$.
So when $\lambda_{1} \neq \lambda_{2}$, the only solution is trivial, with $A=B=0$.
Hence, the two functions $x_{t}^{(1)}=x_{0} \lambda_{1}^{t}$ and $x_{t}^{(2)}=x_{0} \lambda_{2}^{t}$ with $x_{0} \neq 0$ are linearly independent solutions of $x_{t+1}+a x_{t}+b x_{t-1}=0$.

There are two degrees of freedom in the difference equation.
Therefore, its general solution with these two degrees of freedom is $x_{t}=A \lambda_{1}^{t}+B \lambda_{2}^{t}$ for arbitrary real constants A and B.

Example: The Fibonacci Sequence

The Fibonacci sequence is

$$
\left(x_{t}\right)_{t=0}^{\infty}=(0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots)
$$

It is the unique solution with $x_{0}=0$ and $x_{1}=1$ of the Fibonacci difference equation $x_{t+1}-x_{t}-x_{t-1}=0$.
The characteristic equation is $\lambda^{2}-\lambda-1=0$, with characteristic roots $\lambda_{1,2}=-\frac{1}{2}(-1 \pm \sqrt{5})$.
Its two roots are:
(i) the golden ratio $\varphi:=\lambda_{1}=\frac{1}{2}(1+\sqrt{5}) \approx 1.61803398875$; and (ii) $\lambda_{2}=1-\lambda_{1}=\frac{1}{2}(1-\sqrt{5}) \approx-0.61803398875$.
The general solution of the Fibonacci difference equation is $x_{t}=A \lambda_{1}^{t}+B \lambda_{2}^{t}$ for arbitrary constants A and B.
To obtain the Fibonacci sequence with $x_{0}=0$ and $x_{1}=1$ requires $B=-A$ and $1=A\left(\lambda_{1}-\lambda_{2}\right)=A \sqrt{5}$, so $B=-A=-\frac{1}{5} \sqrt{5}$.
Hence $x_{t}=\frac{1}{5} \sqrt{5} \cdot 2^{-t}\left[(1+\sqrt{5})^{t}-(1-\sqrt{5})^{t}\right]$, so $x_{t} \in \mathbb{N}$.

Case 2: Two Complex Conjugate Roots

Consider next the case where the equation $\lambda^{2}+a \lambda+b=0$ has two complex conjugate roots that we write as

$$
\lambda=r e^{ \pm i \theta}=r(\cos \theta \pm i \sin \theta) \quad \text { where } \sin \theta \neq 0
$$

In this case $\lambda^{2}+a \lambda+b=\left(\lambda-r e^{i \theta}\right)\left(\lambda-r e^{-i \theta}\right)$ where

$$
a=r e^{i \theta}+r e^{-i \theta}=r(\cos \theta+i \sin \theta)+r(\cos \theta-i \sin \theta)=2 r \cos \theta
$$

and $b=\left(r e^{i \theta}\right)\left(r e^{-i \theta}\right)=r^{2}$ with $\sin \theta \neq 0$.
It follows that $a^{2}-4 b=4 r^{2} \cos ^{2} \theta-4 r^{2}=-4 r^{2} \sin ^{2} \theta<0$.
Note that $r=\sqrt{|b|}$ and $\theta=\arccos \left(\frac{a}{2 r}\right)=\arccos \left(\frac{1}{2} a|b|^{-\frac{1}{2}}\right)$.

Case 2: Oscillating Solutions

In the complex plane \mathbb{C}, two possible solutions
of the difference equation $x_{t+1}+a x_{t}+b x_{t-1}=0$ with $x_{0} \neq 0$ are

$$
\begin{aligned}
x_{t}^{(1)} & =x_{0}\left(r e^{i \theta}\right)^{t}
\end{aligned}=x_{0} r^{t} e^{i \theta t}=x_{0} r^{t}(\cos \theta t+i \sin \theta t) ~ 子 x_{0}\left(r e^{-i \theta}\right)^{t}=x_{0} r^{t} e^{-i \theta t}=x_{0} r^{t}(\cos \theta t-i \sin \theta t) .
$$

In the real line \mathbb{R}, two possible solutions are

$$
x_{t}^{(1)}=r^{t} \cos \theta t \quad \text { and } \quad x_{t}^{(2)}=r^{t} \sin \theta t
$$

These are linearly independent because

$$
\left|\begin{array}{ll}
x_{0}^{(1)} & x_{0}^{(2)} \\
x_{1}^{(1)} & x_{1}^{(2)}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
r \cos \theta & r \sin \theta
\end{array}\right|=r \sin \theta \neq 0
$$

The general solution is therefore $x_{t}=r^{t}(A \cos \theta t+B \sin \theta t)$ for arbitrary real constants A and B, where $A=x_{0}$.

Case 3: Two Coincident Roots

In this case $\lambda^{2}+a \lambda+b=(\lambda-\bar{\lambda})^{2}$,
where $a=-2 \bar{\lambda}$ and $b=\bar{\lambda}^{2}$.
Consider the perturbed equation $x_{t+1}+a x_{t}+\tilde{b} x_{t-1}=0$ where $a=-2 \bar{\lambda}$ still and $\tilde{b}=\bar{\lambda}^{2}-\epsilon^{2}$ with ϵ a small positive number.

We consider the behaviour of its general solution as $\epsilon \rightarrow 0$.
The auxiliary equation $\lambda^{2}+a \lambda+\tilde{b}=0$
can be written as $\lambda^{2}-2 \bar{\lambda} \lambda+\bar{\lambda}^{2}-\epsilon^{2}=0$.
Note that $\lambda^{2}-2 \bar{\lambda} \lambda+\bar{\lambda}^{2}-\epsilon^{2}=(\lambda-\bar{\lambda}+\epsilon)(\lambda-\bar{\lambda}-\epsilon)$.
So the perturbed auxiliary equation has the two real roots $\lambda=\bar{\lambda} \pm \epsilon$.

