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Square Matrices

A square matrix has an equal number of rows and columns,
this number being called its dimension.

The (principal, or main) diagonal
of a square matrix A = (aij)n×n of dimension n
is the list (aii )

n
i=1 = (a11, a22, . . . , ann) of its n diagonal elements.

The other elements aij with i 6= j are the off-diagonal elements.

A square matrix is often expressed in the form

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


with some extra dots along the diagonal.
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Symmetric Matrices

Definition
A square matrix A is symmetric just in case
it is equal to its transpose — i.e., if A> = A.

Example

The product of two symmetric matrices need not be symmetric.

Using again our example of non-commuting 2× 2 matrices,
here are two examples
where the product of two symmetric matrices is asymmetric:

I
(

0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
;

I
(

0 0
0 1

)(
0 1
1 0

)
=

(
0 0
1 0

)
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Two Exercises with Symmetric Matrices

Exercise
Let x be a column n-vector.

1. Find the dimensions of x>x and of xx>.

2. Show that one is a non-negative number
which is positive unless x = 0,
and that the other is an n × n symmetric matrix.

Exercise
Let A be an m × n-matrix.

1. Find the dimensions of A>A and of AA>.

2. Show that both A>A and AA> are symmetric matrices.

3. Show that m = n is a necessary condition for A>A = AA>.

4. Show that m = n with A symmetric
is a sufficient condition for A>A = AA>.
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Diagonal Matrices

A square matrix A = (aij)
n×n is diagonal

just in case all of its off diagonal elements are 0
— i.e., i 6= j =⇒ aij = 0.

A diagonal matrix of dimension n can be written in the form

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn

 = diag(d1, d2, d3, . . . , dn) = diag d

where the n-vector d = (d1, d2, d3, . . . , dn) = (di )
n
i=1

consists of the diagonal elements of D.

Note that diag d = (dij)n×n where each dij = δijdii = δijdjj .

Obviously, any diagonal matrix is symmetric.
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Multiplying by Diagonal Matrices

Example

Let D be a diagonal matrix of dimension n.

Suppose that A and B are m× n and n×m matrices, respectively.

Then E := AD and F := DB are well defined matrices
of dimensions m × n and n ×m, respectively.

By the law of matrix multiplication, their elements are

eij =
∑n

k=1
aikδkjdjj = aijdjj and fij =

∑n

k=1
δikdiibkj = diibij

Thus, post-multiplying A by D is the column operation
of simultaneously multiplying every column aj of A
by its matching diagonal element djj .

Similarly, pre-multiplying B by D is the row operation
of simultaneously multiplying every row b>i of B
by its matching diagonal element dii .
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Two Exercises with Diagonal Matrices

Exercise
Let D be a diagonal matrix of dimension n.
Give conditions that are both necessary and sufficient
for each of the following:

1. AD = A for every m × n matrix A;

2. DB = B for every n ×m matrix B.

Exercise
Let D be a diagonal matrix of dimension n,
and C any n × n matrix.

An earlier example shows that
one can have CD 6= DC even if n = 2.

1. Show that C being diagonal
is a sufficient condition for CD = DC.

2. Is this condition necessary?
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The Identity Matrix

The identity matrix of dimension n is the diagonal matrix

In = diag(1, 1, . . . , 1)

whose n diagonal elements are all equal to 1.

Equivalently, it is the n × n-matrix A = (aij)
n×n

whose elements are all given by aij = δij
for the Kronecker delta function (i , j) 7→ δij
defined on {1, 2, . . . , n}2.

Exercise
Given any m × n matrix A, verify that ImA = AIn = A.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 10 of 87



Uniqueness of the Identity Matrix

Exercise
Suppose that the two n× n matrices X and Y respectively satisfy:

1. AX = A for every m × n matrix A;

2. YB = B for every n ×m matrix B.

Prove that X = Y = In.

(Hint: Consider each of the mn different cases where A (resp. B)
has exactly one non-zero element that is equal to 1.)

The results of the last two exercises together serve to prove:

Theorem
The identity matrix In is the unique n × n-matrix such that:

I InB = B for each n ×m matrix B;

I AIn = A for each m × n matrix A.
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How the Identity Matrix Earns its Name

Remark
The identity matrix In earns its name because it represents
a multiplicative identity on the “algebra” of all n × n matrices.

That is, In is the unique n × n-matrix with the property
that InA = AIn = A for every n × n-matrix A.

Typical notation suppresses the subscript n in In
that indicates the dimension of the identity matrix.
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Left and Right Inverse Matrices

Definition
Let A denote any n × n matrix.

1. The n × n matrix X is a left inverse of A
just in case XA = In.

2. The n × n matrix Y is a right inverse of A
just in case AY = In.

3. The n × n matrix Z is an inverse of A
just in case it is both a left and a right inverse
— i.e., ZA = AZ = In.
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The Unique Inverse Matrix

Theorem
Suppose that the n×n matrix A has both a left and a right inverse.

Then both left and right inverses are unique,
and both are equal to a unique inverse matrix denoted by A−1.

Proof.
If XA = AY = I, then XAY = XI = X and XAY = IY = Y,
implying that X = XAY = Y.

Now, if X̃ is any alternative left inverse,
then X̃A = I and so X̃ = X̃AY = Y = X.

Similarly, if Ỹ is any alternative right inverse,
then AỸ = I and so Ỹ = XAỸ = X = Y.

It follows that X̃ = X = Y = Ỹ, so we can define A−1

as the unique common value of all these four matrices.

Big question: when does the inverse exist?
Answer: if and only if the determinant is non-zero.
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Rule for Inverting Products

Theorem
Suppose that A and B are two invertible n × n matrices.

