Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses

Peter J. Hammond

revised 2020 September 14th

University of Warwick, EC9A0 Maths for Economists

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices

The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Square Matrices

A square matrix has an equal number of rows and columns, this number being called its dimension.

The (principal, or main) diagonal of a square matrix $\mathbf{A} = (a_{ij})_{n \times n}$ of dimension *n* is the list $(a_{ii})_{i=1}^n = (a_{11}, a_{22}, \dots, a_{nn})$ of its *n* diagonal elements. The other elements a_{ii} with $i \neq j$ are the off-diagonal elements.

A square matrix is often expressed in the form

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

with some extra dots along the diagonal.

Symmetric Matrices

Definition

A square matrix **A** is symmetric just in case it is equal to its transpose — i.e., if $\mathbf{A}^{\top} = \mathbf{A}$.

Example

The product of two symmetric matrices need not be symmetric.

Using again our example of non-commuting 2×2 matrices, here are two examples

where the product of two symmetric matrices is asymmetric:

$$\begin{array}{c} \bullet & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \\ \bullet & \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$$

Two Exercises with Symmetric Matrices

Exercise

Let **x** be a column n-vector.

- 1. Find the dimensions of $\mathbf{x}^{\top}\mathbf{x}$ and of $\mathbf{x}\mathbf{x}^{\top}$.
- Show that one is a non-negative number which is positive unless x = 0, and that the other is an n × n symmetric matrix.

Exercise

Let **A** be an $m \times n$ -matrix.

- 1. Find the dimensions of $\mathbf{A}^{\top}\mathbf{A}$ and of $\mathbf{A}\mathbf{A}^{\top}$.
- 2. Show that both $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are symmetric matrices.
- 3. Show that m = n is a necessary condition for $\mathbf{A}^{\top}\mathbf{A} = \mathbf{A}\mathbf{A}^{\top}$.
- Show that m = n with A symmetric is a sufficient condition for A^TA = AA^T.

Diagonal Matrices

A square matrix $\mathbf{A} = (a_{ij})^{n \times n}$ is diagonal just in case all of its off diagonal elements are 0 — i.e., $i \neq j \Longrightarrow a_{ij} = 0$.

A diagonal matrix of dimension n can be written in the form

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ 0 & 0 & d_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_n \end{pmatrix} = \operatorname{diag}(d_1, d_2, d_3, \dots, d_n) = \operatorname{diag} \mathbf{d}$$

where the *n*-vector $\mathbf{d} = (d_1, d_2, d_3, \dots, d_n) = (d_i)_{i=1}^n$ consists of the diagonal elements of **D**.

Note that **diag d** = $(d_{ij})_{n \times n}$ where each $d_{ij} = \delta_{ij}d_{ii} = \delta_{ij}d_{jj}$.

Obviously, any diagonal matrix is symmetric.

Multiplying by Diagonal Matrices

Example

Let **D** be a diagonal matrix of dimension n.

Suppose that **A** and **B** are $m \times n$ and $n \times m$ matrices, respectively.

Then $\mathbf{E} := \mathbf{A}\mathbf{D}$ and $\mathbf{F} := \mathbf{D}\mathbf{B}$ are well defined matrices of dimensions $m \times n$ and $n \times m$, respectively.

By the law of matrix multiplication, their elements are

$$e_{ij} = \sum_{k=1}^{n} a_{ik} \delta_{kj} d_{jj} = a_{ij} d_{jj}$$
 and $f_{ij} = \sum_{k=1}^{n} \delta_{ik} d_{ii} b_{kj} = d_{ii} b_{ij}$

Thus, post-multiplying **A** by **D** is the column operation of simultaneously multiplying every column \mathbf{a}_j of **A** by its matching diagonal element d_{jj} .

Similarly, pre-multiplying **B** by **D** is the row operation of simultaneously multiplying every row \mathbf{b}_i^{\top} of **B** by its matching diagonal element d_{ii} .