The Solution with Fixed Initial Conditions

Fix \bar{x}_{0} and \bar{x}_{1}.
The general solution satisfying $x_{0}=\bar{x}_{0}$ and $x_{1}=\bar{x}_{1}$ is $x_{t}=A(\bar{\lambda}+\epsilon)^{t}+B(\bar{\lambda}-\epsilon)^{t}$ where $\bar{x}_{0}=A+B$ and $\bar{x}_{1}=A(\bar{\lambda}+\epsilon)+B(\bar{\lambda}-\epsilon)=(A+B) \bar{\lambda}+(A-B) \epsilon$.
Hence $A+B=\bar{x}_{0}$ and $A-B=(1 / \epsilon)\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)$,
implying that $A=\frac{1}{2}\left[\bar{x}_{0}+(1 / \epsilon)\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)\right]$
and $B=\frac{1}{2}\left[\bar{x}_{0}-(1 / \epsilon)\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)\right]$.
The solution for fixed ϵ is therefore

$$
\begin{aligned}
x_{t}^{\epsilon}=\frac{1}{2}\left[\bar{x}_{0}+(1 / \epsilon)\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)\right] & (\bar{\lambda}+\epsilon)^{t} \\
& +\frac{1}{2}\left[\bar{x}_{0}-(1 / \epsilon)\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)\right](\bar{\lambda}-\epsilon)^{t}
\end{aligned}
$$

which can be rewritten as
$x_{t}^{\epsilon}=\frac{1}{2} \bar{x}_{0}\left[(\bar{\lambda}+\epsilon)^{t}+(\bar{\lambda}-\epsilon)^{t}\right]+\frac{1}{2}\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right)(1 / \epsilon)\left[(\bar{\lambda}+\epsilon)^{t}-(\bar{\lambda}-\epsilon)^{t}\right]$

The Limiting Solution as $\epsilon \rightarrow 0$

The limit of x_{t}^{ϵ} as $\epsilon \rightarrow 0$ takes the form

$$
\bar{x}_{0} \bar{\lambda}^{t}+\frac{1}{2}\left(\bar{x}_{1}-\bar{x}_{0} \bar{\lambda}\right) \lim _{\epsilon \rightarrow 0}(1 / \epsilon)\left[(\bar{\lambda}+\epsilon)^{t}-(\bar{\lambda}-\epsilon)^{t}\right]
$$

To evaluate the last limit, apply l'Hôpital's rule to obtain

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0}\left[(\bar{\lambda}+\epsilon)^{t}-(\bar{\lambda}-\epsilon)^{t}\right] / \epsilon \\
= & \lim _{\epsilon \rightarrow 0}\left[t(\bar{\lambda}+\epsilon)^{t-1}+t(\bar{\lambda}-\epsilon)^{t-1}\right] / 1 \\
= & 2 t \bar{\lambda}^{t-1}=(2 t / \bar{\lambda}) \bar{\lambda}^{t}
\end{aligned}
$$

Two linearly independent possible solutions of the difference equation $x_{t+1}+a x_{t}+b x_{t-1}=0$ with $x_{0} \neq 0$ are $x_{t}^{(1)}=x_{0} \lambda^{t}$ and $x_{t}^{(2)}=x_{0} t \lambda^{t}$.

There are two degrees of freedom in the difference equation.
Its general solution is $x_{t}=(C+D t) \lambda^{t}$ for arbitrary real constants C and D.

A Simpler Approach, I

We are trying to solve the homogeneous second-order difference equation with a repeated root λ, taking the form

$$
x_{t+1}-2 \lambda x_{t}+\lambda^{2} x_{t-1}=0
$$

We know that one solution is $x_{t}=x_{0} \lambda^{t}$ for arbitrary x_{0}.
To find a second linearly independent solution that we know must exist, try putting $x_{t}=\lambda^{t} y_{t}$.

Substituting into the original equation gives

$$
\lambda^{t+1} y_{t+1}-2 \lambda^{t+1} y_{t}+\lambda^{t+1} y_{t-1}=0
$$

Disregarding the trivial case when $\lambda=0$, one has $y_{t+1}-2 y_{t}+y_{t-1}=0$.

A Simpler Approach, II

To solve $y_{t+1}-2 y_{t}+y_{t-1}=0$,
try introducing yet another new variable $z_{t}=y_{t+1}-y_{t}$.
This leads to the new difference equation $z_{t}-z_{t-1}=0$ whose solution is obviously $z_{t}=z_{0}$ for all $t=1,2, \ldots$.
Then $y_{t+1}-y_{t}=z_{0}$ for all t, implying that $y_{t}=y_{0}+z_{0} t$. It follows that $x_{t}=\lambda^{t} y_{t}=\left(y_{0}+z_{0} t\right) \lambda^{t}$.
To conclude, two solutions are $x_{t}^{(1)}=\lambda^{t}$ and $x_{t}^{(2)}=t \lambda^{t}$.
These are linearly independent because

$$
\left|\begin{array}{cc}
x_{0}^{(1)} & x_{0}^{(2)} \\
x_{1}^{(1)} & x_{1}^{(2)}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
\lambda & \lambda
\end{array}\right|=\lambda \neq 0
$$

The general solution is therefore $x_{t}=(A+B t) \lambda^{t}$ for arbitrary real constants A and B, where $A=x_{0}$.

Lecture Outline

Solving Second-Order Equations

Inhomogeneous Equations

Particular Solutions in Two Special Cases
Method of Undetermined Coefficients

Higher-Order Linear Equations with Constant Coefficients
Stationary States and Stability for Second-Order Equations

From Particular to General Solutions

The homogeneous equation with constant coefficients takes the form

$$
x_{t+1}+a x_{t}+b x_{t-1}=0
$$

The associated inhomogeneous equation takes the form

$$
x_{t+1}+a x_{t}+b x_{t-1}=f_{t}
$$

for a general forcing term f_{t} on the RHS.
Let x_{t}^{P} denote a particular solution, and x_{t}^{G} any alternative general solution, of the inhomogeneous equation.