Then the inverse of the matrix product AB exists,
and is the reverse product B−1A−1 of the inverses.

Proof.
Using the associative law for matrix multiplication repeatedly gives:

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B = B−1(IB) = B−1B = I

and

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1 = (AI)A−1 = AA−1 = I.

These equations confirm that X := B−1A−1 is the unique matrix
satisfying the double equality (AB)X = X(AB) = I.
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Rule for Inverting Chain Products and Transposes

Exercise
Prove that, if A, B and C are three invertible n × n matrices,
then (ABC)−1 = C−1B−1A−1.

Then use mathematical induction
to extend the rule for inverting any product BC
in order to find the inverse of the product A1A2 · · ·Ak

of any finite chain of invertible n × n matrices.

Theorem
Suppose that A is an invertible n × n matrix.

Then the inverse (A>)−1 of its transpose
is (A−1)>, the transpose of its inverse.

Proof.
By the rule for transposing products, one has

A>(A−1)> = (A−1A)> = I> = I
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Orthogonal and Orthonormal Sets of Vectors

Definition
A set of k vectors {x1, x2, . . . , xk} ⊂ Rn is said to be:

I pairwise orthogonal just in case xi · xj = 0 whenever j 6= i ;

I orthonormal just in case, in addition, each ‖xi‖ = 1
— i.e., all k elements of the set are vectors of unit length.

The set of k vectors {x1, x2, . . . , xk} ⊂ Rn is orthonormal
just in case xi · xj = δij for all pairs i , j ∈ {1, 2, . . . , k}.
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Orthogonal Matrices

Definition
Any n × n matrix is orthogonal
just in case its n columns form an orthonormal set.

Theorem
Given any n × n matrix P, the following are equivalent:

1. P is orthogonal;

2. PP> = P>P = I;

3. P−1 = P>;

4. P> is orthogonal.

The proof follows from the definitions, and is left as an exercise.
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Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices.

Example

Consider the (m + `)× (n + k) matrix(
A B
C D

)
=

(
Am×n Bm×k
C`×n D`×k

)
where, as indicated, the four submatrices A,B,C,D
are of dimension m × n, m × k , `× n and `× k respectively.

Note: Here matrix D may not be diagonal, or even square.

For any scalar α ∈ R,
the scalar multiple of a partitioned matrix is

α

(
A B
C D

)
=

(
αA αB
αC αD

)
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Partitioned Matrices: Addition

Suppose the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
have the property that the following four pairs
of corresponding matrices have equal dimensions:
(i) A and E; (ii) B and F; (iii) C and G; (iv) D and H.

Then the sum of the two matrices is(
A B
C D

)
+

(
E F
G H

)
=

(
A + E B + F
C + G D + H

)
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Partitioned Matrices: Multiplication

Suppose that the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
along with all the relevant pairs of their sub-matrices,
are compatible for multiplication.

Then their product is defined as(
A B
C D

)(
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
This extends the usual multiplication rule for matrices:
multiply the rows of sub-matrices in the first partitioned matrix
by the columns of sub-matrices in the second partitioned matrix.
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Transposes and Some Special Matrices

The rule for transposing a partitioned matrix is(
A B
C D

)>
=

(
A> C>

B> D>

)
So the original matrix is symmetric
iff A = A>, D = D>, and B = C> ⇐⇒ C = B>.

It is diagonal iff A,D are both diagonal,
while also B = 0 and C = 0.

The identity matrix is diagonal with A = I, D = I,
possibly identity matrices of different dimensions.
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Partitioned Matrices: Inverses, I
For an (m + n)× (m + n) partitioned matrix to have an inverse,
the equation(
A B
C D

)(
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
=

(
Im 0m×n

0n×m In

)
should have a solution for the matrices E,F,G,H, given A,B,C,D.

Assuming that the m ×m matrix A has an inverse, we can:

1. construct new first m equations
by premultiplying the old ones by A−1;

2. construct new second n equations by:
I premultiplying the new first m equations

by the n ×m matrix C;
I then subtracting this product from the old second n equations.

The result is(
Im A−1B

0n×m D− CA−1B

)(
E F
G H

)
=

(
A−1 0m×n
−CA−1 In

)
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Partitioned Matrices: Inverses, II
For the next step,
assume the n × n matrix X := D− CA−1B
also has an inverse X−1 = (D− CA−1B)−1.

Given

(
Im A−1B

0n×m D− CA−1B

)(
E F
G H

)
=

(
A−1 0m×n
−CA−1 In

)
,

we first premultiply the last n equations by X−1 to get(
Im A−1B

0n×m In

)(
E F
G H

)
=

(
A−1 0m×n

−X−1CA−1 X−1

)
Next, we subtract A−1B times the last n equations
from the first m equations to obtain(

E F
G H

)
=

(
Im 0m×n

0n×m In

)(
E F
G H

)
=

(
A−1 + A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

)
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Final Exercises

Exercise

1. Assume that A−1 and X−1 = (D− CA−1B)−1 exist.

Given Z :=

(
A−1 + A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

)
,

use direct multiplication twice in order to verify that(
A B
C D

)
Z = Z

(
A B
C D

)
=

(
Im 0m×n

0n×m In

)
2. Let A be any invertible m ×m matrix.

Show that the bordered (m + 1)× (m + 1) matrix

(
A b
c> d

)
is invertible provided that d 6= c>A−1b,
and find its inverse in this case.
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Partitioned Matrices: Extension

Exercise
Suppose that the two partitioned matrices

A = (Aij)
k×` and B = (Bij)

k×`

are both k × ` arrays of respective mi × nj matrices Aij ,Bij ,
for i = 1, 2, . . . , k and j = 1, 2, . . . , `.