Two Exercises with Diagonal Matrices

Exercise

Let **D** be a diagonal matrix of dimension n. Give conditions that are both necessary and sufficient for each of the following:

- 1. AD = A for every $m \times n$ matrix A;
- 2. $\mathbf{DB} = \mathbf{B}$ for every $n \times m$ matrix \mathbf{B} .

Exercise

Let **D** be a diagonal matrix of dimension n, and **C** any $n \times n$ matrix.

An earlier example shows that one can have $CD \neq DC$ even if n = 2.

- 1. Show that **C** being diagonal is a sufficient condition for **CD** = **DC**.
- 2. Is this condition necessary?

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices

The Identity Matrix

The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

The Identity Matrix

The identity matrix of dimension *n* is the diagonal matrix

$$\mathbf{I}_n = \mathbf{diag}(1, 1, \dots, 1)$$

whose n diagonal elements are all equal to 1.

Equivalently, it is the $n \times n$ -matrix $\mathbf{A} = (a_{ij})^{n \times n}$ whose elements are all given by $a_{ij} = \delta_{ij}$ for the Kronecker delta function $(i, j) \mapsto \delta_{ij}$ defined on $\{1, 2, \dots, n\}^2$.

Exercise

Given any $m \times n$ matrix **A**, verify that $I_m \mathbf{A} = \mathbf{A}I_n = \mathbf{A}$.

University of Warwick, EC9A0 Maths for Economists

Uniqueness of the Identity Matrix

Exercise

Suppose that the two $n \times n$ matrices **X** and **Y** respectively satisfy:

1.
$$AX = A$$
 for every $m \times n$ matrix A ;

2. $\mathbf{YB} = \mathbf{B}$ for every $n \times m$ matrix \mathbf{B} .

Prove that $\mathbf{X} = \mathbf{Y} = \mathbf{I}_n$.

(Hint: Consider each of the mn different cases where **A** (resp. **B**) has exactly one non-zero element that is equal to 1.)

The results of the last two exercises together serve to prove:

Theorem

The identity matrix I_n is the unique $n \times n$ -matrix such that:

$$\blacksquare \mathbf{I}_n \mathbf{B} = \mathbf{B} \text{ for each } n \times m \text{ matrix } \mathbf{B};$$

•
$$AI_n = A$$
 for each $m \times n$ matrix A .

How the Identity Matrix Earns its Name

Remark

The identity matrix \mathbf{I}_n earns its name because it represents a multiplicative identity on the "algebra" of all $n \times n$ matrices.

That is, \mathbf{I}_n is the unique $n \times n$ -matrix with the property that $\mathbf{I}_n \mathbf{A} = \mathbf{A}\mathbf{I}_n = \mathbf{A}$ for every $n \times n$ -matrix \mathbf{A} .

Typical notation suppresses the subscript n in I_n that indicates the dimension of the identity matrix.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix

The Inverse Matrix

Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Left and Right Inverse Matrices

Definition

Let **A** denote any $n \times n$ matrix.

- 1. The $n \times n$ matrix **X** is a left inverse of **A** just in case $\mathbf{XA} = \mathbf{I}_n$.
- 2. The $n \times n$ matrix **Y** is a right inverse of **A** just in case $AY = I_n$.
- The n × n matrix Z is an inverse of A just in case it is both a left and a right inverse i.e., ZA = AZ = I_n.

The Unique Inverse Matrix

Theorem

Suppose that the $n \times n$ matrix **A** has both a left and a right inverse.

Then both left and right inverses are unique,

and both are equal to a unique inverse matrix denoted by A^{-1} .

Proof.

If XA = AY = I, then XAY = XI = X and XAY = IY = Y, implying that X = XAY = Y.

Now, if $\tilde{\mathbf{X}}$ is any alternative left inverse, then $\tilde{\mathbf{X}}\mathbf{A} = \mathbf{I}$ and so $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}\mathbf{A}\mathbf{Y} = \mathbf{Y} = \mathbf{X}$.