Characterizing the General Solution

Our assumptions imply that, for each $t=1,2, \ldots$, one has

$$
\begin{aligned}
& x_{t+1}^{P}+a x_{t}^{P}+b x_{t-1}^{P}=f_{t} \\
& x_{t+1}^{G}+a x_{t}^{G}+b x_{t-1}^{G}=f_{t}
\end{aligned}
$$

Subtracting the first equation from the second implies that

$$
x_{t+1}^{G}-x_{t+1}^{P}+a\left(x_{t}^{G}-x_{t}^{P}\right)+b\left(x_{t-1}^{G}-x_{t-1}^{P}\right)=0
$$

This shows that $x_{t}^{H}:=x_{t}^{G}-x_{t}^{P}$
solves the homogeneous equation $x_{t+1}+a x_{t}+b x_{t-1}=0$.
So the general solution x_{t}^{G}
of the inhomogeneous equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ with forcing term f_{t} is the sum $x_{t}^{P}+x_{t}^{H}$ of

- any particular solution x_{t}^{P} of the inhomogeneous equation;
- the general solution x_{t}^{H} of the homogeneous equation.

Linearity in the Forcing Term

Theorem

Suppose that x_{t}^{P} and y_{t}^{P} are particular solutions of the two respective difference equations

$$
x_{t+1}+a x_{t}+b x_{t-1}=d_{t} \quad \text { and } \quad y_{t+1}+a y_{t}+b y_{t-1}=e_{t}
$$

Then, for any scalars α and β, the linear combination $z_{t}^{P}:=\alpha x_{t}^{P}+\beta y_{t}^{P}$ is a particular solution of the equation $z_{t+1}+a z_{t}+b z_{t-1}=\alpha d_{t}+\beta e_{t}$.

Proof.

Routine algebra.
Consider any equation of the form $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ where f_{t} is a linear combination $\sum_{k=1}^{n} \alpha_{k} f_{t}^{k}$ of n forcing terms.
The theorem implies that a particular solution is the corresponding linear combination $\sum_{k=1}^{n} \alpha_{k} x_{t}^{P k}$ of particular solutions to the equations $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}^{k}$.

Deriving an Explicit Particular Solution, I

In part A we were able to derive an explicit solution
to the general first-order linear equation $x_{t}-a_{t} x_{t-1}=f_{t}$.
Here, for the special case of constant coefficients,
we derive an explicit particular solution satisfying $x_{0}=x_{1}=0$ to the general second-order linear equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$.

Indeed, suppose that $\lambda^{2}+a \lambda+b=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$ because λ_{1} and λ_{2} are the roots
(possibly coincident, or possibly complex conjugates)
of the auxiliary equation $\lambda^{2}+a \lambda+b=0$.
Introduce the new variable $y_{t}=x_{t}-\lambda_{1} x_{t-1}$, implying that

$$
\begin{aligned}
y_{t+1}-\lambda_{2} y_{t} & =x_{t+1}-\lambda_{1} x_{t}-\lambda_{2} x_{t}+\lambda_{1} \lambda_{2} x_{t-1} \\
& =x_{t+1}-\left(\lambda_{1}+\lambda_{2}\right) x_{t}+\lambda_{1} \lambda_{2} x_{t-1} \\
& =x_{t+1}+a x_{t}+b x_{t-1}=f_{t}
\end{aligned}
$$

Deriving an Explicit Particular Solution, II

Instead of the second-order equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$, we have the recursive pair of first-order equations

$$
x_{t}-\lambda_{1} x_{t-1}=y_{t} \quad \text { and } \quad y_{t+1}-\lambda_{2} y_{t}=f_{t} \quad(\text { for } t=1,2, \ldots)
$$

where λ_{1} and λ_{2} are the roots of $\lambda^{2}+a \lambda+b=0$.
Given the initial conditions $x_{0}=x_{1}=0$ and so $y_{1}=0$, the explicit solutions like those derived in Part A are the sums

$$
y_{t}=\sum_{k=1}^{t-1} \lambda_{2}^{t-k-1} f_{k} \quad \text { and } \quad x_{t}=\sum_{s=2}^{t} \lambda_{1}^{t-s} y_{s} \quad \text { for } t=1,2, \ldots
$$

Substituting the first equation in the second yields the double sum

$$
x_{t}=\sum_{s=2}^{t} \lambda_{1}^{t-s} \sum_{k=1}^{s-1} \lambda_{2}^{s-k-1} f_{k}
$$

which we would like to reduce to $x_{t}=\sum_{k=1}^{t-1} \xi_{t-k-1} f_{k}$

- i.e., a linear combination of the forcing terms $\left(f_{1}, f_{2}, \ldots, f_{t-1}\right)$.

Deriving an Explicit Particular Solution, III

We begin by introducing the mapping $\mathbb{N} \times \mathbb{N} \ni(k, s) \mapsto 1_{k s}\{k<s\} \in\{0,1\}$ defined by

$$
1_{k s}\{k<s\}:= \begin{cases}1 & \text { if } k<s \\ 0 & \text { if } k \geq s\end{cases}
$$

Then we can rewrite $x_{t}=\sum_{s=2}^{t} \lambda_{1}^{t-s} \sum_{k=1}^{s-1} \lambda_{2}^{s-k-1} f_{k}$ as the double sum $x_{t}=\sum_{s=2}^{t} \sum_{k=1}^{t-1} 1_{k s}\{k<s\} \lambda_{1}^{t-s} \lambda_{2}^{s-k-1} f_{k}$. Interchanging the order of summation gives

$$
\begin{aligned}
x_{t} & =\sum_{k=1}^{t-1} \sum_{s=2}^{t} 1_{k s}\{k<s\} \lambda_{1}^{t-s} \lambda_{2}^{s-k-1} f_{k} \\
& =\sum_{k=1}^{t-1}\left(\sum_{s=k+1}^{t} \lambda_{1}^{t-s} \lambda_{2}^{s-k-1}\right) f_{k} \\
& =\sum_{k=1}^{t-1}\left(\lambda_{1}^{t-k-1}+\lambda_{1}^{t-k-2} \lambda_{2}+\ldots+\lambda_{1} \lambda_{2}^{t-k-2}+\lambda_{2}^{t-k-1}\right) f_{k}
\end{aligned}
$$

This reduces to $x_{t}=\sum_{k=1}^{t-1} \xi_{t-k-1} f_{k}$ where $\xi_{m}:=\sum_{j=0}^{m} \lambda_{1}^{m-j} \lambda_{2}^{j}$.