1. Under what conditions can the product AB
be defined as a k × ` array of matrices?

2. Under what conditions can the product BA
be defined as a k × ` array of matrices?

3. When either AB or BA can be so defined,
give a formula for its product, using summation notation.

4. Express A> as a partitioned matrix.

5. Under what conditions is the matrix A symmetric?
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Permutations

Definition
Given Nn = {1, . . . , n} for any n ∈ N with n ≥ 2,
a permutation of Nn is a bijective mapping Nn 3 i 7→ π(i) ∈ Nn.

That is, the mapping Nn 3 i 7→ π(i) ∈ Nn is both:

1. a surjection, or mapping of Nn onto Nn,
in the sense that the range set satisfies
π(Nn) := {j ∈ Nn | ∃i ∈ Nn : j = π(i)} = Nn;

2. an injection, or a one to one mapping,
in the sense that π(i) = π(j) =⇒ i = j or,
equivalently, i 6= j =⇒ π(i) 6= π(j).

Exercise
Prove that the mapping Nn 3 i 7→ f (i) ∈ Nn is a bijection,
and so a permutation, if and only if
its range set f (Nn) := {j ∈ Nn | ∃i ∈ Nn : j = f (i)}
has cardinality #f (Nn) = #Nn = n.
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Products of Permutations

Definition
The product π ◦ ρ of two permutations π, ρ ∈ Πn

is the composition mapping Nn 3 i 7→ (π ◦ ρ)(i) := π[ρ(i)] ∈ Nn.

Exercise
Prove that the product π ◦ ρ of any two permutations π, ρ ∈ Πn

is a permutation.

Hint: Show that #(π ◦ ρ)(Nn) = #ρ(Nn) = #Nn = n.

Example

1. If you shuffle a pack of 52 playing cards once,
without dropping any on the floor,
the result will be a permutation π of the cards.

2. If you shuffle the same pack a second time,
the result will be a new permutation ρ of the shuffled cards.

3. Overall, the result of shuffling the cards twice
will be the single permutation ρ ◦ π.
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Finite Permutation Groups

Definition
Given any n ∈ N, the family Πn of all permutations of Nn includes:

I the identity permutation ι defined by ι(h) = h for all h ∈ Nn;

I because the mapping Nn 3 i 7→ f (i) ∈ Nn is bijective,
for each π ∈ Πn, a unique inverse permutation π−1 ∈ Πn

satisfying π−1 ◦ π = π ◦ π−1 = ι.

Definition
The associative law for functions says that,
given any three functions h : X → Y , g : Y → Z and f : Z →W ,
the composite function f ◦ g ◦ h : X →W satisfies

(f ◦ g ◦ h)(x) ≡ f (g(h(x))) ≡ [(f ◦ g) ◦ h](x) ≡ [f ◦ (g ◦ h)](x)

Exercise
Given any n ∈ N, show that (Πn, π, ι) is an algebraic group
— i.e., the group operation (π, ρ) 7→ π ◦ ρ is well-defined,
associative, with ι as the unit, and an inverse π−1 for every π ∈ Πn.
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Transpositions

Definition
For each disjoint pair k , ` ∈ {1, 2, . . . , n},
the transposition mapping i 7→ τk`(i) on {1, 2, . . . , n}
is the permutation defined by

τk`(i) :=


` if i = k ;

k if i = `;

i otherwise;

That is, τk` transposes the order of k and `,
leaving all i 6∈ {k , `} unchanged.

Evidently τk` = τ`k and τk` ◦ τ`k = ι, the identity permutation,
and so τ ◦ τ = ι for every transposition τ .
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Transposition is Not Commutative

Any (j1, j2, . . . , jn) ∈ Nn
n whose components are all different

corresponds to a unique permutation, denoted by πj1 j2 ... jn ∈ Πn,
that satisfies π(i) = ji for all i ∈ Nn

n.

Example

Two transpositions defined
on a set containing more than two elements
may not commute because, for example,

τ12 ◦ τ23 = π231 6= τ23 ◦ τ12 = π312
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Permutations are Products of Transpositions

Theorem
Any permutation π ∈ Πn on Nn := {1, 2, . . . , n}
is the product of at most n − 1 transpositions.

We will prove the result by induction on n.

As the induction hypothesis,
suppose the result holds for permutations on Nn−1.

Any permutation π on N2 := {1, 2} is either the identity,
or the transposition τ12, so the result holds for n = 2.
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Proof of Induction Step

For general n, let j := π−1(n) denote the element
that π moves to the end.

By construction, the permutation π ◦ τjn
must satisfy π ◦ τjn(n) = π(τjn(n)) = π(j) = n.

So the restriction π̃ of π ◦ τjn to Nn−1 is a permutation on Nn−1.

By the induction hypothesis, for all k ∈ Nn−1,
there exist transpositions τ1, τ2, . . . , τq

such that π̃(k) = (π ◦ τjn)(k) = (τ1 ◦ τ2 ◦ . . . ◦ τq)(k)
where q ≤ n − 2 is the number of transpositions in the product.

For p = 1, . . . , q, because τp interchanges only elements of Nn−1,
one can extend its domain to include n by letting τp(n) = n.

Then (π ◦ τjn)(k) = (τ1 ◦ τ2 ◦ . . . ◦ τq)(k) for k = n as well,
so π = (π ◦ τjn) ◦ τ−1

jn = τ1 ◦ τ2 ◦ . . . ◦ τq ◦ τ−1
jn .

Hence π is the product of at most q + 1 ≤ n − 1 transpositions.