Similarly, if $\tilde{\mathbf{Y}}$ is any alternative right inverse, then $\mathbf{A}\tilde{\mathbf{Y}} = \mathbf{I}$ and so $\tilde{\mathbf{Y}} = \mathbf{X}\mathbf{A}\tilde{\mathbf{Y}} = \mathbf{X} = \mathbf{Y}$.

It follows that $\tilde{\mathbf{X}} = \mathbf{X} = \mathbf{Y} = \tilde{\mathbf{Y}}$, so we can define \mathbf{A}^{-1} as the unique common value of all these four matrices. Big question: when does the inverse exist? Answer: if and only if the determinant is non-zero. University of Warwick, EC9A0 Maths for Economists

Rule for Inverting Products

Theorem

Suppose that **A** and **B** are two invertible $n \times n$ matrices.

Then the inverse of the matrix product AB exists, and is the reverse product $B^{-1}A^{-1}$ of the inverses.

Proof.

Using the associative law for matrix multiplication repeatedly gives:

$$(\mathbf{B}^{-1}\mathbf{A}^{-1})(\mathbf{A}\mathbf{B}) = \mathbf{B}^{-1}(\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = \mathbf{B}^{-1}(\mathbf{I})\mathbf{B} = \mathbf{B}^{-1}(\mathbf{I}\mathbf{B}) = \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$$

and

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(I)A^{-1} = (AI)A^{-1} = AA^{-1} = I.$$

These equations confirm that $\mathbf{X} := \mathbf{B}^{-1}\mathbf{A}^{-1}$ is the unique matrix satisfying the double equality $(\mathbf{AB})\mathbf{X} = \mathbf{X}(\mathbf{AB}) = \mathbf{I}$.

Rule for Inverting Chain Products and Transposes

Exercise

Prove that, if **A**, **B** and **C** are three invertible $n \times n$ matrices, then $(\mathbf{ABC})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$.

Then use mathematical induction to extend the rule for inverting any product **BC** in order to find the inverse of the product $\mathbf{A}_1\mathbf{A}_2\cdots\mathbf{A}_k$ of any finite chain of invertible $n \times n$ matrices.

Theorem

Suppose that **A** is an invertible $n \times n$ matrix. Then the inverse $(\mathbf{A}^{\top})^{-1}$ of its transpose is $(\mathbf{A}^{-1})^{\top}$, the transpose of its inverse.

Proof.

By the rule for transposing products, one has

$$\mathbf{A}^{\top}(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{-1}\mathbf{A})^{\top} = \mathbf{I}^{\top} = \mathbf{I}$$

Orthogonal and Orthonormal Sets of Vectors

Definition

A set of k vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subset \mathbb{R}^n$ is said to be:

- ▶ pairwise orthogonal just in case $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ whenever $j \neq i$;
- orthonormal just in case, in addition, each ||x_i|| = 1
 i.e., all k elements of the set are vectors of unit length.

The set of k vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subset \mathbb{R}^n$ is orthonormal just in case $\mathbf{x}_i \cdot \mathbf{x}_j = \delta_{ij}$ for all pairs $i, j \in \{1, 2, \dots, k\}$.

Orthogonal Matrices

Definition

Any $n \times n$ matrix is orthogonal

just in case its n columns form an orthonormal set.

Theorem

Given any $n \times n$ matrix **P**, the following are equivalent:

- 1. **P** is orthogonal;
- 2. $\mathbf{P}\mathbf{P}^{\top} = \mathbf{P}^{\top}\mathbf{P} = \mathbf{I};$
- 3. $\mathbf{P}^{-1} = \mathbf{P}^{\top};$
- 4. \mathbf{P}^{\top} is orthogonal.

The proof follows from the definitions, and is left as an exercise.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices. Example

Consider the $(m + \ell) \times (n + k)$ matrix

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{m \times n} & \mathbf{B}_{m \times k} \\ \mathbf{C}_{\ell \times n} & \mathbf{D}_{\ell \times k} \end{pmatrix}$$

where, as indicated, the four submatrices **A**, **B**, **C**, **D** are of dimension $m \times n$, $m \times k$, $\ell \times n$ and $\ell \times k$ respectively. Note: Here matrix **D** may not be diagonal, or even square.