Deriving an Explicit Particular Solution: IV

The value of the sum $\xi_{m}=\sum_{j=0}^{m} \lambda_{1}^{m-j} \lambda_{2}^{j}$ depends on whether:

- we are in the general case when $\lambda_{1} \neq \lambda_{2}$;
- we are in the degenerate case when $\lambda_{1}=\lambda_{2}=\lambda$.

In the general case one has

$$
\left(\lambda_{1}-\lambda_{2}\right) \xi_{m}=\sum_{j=0}^{m}\left(\lambda_{1}^{m+1-j} \lambda_{2}^{j}-\lambda_{1}^{m-j} \lambda_{2}^{j+1}\right)=\lambda_{1}^{m+1}-\lambda_{2}^{m+1}
$$

implying the particular solution

$$
x_{t}^{P}=\frac{1}{\lambda_{1}-\lambda_{2}} \sum_{k=1}^{t-1}\left(\lambda_{1}^{t-k}-\lambda_{2}^{t-k}\right) f_{k}
$$

In the degenerate case one has $\xi_{m}=(m+1) \lambda^{m}$, implying the particular solution

$$
x_{t}^{P}=\sum_{k=1}^{t-1}(t-k) \lambda^{t-k} f_{k}
$$

Lecture Outline

> Solving Second-Order Equations

> Inhomogeneous Equations

Particular Solutions in Two Special Cases

Method of Undetermined Coefficients

Higher-Order Linear Equations with Constant Coefficients

Stationary States and Stability for Second-Order Equations

First Special Case with Distinct Real Roots, I

Consider the equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ in the first special case when $f_{t}=\mu^{t}$ with $\mu \neq 0$.

In the general case when the two roots λ_{1} and λ_{2}
of the auxiliary equation $\lambda^{2}+a \lambda+b=0$ are distinct, the particular solution with $x_{0}^{P}=x_{1}^{P}=0$ is

$$
x_{t}^{P}=\frac{1}{\lambda_{1}-\lambda_{2}} \sum_{k=1}^{t-1}\left(\lambda_{1}^{t-k}-\lambda_{2}^{t-k}\right) \mu^{k}
$$

But $(\lambda-\mu) \sum_{k=1}^{t-1} \lambda^{t-k} \mu^{k}=\sum_{k=1}^{t-1}\left(\lambda^{t-k+1} \mu^{k}-\lambda^{t-k} \mu^{k+1}\right)$, so

$$
x_{t}^{P}=\frac{1}{\lambda_{1}-\lambda_{2}}\left(\frac{\lambda_{1}^{t} \mu-\lambda_{1} \mu^{t}}{\lambda_{1}-\mu}-\frac{\lambda_{2}^{t} \mu-\lambda_{2} \mu^{t}}{\lambda_{2}-\mu}\right)
$$

in case $\mu \notin\left\{\lambda_{1}, \lambda_{2}\right\}$.
Disregarding the terms in λ_{1}^{t} and λ_{2}^{t} that solve the corresponding homogeneous equation, the solution reduces to $x_{t}^{P}=\alpha \mu^{t}$ for a suitable constant α.

First Special Case with Distinct Real Roots, II

The degenerate case when $\mu \in\left\{\lambda_{1}, \lambda_{2}\right\}$ is more complicated.
In case $\lambda_{1} \neq \lambda_{2}=\mu$, the particular solution with $x_{0}^{P}=x_{1}^{P}=0$ is still

$$
x_{t}^{P}=\frac{1}{\lambda_{1}-\lambda_{2}} \sum_{k=1}^{t-1}\left(\lambda_{1}^{t-k}-\lambda_{2}^{t-k}\right) \mu^{k}
$$

Because $\lambda_{2}=\mu$, this reduces to

$$
\begin{aligned}
x_{t}^{P} & =\frac{1}{\lambda_{1}-\mu} \sum_{k=1}^{t-1}\left(\lambda_{1}^{t-k} \mu^{k}-\mu^{t}\right) \\
& =\frac{1}{\lambda_{1}-\mu}\left[\frac{\lambda_{1}^{t} \mu-\lambda_{1} \mu^{t}}{\lambda_{1}-\mu}-(t-1) \mu^{t}\right]
\end{aligned}
$$

Disregarding the terms in λ_{1}^{t} and in $\lambda_{2}^{t}=\mu^{t}$ that solve the corresponding homogeneous equation, the solution reduces to $x_{t}^{P}=\alpha t \mu^{t}$ for a suitable constant α.

First Special Case with Coincident Real Roots

Consider now the degenerate case with coincident real roots $\lambda_{1}=\lambda_{2}=\lambda$.
So the inhomogeneous equation is $x_{t+1}-2 \lambda x_{t}+\lambda^{2} x_{t-1}=\mu^{t}$.
As before, put $y_{t}=x_{t}-\lambda x_{t-1}$ so that

$$
y_{t+1}-\lambda y_{t}=x_{t+1}-\lambda x_{t}-\lambda x_{t}+\lambda^{2} x_{t-1}=\mu^{t}
$$

We consider again the particular solution with $x_{0}=x_{1}=0$ and so $y_{1}=0$.