This completes the proof by induction on n.
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Adjacency Transpositions and Their Products, I

Definition
For each k ∈ {1, 2, . . . , n − 1}, the transposition τk,k+1

of element k with its successor is an adjacency transposition.

Definition
For each pair k , ` ∈ Nn with k < `, define:

1. πk↗` := τ`−1,` ◦ τ`−2,`−1 ◦ . . . ◦ τk,k+1 ∈ Πn

as the composition of `− k
successive adjacency transpositions in order,
starting with τk,k+1 and ending with τ`−1,`;

2. π`↘k := τk,k+1 ◦ τk+1,k+2 ◦ . . . ◦ τ`−1,` ∈ Πn

as the composition of the same `− k
successive adjacency transpositions in reverse order.
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Adjacency Transpositions and Their Products, II

Exercise
For each pair k , ` ∈ Nn with k < `, prove that:

I πk↗`(i) :=


i if i < k or i > `;

i − 1 if k < i ≤ `;
` if i = k.

I πk↗k = πk↘k = ι

I πk↗` and π`↘k are inverses

I πk↗` = π1,2,...,k−1,k+1,...,`−1,`,k,`+1,...,n

I π`↘k = π1,2,...,k−1,`,k,k+1,...,`−2,`−1,`+1,...,n

1. Note that πk↗` moves k up to the `th position,
while moving each element between k + 1 and ` down by one.

2. By contrast, π`↘k moves ` down to the kth position,
while moving each element between k and `− 1 up by one.
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Reduction to the Product of Adjacency Transpositions

Lemma
For each pair k , ` ∈ Nn with k < `, the transposition τk`
equals both π`−1↘k ◦ πk↗` and πk+1↗` ◦ π`↘k ,
the compositions of 2(`− k)− 1 adjacency transpositions.

Proof.

1. As noted, πk↗` moves k up to the `th position,
while moving each element between k + 1 and ` down by one.

Then π`−1↘k moves `, which πk↗` left in position `− 1,
down to the k position, and moves k + 1, k + 2, . . . , `− 1
up by one, back to their original positions.

This proves that π`−1↘k ◦ πk↗` = τk`.

It also expresses τk` as the composition of
(`− k) + (`− 1− k) = 2(`− k)− 1 adjacency transpositions.

2. The proof that πk+1↗` ◦ π`↘k = τk` is similar;
details are left as an exercise.
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The Inversions of a Permutation

Definition

1. Let Nn,2 = {S ⊆ Nn | #S = 2} denote
the set of all (unordered) pair subsets of Nn.

2. Obviously, if {i , j} ∈ Nn,2, then i 6= j .

3. Given any pair {i , j} ∈ Nn,2, define

i ∨ j := max{i , j} and i ∧ j := min{i , j}

For all {i , j} ∈ Nn,2, because i 6= j , one has i ∨ j > i ∧ j .

4. Given any permutation π ∈ Πn,
the pair {i , j} ∈ Nn,2 is an inversion of π
just in case π “reorders” {i , j}
in the sense that π(i ∨ j) < π(i ∧ j).

5. Denote the set of inversions of π by

N(π) := {{i , j} ∈ Nn,2 | π(i ∨ j) < π(i ∧ j)}
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The Sign of a Permutation

Definition

1. Given any permutation π : Nn → Nn,
let n(π) := #N(π) ∈ N ∪ {0}
denote the number of its inversions.

2. A permutation π : Nn → Nn is either even or odd
according as n(π) is an even or odd number.

3. The sign or signature of a permutation π,
is defined as sgn(π) := (−1)n(π), which is:
(i) +1 if π is even; (ii) −1 if π is odd.
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The Sign of an Adjacency Transposition

Theorem
For each k ∈ Nn−1, if π is the adjacency transposition τk,k+1,
then N(π) = {{k , k + 1}}, so n(π) = 1 and sgn(π) = −1.

Proof.
If π is the adjacency transposition τk,k+1, then

π(i) =


i if i 6∈ {k, k + 1}
k + 1 if i = k

k if i = k + 1

It is evident that {k , k + 1} is an inversion.

Also π(i) ≤ i for all i 6= k , and π(j) ≥ j for all j 6= k + 1.

So if i < j , then π(i) ≤ i < j ≤ π(j) unless i = k and j = k + 1,
and so π(i) > π(j) only if (i , j) = (k , k + 1).

Hence N(π) = {{k , k + 1}}, implying that n(π) = 1.
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A Multi-Part Exercise

Exercise
Show that:

1. For each permutation π ∈ Πn, one has

N(π) := {{i , j} ∈ Nn,2 | (i − j)[π(i)− π(j)] < 0}

=

{
{i , j} ∈ Nn,2 |

π(i)− π(j)

i − j
< 0

}
2. n(π) = 0⇐⇒ π = ι, the identity permutation;

3. n(π) ≤ 1
2n(n − 1), with equality

if and only if π is the reversal permutation
defined by π(i) = n − i + 1 for all i ∈ Nn — i.e.,

(π(1), π(2), . . . , π(n − 1), π(n)) = (n, n − 1, . . . , 2, 1)

Hint: Consider the number
of ordered pairs (i , j) ∈ Nn × Nn that satisfy i < j .
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Double Products

Let X = 〈xij〉(i ,j)∈Nn×Nn
denote an n × n matrix.