First Special Case with Coincident Real Roots: $\lambda \neq \mu$

Provided that $\lambda \neq \mu$, for $t=2,3, \ldots$ one has

$$
\begin{aligned}
y_{t}^{P} & =\sum_{k=2}^{t} \lambda^{t-k} \mu^{k-1}=\frac{\mu\left(\lambda^{t-1}-\mu^{t-1}\right)}{\lambda-\mu} \\
\text { and then } x_{t}^{P} & =\sum_{k=2}^{t} \lambda^{t-k} y_{k}^{P}=\sum_{k=2}^{t} \lambda^{t-k} \mu \frac{\lambda^{k-1}-\mu^{k-1}}{\lambda-\mu} \\
& =\sum_{k=2}^{t} \frac{\mu \lambda^{t-1}-\lambda^{t-k} \mu^{k}}{\lambda-\mu} \\
& =\frac{\mu(t-1) \lambda^{t-1}}{\lambda-\mu}-\frac{\lambda^{t-1} \mu^{2}-\mu^{t+1}}{(\lambda-\mu)^{2}}
\end{aligned}
$$

Hence $x_{t}^{P}=(\alpha+\beta t) \lambda^{t}+\gamma \mu^{t}$ for suitable constants α, β and γ that depend on λ and μ, but not on t.

Because $(\alpha+\beta t) \lambda^{t}$ is a complementary solution of the homogeneous equation, the particular solution can be reduced to $x_{t}^{P}=\gamma \mu^{t}$.

First Special Case with Coincident Real Roots: $\lambda=\mu$

In case $\lambda=\mu$, however, for $t=2,3, \ldots$ one has

$$
\begin{aligned}
y_{t}^{P} & =\sum_{k=2}^{t} \lambda^{t-k} \mu^{k-1}=(t-1) \lambda^{t-1} \\
\text { and then } x_{t}^{P} & =\sum_{k=2}^{t} \lambda^{t-k} y_{k}^{P}=\sum_{k=2}^{t} \lambda^{t-k}(k-1) \lambda^{k-1} \\
& =\sum_{k=2}^{t}(k-1) \lambda^{t-1}=\frac{1}{2} t(t-1) \lambda^{t-1}
\end{aligned}
$$

Hence $x_{t}^{P}=\left(\alpha t+\beta t^{2}\right) \lambda^{t}$ for suitable constants α and β that depend on $\lambda=\mu$, but not on t.

Because $\alpha t \lambda^{t}$ is a complementary solution of the homogeneous equation, the particular solution can be reduced to $x_{t}^{P}=\beta t^{2} \mu^{t}$.

Second Special Case: General Theorem

Consider next the equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ in the second special case when $f_{t}=t^{r} \mu^{t}$ with $\mu \neq 0$ and $r \in \mathbb{N}$.
As before, let λ_{1} and λ_{2} denote the roots
of the auxiliary equation $\lambda^{2}+a \lambda+b=0$.

Theorem

The difference equation $x_{t+1}+a x_{t}+b x_{t-1}=t^{r} \mu^{t}$ has a particular solution of the form $x_{t}^{P}=\xi^{P}(t) \mu^{t}$ where $\xi^{P}(t)=\sum_{j=0}^{d} \xi_{r j} t^{j}$ is a polynomial in t which has degree:

- $d=r$ in case $\mu \notin\left\{\lambda_{1}, \lambda_{2}\right\}$;
- $d=r+2$ in case $\mu=\lambda_{1}=\lambda_{2}$;
- $d=r+1$ otherwise.

We begin the proof by introducing, as before, the new variable $y_{t}:=x_{t}-\lambda_{1} x_{t-1}$, implying that

$$
\begin{aligned}
y_{t+1}-\lambda_{2} y_{t} & =x_{t+1}-\lambda_{1} x_{t}-\lambda_{2} x_{t}+\lambda_{1} \lambda_{2} x_{t-1} \\
& =x_{t+1}+a x_{t}+b x_{t-1}=t^{r} \mu^{t}
\end{aligned}
$$

Continuing the Proof of the General Theorem

By the result in part A, the first-order equation $y_{t+1}-\lambda_{2} y_{t}=t^{r} \mu^{t}$ has a particular solution of the form $y_{t}=Q(t) \mu^{t}$, where $Q(t)=\sum_{j=0}^{d} q_{r j} t^{j}$ is a polynomial in t which has degree:
(i) $d=r$ in case $\mu \neq \lambda_{2}$;
(ii) $d=r+1$ in case $\mu=\lambda_{2}$.

By the linearity property of particular solutions, the equation

$$
x_{t}-\lambda_{1} x_{t-1}=y_{t}=Q(t) \mu^{t}=\sum_{j=0}^{d} q_{r j} t^{j} \mu^{t}
$$

has a particular solution $x_{t}^{P}=\xi^{P}(t) \mu^{t}$ where

$$
x_{t}^{P}=\xi^{P}(t) \mu^{t}=\sum_{j=0}^{d} q_{r j} P_{j}(t) \mu^{t}
$$

is the appropriate linear combination of the particular solutions $x_{t}=P_{j}(t) \mu^{t}(j=0,1,2, \ldots, d)$ of the $d+1$ first-order equations $x_{t}-\lambda_{1} x_{t-1}=t^{j} \mu^{t}$.

Ending the Proof of the General Theorem

Again, using the result in part A, for each $j=0,1,2, \ldots, r$, the solution $x_{t}=P_{j}(t) \mu^{t}$ of the first-order difference equation $x_{t}-\lambda_{1} x_{t-1}=t^{j} \mu^{t}$ involves a polynomial $P_{j}(t)$ in t which has degree:
(i) j in case $\mu \neq \lambda_{1}$;
(ii) $j+1$ in case $\mu=\lambda_{1}$.

So the degree of the highest order polynomial $P_{d}(t)$ is
(i) d in case $\mu \neq \lambda_{1}$;
(ii) $d+1$ in case $\mu=\lambda_{1}$.

Combined with our previous result on whether $d=r$ or $d=r+1$, the degree d of $\xi^{P}(t)$ is now easily seen to be

- $d=r$ in case $\mu \notin\left\{\lambda_{1}, \lambda_{2}\right\}$;
- $d=r+2$ in case $\mu=\lambda_{1}=\lambda_{2}$;
- $d=r+1$ otherwise.

Using the notation $\# S$ for the number of elements in a set S, these three cases can be summarized as $d=r+3-\#\left\{\lambda_{1}, \lambda_{2}, \mu\right\}$.

Lecture Outline

> Solving Second-Order Equations

> Inhomogeneous Equations

> Particular Solutions in Two Special Cases

Method of Undetermined Coefficients

Higher-Order Linear Equations with Constant Coefficients
Stationary States and Stability for Second-Order Equations

First Special Case: A Simpler Approach

We have proved that the second-order difference equation

$$
x_{t+1}+a x_{t}+b x_{t-1}=\mu^{t}
$$

has a particular solution of the form $x_{t}^{P}=\alpha \mu^{t}$.
But there is a much easier way to find x_{t}^{P}, treating the parameter α as an undetermined coefficient.

Indeed, for $x_{t}=\alpha \mu^{t}$ to be a solution, one needs $\alpha \mu^{t+1}+a \alpha \mu^{t}+b \alpha \mu^{t-1}=\mu^{t}$.
Dividing each side by μ^{t-1} yields the equation $\alpha\left(\mu^{2}+a \mu+b\right)=\mu$.
In the non-degenerate case when $\mu^{2}+a \mu+b \neq 0$ because μ is not a root of the characteristic equation $\lambda^{2}+a \lambda+b=0$, one has $\alpha=\mu\left(\mu^{2}+a \mu+b\right)^{-1}$.
Hence, a particular solution is $x_{t}^{P}=\left(\mu^{2}+a \mu+b\right)^{-1} \mu^{t+1}$.

Degenerate Case When μ is a Characteristic Root

The simple degenerate case occurs when $\mu^{2}+a \mu+b=0$ because μ equals one of the two distinct roots λ_{1} and λ_{2} of the characteristic equation $\lambda^{2}+a \lambda+b=0$.

Then we have proved that the second-order difference equation

$$
x_{t+1}+a x_{t}+b x_{t-1}=\mu^{t}
$$

has a particular solution of the form $x_{t}^{P}=\alpha t \mu^{t}$.
To determine the undetermined coefficient α, we must solve

$$
\alpha(t+1) \mu^{t+1}+a \alpha t \mu^{t}+b \alpha(t-1) \mu^{t-1}=\mu^{t}
$$

Dividing each side by μ^{t-1} and gathering terms yields the equation $\alpha t\left(\mu^{2}+a \mu+b\right)+\alpha\left(\mu^{2}-b\right)=\mu$.
Provided that $\mu^{2} \neq b$, this reduces to $\alpha=\left(\mu^{2}-b\right)^{-1} \mu$.

Doubly Degenerate Case

When $\mu^{2}=b$, however, the degenerate case is more complicated. Indeed, the equation $\mu^{2}+a \mu+b=0$ implies that $a \mu+2 b=0$.
Hence $\mu=-2 b / a$, so $\mu^{2}=b=4 b^{2} / a^{2}$ implying that $a^{2}=4 b$.
Then the characteristic equation $\lambda^{2}+a \lambda+b=0$ reduces to $(\lambda-\mu)^{2}=0$, with μ as its repeated root.

Inspired by the earlier theorem, we look for a particular solution of the form $x_{t}^{P}=\alpha t^{2} \mu^{t}$.

To determine the undetermined coefficient α, we must solve

$$
\alpha(t+1)^{2} \mu^{t+1}+a \alpha t^{2} \mu^{t}+b \alpha(t-1)^{2} \mu^{t-1}=\mu^{t}
$$

Dividing each side by μ^{t-1} and gathering terms yields

$$
\alpha t^{2}\left(\mu^{2}+a \mu+b\right)+\alpha(2 t+1) \mu^{2}+\alpha b(-2 t+1)=\mu
$$

Because $\mu^{2}+a \mu+b=0$ and $0 \neq b=\mu^{2}$, this equation reduces to $2 \alpha \mu^{2}=\mu$, implying that $\alpha=1 / 2 \mu$.

Second Special Case

Again, inspired by earlier theorems, we can apply the method of undetermined coefficients to the equation

$$
x_{t+1}+a x_{t}+b x_{t-1}=\sum_{k=1}^{m} \sum_{j=1}^{r_{k}} \alpha_{k j} t^{j} \mu_{k}^{t}
$$

where we naturally assume that the constants $\mu_{k}(k=1,2, \ldots, m)$ are all different.

A particular solution takes the form

$$
x_{t}^{P}=\sum_{k=1}^{m} \sum_{j=1}^{d_{k}} \beta_{k j} t^{j} \mu_{k}^{t}
$$

where the degree d_{k} of each polynomial $\sum_{j=1}^{d_{k}} \beta_{k j} t^{j}$ with undetermined coefficients $\left\langle\left\langle\beta_{k j}\right\rangle_{j=1}^{d_{k}}\right\rangle_{k=1}^{m}$ is

- r_{k} in case $\mu_{k} \notin\left\{\lambda_{1}, \lambda_{2}\right\}$;
- $r_{k}+2$ in case $\mu_{k}=\lambda_{1}=\lambda_{2}$;
- $r_{k}+1$ otherwise.