We introduce the notation∏n

i>j
xij :=

∏n

i=1

∏n−1

j=1
xij :=

∏n

j=1

∏n

i=j+1
xij

for the product of all the elements in the lower triangular matrix L

with elements `ij :=

{
xij if i > j

0 if i ≤ j

In case the matrix X is symmetric, one has∏n

i>j
xij =

∏n

i>j
xji =

∏n

i<j
xij

This can be rewritten as
∏n

i>j xij =
∏
{i ,j}∈Nn,2

xij ,
which is the product over all unordered pairs of elements in Nn.
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Preliminary Example and Definition

Example

For every n ∈ N, define the double product

Pn,2 :=
∏
{i ,j}∈Nn,2

|i − j | =
∏n

i>j
|i − j | =

∏n

i<j
|i − j |

Then one has

Pn,2 = (n − 1) (n − 2)2 (n − 3)3 · · · 3n−3 2n−2 1n−1

=
∏n−1

k=1 k
n−k

= (n − 1)! (n − 2)! (n − 3)! · · · 3! 2! =
∏n−1

k=1 k!

Definition
For every permutation π ∈ Πn, define the symmetric matrix Xπ

so that xπij :=


π(i)− π(j)

i − j
if i 6= j

1 if i = j
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Basic Lemma

Lemma
For every permutation π ∈ Πn, one has sgn(π) =

∏
{i ,j}∈Nn,2

xπij .

Proof.
I Because π is a permutation,

the mapping Nn,2 3 {i , j} 7→ {π(i), π(j)} ∈ Nn,2

has inverse Nn,2 3 {i , j} 7→ {π−1(i), π−1(j)} ∈ Nn,2.

In fact it is a bijection between Nn,2 and itself.

I Hence Pn,2 :=
∏
{i ,j}∈Nn,2

|i − j | =
∏
{i ,j}∈Nn,2

|π(i)− π(j)| .

I So
∏
{i ,j}∈Nn,2

|π(i)− π(j)|
|i − j |

=
∏
{i ,j}∈Nn,2

|xπij | = 1.

I Also xπij = ∓1 according as {i , j} is or is not a reversal of π.

I It follows that∏
{i ,j}∈Nn,2

xπij = (−1)n(π)
∏
{i ,j}∈Nn,2

|xπij | = (−1)n(π) = sgn(π)
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The Product Rule for Signs of Permutations

Theorem
For all permutations ρ, π ∈ Πn one has sgn(ρ ◦ π) = sgn(ρ) sgn(π).

Proof.
The basic lemma implies that

sgn(ρ ◦ π)

sgn(π)
=

∏
{i ,j}∈Nn,2

ρ(π(i))− ρ(π(j))

i − j

∏
{k,`}∈Nn,2

k − `
π(k)− π(`)

=
∏

{i ,j}∈Nn,2

ρ(π(i))− ρ(π(j))

i − j

∏
{i ,j}∈Nn,2

i − j

π(i)− π(j)

After cancelling the product
∏
{i ,j}∈Nn,2

(i − j)

and then replacing π(i) by k and π(j) by `,
because π and ρ are permutations, one obtains

sgn(ρ ◦ π)

sgn(π)
=

∏
{k,`}∈Nn,2

ρ(k)− ρ(`)

k − `
= sgn(ρ)
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The Sign of the Inverse Permutations

Corollary

Given any permutation π ∈ Πn, one has sgn(π−1) = sgn(π).

Proof.
Because the identity permutation satisfies ι = π ◦ π−1,
the product rule implies that

1 = sgn(ι) = sgn(π ◦ π−1) = sgn(π) sgn(π−1)

Because sgn(π), sgn(π−1) ∈ {−1, 1},
they must both have the same sign, and the result follows.
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Determinants of Order 2: Definition
Consider again the pair of linear equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

with its associated coefficient matrix

A =

(
a11 a12

a21 a22

)
Let us define the number D := a11a22 − a21a12.

We saw earlier that, provided that D 6= 0,
the two simultaneous equations have a unique solution given by

x1 =
1

D
(b1a22 − b2a12), x2 =

1

D
(b2a11 − b1a21)

The number D is called the determinant of the matrix A.

It is denoted by either det(A), or more concisely, by |A|.
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Determinants of Order 2: Simple Rule

Thus, for any 2× 2 matrix A, its determinant D is

|A| =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

For this special case of order 2 determinants, a simple rule is:

1. multiply the diagonal elements together;

2. multiply the off-diagonal elements together;

3. subtract the product of the off-diagonal elements
from the product of the diagonal elements.

Exercise
Show that the determinant satisfies

|A| = a11a22

∣∣∣∣1 0
0 1

∣∣∣∣+ a21a12

∣∣∣∣0 1
1 0

∣∣∣∣
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Transposing the Rows or Columns

Example

Consider the two 2× 2 matrices A =

(
a b
c d

)
, T =

(
0 1
1 0

)
.

Note that T is orthogonal.

Also, one has AT =

(
b a
d c

)
and TA =

(
c d
a b

)
.

Here T is a transposition matrix which interchanges:
(i) the columns of A in AT; (ii) the rows of A in TA.

Evidently |T| = −1 and |TA| = |AT| = (bc − ad) = −|A|.
So interchanging the two rows or columns of A
changes the sign of |A|.
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Sign Adjusted Transpositions

Example

Next, consider the following three 2× 2 matrices:

A =

(
a b
c d

)
, T =

(
0 1
1 0

)
, T̂ =

(
0 −1
1 0

)
Note that, like T, the matrix T̂ is orthogonal.

Here one has AT̂ =

(
b −a
d −c

)
and T̂A =

(
−c −d
a b

)
.

Evidently |T̂| = 1 and |T̂A| = |AT̂| = (ad − bc) = |A|.

The same is true of its transpose (and inverse) T̂> =

(
0 1
−1 0

)
.