Determining the Coefficients

The coefficients $\left\langle\left\langle\beta_{k j}\right\rangle_{j=1}^{d_{k}}\right\rangle_{k=1}^{m}$ of the particular solution

$$
x_{t}^{P}=\sum_{k=1}^{m} \sum_{j=1}^{d_{k}} \beta_{k j} t^{j} \mu_{k}^{t}
$$

can be found (in principle!) by solving, for $k=1,2, \ldots, m$, the m independent systems of linear equations that result from equating coefficients of powers of t in the expansions

$$
\sum_{j=1}^{d_{k}} \beta_{k j}\left[(t+1)^{j} \mu_{k}^{2}+a t^{j} \mu_{k}^{t}+b(t-1)^{j}\right]=\sum_{j=1}^{r_{k}} \alpha_{k j} t^{j} \mu_{k}
$$

Lecture Outline

> Solving Second-Order Equations

> Inhomogeneous Equations

> Particular Solutions in Two Special Cases

> Method of Undetermined Coefficients

Higher-Order Linear Equations with Constant Coefficients

Stationary States and Stability for Second-Order Equations

Higher-Order Linear Equations with Constant Coefficients

An nth order linear equation with constant coefficients takes the form

$$
x_{t}+\sum_{r=1}^{n} a_{r} x_{t-r}=f_{t}
$$

in the inhomogeneous case, and

$$
x_{t}+\sum_{r=1}^{n} a_{r} x_{t-r}=0
$$

in the homogeneous case.
The corresponding auxiliary equation is $\lambda^{n}+\sum_{r=1}^{n} a_{r} \lambda^{n-r}=0$.

Roots of the Auxiliary Equation

The auxiliary equation can be written as $p_{n}(\lambda)=0$ whose LHS is the polynomial $\lambda^{n}+\sum_{r=1}^{n} a_{r} \lambda^{t-r}$ of degree n.

By the fundamental theorem of algebra, this equation has at least one root λ_{1}, which may be complex.

Then $p_{n}(\lambda)$ can be factored as $p_{n}(\lambda) \equiv\left(\lambda-\lambda_{1}\right) p_{n-1}(\lambda)$.
But now the equation $p_{n-1}(\lambda)=0$ also has at least one root λ_{2}, which may also be complex.

Repeating this argument n times, the auxiliary equation $p_{n}(\lambda)=0$ has n roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, some of which may be repeated.

In particular, $p_{n}(\lambda) \equiv \prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)$.

Solving the Homogeneous Equation

Theorem

Consider the homogeneous equation $x_{t}+\sum_{r=1}^{n} a_{r} x_{t-r}=0$, and suppose that the auxiliary equation can be written as

$$
0=\lambda^{n}+\sum_{r=1}^{n} a_{r} \lambda^{t-r}=\prod_{j=1}^{k}\left(\lambda-\rho_{j}\right)^{m_{j}}
$$

with k distinct roots $\rho_{j}(j=1,2, \ldots, k)$ whose respective multiplicities m_{j} satisfy $\sum_{j=1}^{k} m_{j}=n$.
Then the general solution of the homogeneous equation takes the form

$$
x_{t}=\sum_{j=1}^{k} \sum_{h=1}^{m_{j}} \alpha_{j h} t^{h-1} \rho_{j}^{t}
$$

for n arbitrary constants $\alpha_{j h}\left(h=1,2, \ldots, m_{j}\right.$ and $\left.j=1,2, \ldots, k\right)$.
That is, the general solution is an arbitrary linear combination of the functions $t^{h-1} \rho_{j}^{t}\left(h=1,2, \ldots, m_{j}\right.$ and $\left.j=1,2, \ldots, k\right)$.

Solving the Inhomogeneous Equation

Theorem

The general solution of the inhomogeneous equation

$$
x_{t}+\sum_{r=1}^{n} a_{r} x_{t-r}=\sum_{h=1}^{i} \sum_{j=1}^{q_{h}} \alpha_{h j} t^{j} \mu_{h}^{t}
$$

is the sum of: (i) the general complementary solution
to the corresponding homogeneous equation $x_{t}+\sum_{r=1}^{n} a_{r} x_{t-r}=0$; and (ii) any particular solution.
One particular solution takes the form $x_{t}^{P}=\sum_{h=1}^{i} \sum_{j=1}^{d_{h}} \beta_{h j} t^{j} \mu_{h}^{t}$ where the degree d_{h} of each polynomial $\sum_{j=1}^{d_{h}} \beta_{h j} t^{j}$ with undetermined coefficients $\left\langle\left\langle\beta_{h j}\right\rangle_{j=1}^{d_{h}}\right\rangle_{h=1}^{i}$ is

- q_{h} in case $\mu_{h} \notin\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{k}\right\}$;
- $q_{h}+m_{j}$ in case $\mu_{h}=\rho_{j}$, a root of multiplicity m_{j}.

Lecture Outline

> Solving Second-Order Equations

> Inhomogeneous Equations

> Particular Solutions in Two Special Cases

> Method of Undetermined Coefficients

> Higher-Order Linear Equations with Constant Coefficients

Stationary States and Stability for Second-Order Equations

Stationary States of a Linear Equation

Consider the second-order equation $x_{t+1}+a x_{t}+b x_{t-1}=f$ for a constant forcing term $f \in \mathbb{R}$.

Here a stationary state $x^{*} \in \mathbb{R}$ has the defining property that $x_{t-1}=x_{t}=x^{*} \Longrightarrow x_{t+1}=x^{*}$.

This is satisfied if and only if $x^{*}+a x^{*}+b x^{*}=f$, or equivalently, if and only if $(1+a+b) x^{*}=f$.

In case $a+b=-1$, there is:

- no stationary state unless $f=0$;
- a whole real line \mathbb{R} of stationary states if $f=0$.

Otherwise, if $a+b \neq-1$, the only stationary state is $x^{*}=(1+a+b)^{-1} f$.

Stability of a Linear Equation

If $a+b \neq-1$, let $y_{t}:=x_{t}-x^{*}$ denote the deviation of state x_{t} from the stationary state $x^{*}=(1+a+b)^{-1} f$. Then

$$
\begin{aligned}
y_{t+1} & =x_{t+1}-x^{*}=-a x_{t}-b x_{t-1} f-x^{*} \\
& =-a\left(y_{t}+x^{*}\right)-b\left(y_{t-1}+x^{*}\right)+f-x^{*}=-a y_{t}-b y_{t-1}
\end{aligned}
$$

Thus y_{t} solves the homogenous equation $x_{t+1}+a x_{t}+b x_{t-1}=0$.
As already seen, the solution to this homogeneous equation depends on the two roots $\lambda_{1,2}=-\frac{1}{2} a \pm \frac{1}{2} \sqrt{a^{2}-4 b}$ of the quadratic characteristic equation

$$
f(\lambda) \equiv \lambda^{2}+a \lambda+b \equiv\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=0
$$

There are three cases to consider:

1. two distinct real roots because $a^{2}-4 b>0$;
2. two complex conjugate roots because $a^{2}-4 b<0$;
3. two coincident real roots because $a^{2}-4 b=0$.

Stability Condition

With two distinct roots λ_{1} and λ_{2}, real or complex, the general solution of the homogeneous equation is $x_{t}=A \lambda_{1}^{t}+B \lambda_{2}^{t}$.

Stability is satisfied if and only if for all $A, B \in \mathbb{R}$ one has $x_{t} \rightarrow 0$ as $t \rightarrow \infty$.

This is true if and only if the absolute values of both roots satisfy $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$.

With two coincident roots $\lambda_{1}=\lambda_{2}=-\frac{1}{2} a=\sqrt{b}$, the general solution of the homogeneous equation is $x_{t}=(A+B t) \lambda^{t}$.
Again, stability is satisfied if and only if for all $A, B \in \mathbb{R}$ one has $x_{t} \rightarrow 0$ as $t \rightarrow \infty$.

This is true if and only if the absolute value of the double root satisfies $|\lambda|<1$.

Two Distinct Real Roots

Here $\lambda^{2}+a \lambda+b=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$
where λ_{1} and λ_{2} are both real.
Note that the quadratic function $f(\lambda) \equiv \lambda^{2}+a \lambda+b$ is convex and satisfies $f(\lambda) \rightarrow+\infty$ as $\lambda \rightarrow \pm \infty$.

So the real roots of $f(\lambda)=0$ satisfy $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$ iff

$$
f(-1)>0 \text { and } f(1)>0 \text { with } f^{\prime}(-1)<0 \text { and } f^{\prime}(1)>0
$$

These conditions are equivalent to

$$
1-a+b>0 \text { and } 1+a+b>0 \text { with }-2+a<0 \text { and } 2+a>0
$$

or to $|a|<2$ and $|a|<1+b$.
Together with the condition $a^{2}>4 b$ for the equation $f(\lambda)=0$ to have two distinct real roots, these inequalities are equivalent to $|a|-1<b<1$.

Two Complex Conjugate Roots

The characteristic equation $\lambda^{2}+a \lambda+b=0$ has two complex conjugate roots when $a^{2}-4 b<0$.

In this case, these characteristic roots are

$$
\lambda_{1,2}=-\frac{1}{2} a \pm \frac{1}{2} i \sqrt{4 b-a^{2}}=r e^{ \pm i \theta}=r(\cos \theta \pm i \sin \theta)
$$

where $r=\sqrt{b}$ and $\theta=\arccos (a / 2 \sqrt{b})$
Then the general solution of the homogeneous equation
can be written as $x_{t}=r^{t}(A \cos \theta t+B \sin \theta t)$.
Stability is satisfied if and only if for all $A, B \in \mathbb{R}$ one has $x_{t} \rightarrow 0$ as $t \rightarrow \infty$.

This is true if and only if $b<1$, as well as $a^{2}-4 b<0$ which implies that $b>0$.

A Repeated Real Root

The characteristic equation $\lambda^{2}+a \lambda+b=0$ has two coincident real roots roots when $a^{2}=4 b$.

In this case, $\lambda^{2}+a \lambda+b=\left(\lambda+\frac{1}{2} a\right)^{2}$.
The coincident real roots both equal $-\frac{1}{2} a$.
Then the general solution of the homogeneous equation is $x_{t}=(A+B t)\left(-\frac{1}{2} a\right)^{t}$.

Stability is satisfied if and only if for all $A, B \in \mathbb{R}$ one has $x_{t} \rightarrow 0$ as $t \rightarrow \infty$.

This is true if and only if the modulus of the repeated root $\lambda=-\frac{1}{2}$ a satisfies $|\lambda|<1$, and so if and only if $|a|<2$.

A Simpler Stability Condition

Theorem
The linear autonomous equation $x_{t+1}+a x_{t}+b x_{t-1}=f$ is stable, both locally and globally, if and only if $|a|<1+b<2$.

Proof.

Stability requires one of the following three to hold:

1. distinct real roots because $a^{2}>4 b$, with $|a|-1<b<1$;
2. complex conjugate roots because $a^{2}<4 b$, with $b<1$;
3. a repeated real root because $a^{2}=4 b$, with $|a|<2$.

A diagram in the (a, b)-plane shows that one of these three holds if and only if $|a|<1+b<2$.

Diagram of Stable Region

The stable region occurs where $|a|-1<b<1$, in the interior of an isosceles right-angled triangle with corners at $(a, b)=(0,-1)$ and $(a, b)=(\pm 2,1)$.

Stability with a Variable Forcing Term

Consider now the second-order equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ for a variable forcing term f_{t}.
The general solution takes the form $x_{t}^{G}=x_{t}^{H}+x_{t}^{P}$ where:

- x_{t}^{P} is one particular solution of $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$;
- x_{t}^{H} is any one of a two-dimension continuum of solutions to the homogeneous equation $x_{t+1}+a x_{t}+b x_{t-1}=0$.

The stability condition $|a|<1+b<2$ is necessary and sufficient for any solution of the homogeneous equation to satisfy $x_{t}^{H} \rightarrow 0$ as $t \rightarrow \infty$.
It is therefore also necessary and sufficient for the difference between any two solutions $x_{t}^{(1)}$ and $x_{t}^{(2)}$ of the inhomogeneous equation $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$ to satisfy $x_{t}^{(1)}-x_{t}^{(2)} \rightarrow 0$ as $t \rightarrow \infty$.
In the long run, this means that there is an asymptotically unique solution to $x_{t+1}+a x_{t}+b x_{t-1}=f_{t}$.