This key property makes both T̂ and T̂>

sign adjusted versions of the transposition matrix T.
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Cramer’s Rule in the 2× 2 Case
Using determinant notation, the solution to the equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

can be written in the alternative form

x1 =
1

D

∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , x2 =
1

D

∣∣∣∣a11 b1

a21 b2

∣∣∣∣
This accords with Cramer’s rule,
which says that the solution to Ax = b is the vector x = (xi )

n
i=1

each of whose components xi is the fraction with:

1. denominator equal to the determinant D
of the coefficient matrix A (provided, of course, that D 6= 0);

2. numerator equal to the determinant of the matrix [A−i/b]
formed from A by excluding its ith column,
then replacing it with the b vector of right-hand side elements,
while keeping all the columns in their original order.
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Determinants of Order 3: Definition

Determinants of order 3 can be calculated
from those of order 2 according to the formula

|A| = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
=
∑3

j=1
(−1)1+ja1j |C1j |

where, for j = 1, 2, 3, the 2× 2 matrix C1j is the (1, j)-cofactor
obtained by removing both row 1 and column j from the matrix A.

The result is the following sum

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

of 3! = 6 terms, each the product of 3 elements chosen
so that each row and each column is represented just once.
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Determinants of Order 3: Cofactor Expansion
The determinant expansion

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is very symmetric, suggesting (correctly)
that the cofactor expansion along the first row (a11, a12, a13)

|A| =
∑3

j=1
(−1)1+ja1j |C1j |

gives the same answer as the other cofactor expansions

|A| =
∑3

j=1
(−1)r+jarj |Crj | =

∑3

i=1
(−1)i+sais |Cis |

along, respectively:

I the r th row (ar1, ar2, ar3)

I the sth column (a1s , a2s , a3s)
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Determinants of Order 3: Alternative Expressions
One way of condensing the notation

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is to reduce it to |A| =
∑

π∈Π3
sgn(π)

∏3
i=1 aiπ(i)

for the sign function Π3 3 π 7→ sgn(π) ∈ {−1,+1}.

The six values of sgn(π) can be read off as

sgn(π123) = +1; sgn(π132) = −1; sgn(π231) = +1;
sgn(π213) = −1; sgn(π312) = +1; sgn(π321) = −1.

Exercise
Verify these values for each of the six π ∈ Π3 by:

1. calculating the number of inversions directly;

2. expressing each π as the product of transpositions,
and then counting these.
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Sarrus’s Rule: Diagram

An alternative way to evaluate determinants only of order 3
is to add two new columns
that repeat the first and second columns:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Then add lines/arrows going up to the right or down to the right,
as shown below

a11 a12 a13 a11 a12

↘ ↘↗ ↘↗ ↗
a21 a22 a23 a21 a22

↗ ↘↗ ↘↗ ↘
a31 a32 a33 a31 a32

Note that some pairs of arrows in the middle cross each other.
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Sarrus’s Rule Defined

Now:

1. multiply along the three lines falling to the right,
then sum these three products, to obtain

a11 a22 a33 + a12 a23 a31 + a13 a21 a32

2. multiply along the three lines rising to the right,
then sum these three products, giving the sum a minus sign,
to obtain

−a11 a23 a32 − a12 a21 a33 − a13 a22 a31

The sum of all six terms exactly equals the earlier formula for |A|.

Note that this method, known as Sarrus’s rule,
does not generalize to determinants of order higher than 3.
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The Determinant Mapping

Let Dn denote the domain Rn×n of n × n matrices.

Definition
For all n ∈ N, the determinant mapping

Dn 3 A 7→ |A| :=
∑

π∈Πn
sgn(π)

∏n

i=1
aiπ(i) ∈ R

specifies the determinant |A| of each n × n matrix A
as a function of its n row vectors (a>i )ni=1.

Here the multiplier sgn(π) attached to each product of n terms
can be regarded as the sign adjustment
associated with the permutation π ∈ Πn.
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Row Mappings

For a general natural number n ∈ N, consider any row mapping

Dn 3 A 7→ D(A) = D
(
〈a>i 〉ni=1

)
∈ R

defined on the domain Dn of n × n matrices A
with row vectors 〈a>i 〉ni=1.

Notation: For each fixed r ∈ Nn, let D(A/b>r )
denote the new value D(a>1 , . . . , a

>
r−1,b

>
r , a

>
r+1, . . . , a

>
n )

of the row mapping D after the rth row a>r of the matrix A
has been replaced by the new row vector b>r ∈ Rn.
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Row Multilinearity

Definition
The function Dn 3 A 7→ D(A) of the n rows 〈a>i 〉ni=1 of A
is (row) multilinear just in case,
for each row number i ∈ {1, 2, . . . , n},
each pair b>i , c

>
i ∈ Rn of new versions of row i ,

and each pair of scalars λ, µ ∈ R, one has

D(A−i/λb
>
i + µc>i ) = λD(A−i/b

>
i ) + µD(A−i/c

>
i )

Formally, the mapping Rn 3 a>i 7→ D(A−i/a
>
i ) ∈ R

is required to be linear, for fixed each row i ∈ Nn.

That is, D is a linear function of the ith row vector a>i on its own,
when all the other rows a>h (h 6= i) are fixed.
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Determinants are Row Multilinear

Theorem
For all n ∈ N, the determinant mapping

Dn 3 A 7→ |A| :=
∑

π∈Πn
sgn(π)

∏n

i=1
aiπ(i) ∈ R

is a row multilinear function of its n row vectors (a>i )ni=1.

Proof.
For each fixed row r ∈ N, we have

det(A−i/λb
>
r + µc>r )

=
∑

π∈Πn
sgn(π) (λbrπ(r) + µcrπ(r))

∏
i 6=r aiπ(i)

=
∑

π∈Πn
sgn(π)

[
λbrπ(r)

∏
i 6=r aiπ(i) + µcrπ(r)

∏
i 6=r aiπ(i)

]
= λ det(A−i/b

>
r ) + µ det(A−i/c

>
r )

as required for multilinearity.
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Permutation Matrices: Definition

Definition
Given any permutation π ∈ Πn on {1, 2, . . . , n},
define Pπ as the n × n permutation matrix
whose elements satisfy pππ(i),j = δi ,j or equivalently pπi ,j = δπ−1(i),j .

That is, the rows of the identity matrix In are permuted
so that for each i = 1, 2, . . . , n,
its ith row vector is moved to become row π(i) of Pπ.

Lemma
For each permutation matrix Pπ one has (Pπ)> = Pπ

−1
.

Proof.
Because π is a permutation, i = π(j)⇐⇒ j = π−1(i).

Then the definitions imply that for all (i , j) ∈ N2
n one has

(Pπ)>i ,j = pπj ,i = δπ(j),i = δπ−1(i),j = pπ
−1

(i , j)
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Permutation Matrices: Examples

Example

There are two 2× 2 permutation matrices, which are given by:

P12 = I2; P21 =

(
0 1
1 0

)
.

Their signs are respectively +1 and −1.

There are 3! = 6 permutation matrices in 3 dimensions given by:

P123 =

1 0 0
0 1 0
0 0 1

 ; P132 =

1 0 0
0 0 1
0 1 0

 ; P213 =

0 1 0
1 0 0
0 0 1

 ;

P231 =

0 1 0
0 0 1
1 0 0

 ; P312 =

0 0 1
1 0 0
0 1 0

 ; P321 =

0 0 1
0 1 0
1 0 0

 .

Their signs are respectively +1, −1, −1, +1, +1 and −1.
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Multiplying a Matrix by a Permutation Matrix

Lemma
Given any n × n matrix A, for each permutation π ∈ Πn

the corresponding permutation matrix Pπ satisfies

(PπA)π(i),j = aij = (APπ)i ,π(j)

Proof.
For each pair (i , j) ∈ N2

n, one has

(PπA)π(i),j =
∑n

k=1
pππ(i),kakj =

∑n

k=1
δikakj = aij

and also

(APπ)i ,π(j) =
∑n

k=1
aikp

π
k,π(j) =

∑n

k=1
aikδkj = aij

So

{
premultiplying

postmultiplying

}
A by Pπ applies π to A’s

{
rows

columns

}
.
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Multiplying Permutation Matrices

Theorem
Given the composition π ◦ ρ of two permutations π, ρ ∈ Πn,
the associated permutation matrices satisfy PπPρ = Pπ◦ρ.

Proof.
For each pair (i , j) ∈ N2

n, one has

(PπPρ)ij =
∑n

k=1 p
π
ik p

ρ
kj =

∑n
k=1 δπ−1(i),k δρ−1(k),j

=
∑n

k=1 δ(ρ−1◦π−1)(i),ρ−1(k) δρ−1(k),j

=
∑n

`=1 δ(π◦ρ)−1(i),` δ`,j = δ(π◦ρ)−1(i),j = pπ◦ρij

Corollary

If π = π1 ◦ π2 ◦ · · · ◦ πq, then Pπ = Pπ
1
Pπ

2 · · ·Pπq
.

Proof.
By induction on q, using the result of the Theorem.
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Any Permutation Matrix Is Orthogonal

Proposition

Any permutation matrix Pπ satisfies Pπ(Pπ)> = (Pπ)>Pπ = In,
so is orthogonal.

Proof.
For each pair (i , j) ∈ N2

n, one has

[Pπ(Pπ)>]ij =
∑n

k=1 p
π
ikp

π
jk =

∑n
k=1 δπ−1(i),k δπ−1(j),k

= δπ−1(i),π−1(j) = δij

and also

[(Pπ)>Pπ]ij =
∑n

k=1 p
π
kip

π
kj =

∑n
k=1 δπ−1(k),i δπ−1(k),j

=
∑n

`=1 δ`,i δ`,j = δij
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Transposition Matrices

A special case of a permutation matrix
is a transposition Trs of rows r and s.

As the matrix I with rows r and s transposed, it satisfies

(Trs)ij =


δij if i 6∈ {r , s}
δsj if i = r

δrj if i = s

Exercise
Let A be any n × n matrix. Prove that:
1) any transposition matrix Trs is symmetric and orthogonal;
2) Trs = Tsr ; 3) TrsTsr = TsrTrs = I;
4) TrsA is A with rows r and s interchanged;
5) ATrs is A with columns r and s interchanged.
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Determinants with Permuted Rows: Theorem

Theorem
Given any n × n matrix A and any permutation π ∈ Nn,
one has |PπA| = |APπ| = sgn(π) |A|.
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Determinants with Permuted Rows: Proof

Proof.
The expansion formula for determinants gives

|PπA| =
∑

ρ∈Πn
sgn(ρ)

∏n

i=1
(PπA)i ,ρ(i)

But for each i ∈ Nn, ρ ∈ Πn, one has (PπA)i ,ρ(i) = aπ−1(i),ρ(i), so

|PπA| =
∑

ρ∈Πn
sgn(ρ)

∏n
i=1 aπ−1(i),ρ(i)

= [1/ sgn(π)]
∑

π◦ρ∈Πn
sgn(π ◦ ρ)

∏n
i=1 ai ,(π◦ρ)(i)

= sgn(π)
∑

σ∈Πn
sgn(σ)

∏n
i=1 ai ,σ(i) = sgn(π) |A|

because sgn(π ◦ ρ) = sgn(π) sgn(ρ) and 1/ sgn(π) = sgn(π),
whereas there is an obvious bijection Πn 3 ρ↔ π ◦ ρ = σ ∈ Πn

on the set of permutations Πn.

The proof that |APπ| = sgn(π) |A| is sufficiently similar
to be left as an exercise.
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The Alternation Rule for Determinants

Corollary

Given any n × n matrix A
and any transposition τrs with associated transposition matrix Trs ,
one has |TrsA| = |ATrs | = −|A|.

Proof.
Apply the previous theorem in the special case
when π = τrs and so Pπ = Trs .

Then, because sgn(π) = sgn(τrs) = −1,
the equality |PπA| = sgn(π) |A| implies that |TrsA| = −|A|.
We have shown that, for any n × n matrix A, given any:

1. permutation π ∈ Nn, one has |PπA| = |APπ| = sgn(π) |A|;
2. transposition τrs , one has |TrsA| = |ATrs | = −|A|.
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Sign Adjusted Transpositions

We define the sign adjusted transposition matrix T̂rs

as either one of the two matrices that:
(i) swaps rows or columns r and s;
(ii) then multiplies one, but only one,
of the two swapped rows or columns by −1.

As the matrix I with rows r and s transposed,
and then one sign changed, it satisfies

(Trs)ij =


δij if i 6∈ {r , s}
αsδsj if i = r

αrδrj if i = s

where αr , αs ∈ {−1,+1} with αr = −αs .

It evidently satisfies |T̂rsA| = |AT̂rs | = |A|.
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Sign Adjusted Permutations
Given any permutation matrix P,
there is a unique permutation π such that P = Pπ.

Suppose that π = τr1s1 ◦ · · · ◦ τr`s` is any one of the several ways
in which the permutation π can be decomposed
into a composition of transpositions.

Then P =
∏`

k=1 Trk sk and |PA| = (−1)`|A| for any A.

Definition
Say that P̂ is a sign adjusted version of P = Pπ

just in case it can be expressed as the product P̂ =
∏`

k=1 T̂rk sk

of sign adjusted transpositions satisfying P =
∏`

k=1 Trk sk .

Then it is easy to prove by induction on `
that for every n × n matrix A one has |P̂A| = |AP̂| = |A|.
Recall that all the elements of a permutation matrix P are 0 or 1.

A sign adjustment of P involves changing some of the 1 elements
into −1 elements, while leaving all the 0 elements unchanged.
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Triangular Matrices: Definition

Definition
A square matrix is upper (resp. lower) triangular
if all its non-zero off diagonal elements are above and to the right
(resp. below and to the left) of the diagonal
— i.e., in the upper (resp. lower) triangle
bounded by the principal diagonal.

I The elements of an upper triangular matrix U
satisfy (U)ij = 0 whenever i > j .

I The elements of a lower triangular matrix L
satisfy (L)ij = 0 whenever i < j .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 82 of 87



Products of Upper Triangular Matrices

Theorem
The product W = UV of any two upper triangular matrices U,V
is upper triangular,
with diagonal elements wii = uiivii (i = 1, . . . , n) equal
to the product of the corresponding diagonal elements of U,V.

Proof.
Given any two upper triangular n × n matrices U and V,
one has uikvkj = 0 unless both i ≤ k and k ≤ j .

So the elements (wij)
n×n of their product W = UV satisfy

wij =

{∑j
k=i uikvkj if i ≤ j

0 if i > j

Hence W = UV is upper triangular.

Finally, when j = i the above sum collapses to just one term,
and wii = uiivii for i = 1, . . . , n.
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Triangular Matrices: Exercises

Exercise
Prove that the transpose:

1. U> of any upper triangular matrix U is lower triangular;

2. L> of any lower triangular matrix L is upper triangular.

Exercise
Consider the matrix Er+αq

that represents the elementary row operation
of adding a multiple of α times row q to row r, with r 6= q.

Under what conditions is Er+αq

(i) upper triangular? (ii) lower triangular?

Hint: Apply the row operation to the identity matrix I.

Answer: (i) iff q < r ; (ii) iff q > r .
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Products of Lower Triangular Matrices

Theorem
The product of any two lower triangular matrices
is lower triangular.

Proof.
Given any two lower triangular matrices L,M,
taking transposes shows that (LM)> = M>L> = U,
where the product U is upper triangular,
as the product of upper triangular matrices.

Hence LM = U> is lower triangular,
as the transpose of an upper triangular matrix.
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Determinants of Triangular Matrices

Theorem
The determinant of any n × n upper triangular matrix U
equals the product of all the elements on its principal diagonal.

Proof.
Recall the expansion formula |U| =

∑
π∈Π sgn(π)

∏n
i=1 uiπ(i)

where Π denotes the set of permutations on {1, 2, . . . , n}.
Because U is upper triangular, one has uiπ(i) = 0 unless i ≤ π(i).

So
∏n

i=1 uiπ(i) = 0 unless i ≤ π(i) for all i = 1, 2, . . . , n.

But the identity ι is the only permutation π ∈ Π
that satisfies i ≤ π(i) for all i ∈ Nn.

Because sgn(ι) = +1, the expansion reduces to the single term

|U| = sgn(ι)
∏n

i=1
uiι(i) =

∏n

i=1
uii

This is the product of the n diagonal elements, as claimed.
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Invertible Triangular Matrices

Similarly |L| =
∏n

i=1 `ii for any lower triangular matrix L.

Evidently:

Corollary

A triangular matrix (upper or lower) is invertible
if and only if no element on its principal diagonal is 0.
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