For any scalar $\alpha \in \mathbb{R}$, the scalar multiple of a partitioned matrix is

$$\alpha \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \alpha \mathbf{A} & \alpha \mathbf{B} \\ \alpha \mathbf{C} & \alpha \mathbf{D} \end{pmatrix}$$

Partitioned Matrices: Addition

Suppose the two partitioned matrices

$$\begin{pmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \textbf{E} & \textbf{F} \\ \textbf{G} & \textbf{H} \end{pmatrix}$$

have the property that the following four pairs of corresponding matrices have equal dimensions:
(i) A and E; (ii) B and F; (iii) C and G; (iv) D and H.

Then the sum of the two matrices is

$$\begin{pmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{pmatrix} + \begin{pmatrix} \textbf{E} & \textbf{F} \\ \textbf{G} & \textbf{H} \end{pmatrix} = \begin{pmatrix} \textbf{A} + \textbf{E} & \textbf{B} + \textbf{F} \\ \textbf{C} + \textbf{G} & \textbf{D} + \textbf{H} \end{pmatrix}$$

Partitioned Matrices: Multiplication

Suppose that the two partitioned matrices

$$\begin{pmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \textbf{E} & \textbf{F} \\ \textbf{G} & \textbf{H} \end{pmatrix}$$

along with all the relevant pairs of their sub-matrices, are compatible for multiplication.

Then their product is defined as

$$\begin{pmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{pmatrix} \begin{pmatrix} \textbf{E} & \textbf{F} \\ \textbf{G} & \textbf{H} \end{pmatrix} = \begin{pmatrix} \textbf{AE} + \textbf{BG} & \textbf{AF} + \textbf{BH} \\ \textbf{CE} + \textbf{DG} & \textbf{CF} + \textbf{DH} \end{pmatrix}$$

This extends the usual multiplication rule for matrices: multiply the rows of sub-matrices in the first partitioned matrix by the columns of sub-matrices in the second partitioned matrix.

Transposes and Some Special Matrices

The rule for transposing a partitioned matrix is

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{\top} = \begin{pmatrix} \mathbf{A}^{\top} & \mathbf{C}^{\top} \\ \mathbf{B}^{\top} & \mathbf{D}^{\top} \end{pmatrix}$$

So the original matrix is symmetric iff $\mathbf{A} = \mathbf{A}^{\top}$, $\mathbf{D} = \mathbf{D}^{\top}$, and $\mathbf{B} = \mathbf{C}^{\top} \iff \mathbf{C} = \mathbf{B}^{\top}$.

It is diagonal iff A, D are both diagonal, while also B = 0 and C = 0.

The identity matrix is diagonal with $\mathbf{A} = \mathbf{I}$, $\mathbf{D} = \mathbf{I}$, possibly identity matrices of different dimensions.

Partitioned Matrices: Inverses, I

For an $(m + n) \times (m + n)$ partitioned matrix to have an inverse, the equation

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{E} + \mathbf{B}\mathbf{G} & \mathbf{A}\mathbf{F} + \mathbf{B}\mathbf{H} \\ \mathbf{C}\mathbf{E} + \mathbf{D}\mathbf{G} & \mathbf{C}\mathbf{F} + \mathbf{D}\mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{pmatrix}$$

should have a solution for the matrices E, F, G, H, given A, B, C, D.

Assuming that the $m \times m$ matrix **A** has an inverse, we can:

1. construct new first *m* equations

by premultiplying the old ones by A^{-1} ;

- 2. construct new second n equations by:
 - premultiplying the new first *m* equations by the *n* × *m* matrix C;

then subtracting this product from the old second n equations.

The result is

$$\begin{pmatrix} \mathbf{I}_m & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0}_{n\times m} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{0}_{m\times n} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{I}_n \end{pmatrix}$$

Partitioned Matrices: Inverses, II

For the next step, assume the $n \times n$ matrix $\mathbf{X} := \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$ also has an inverse $\mathbf{X}^{-1} = (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}$. Given $\begin{pmatrix} \mathbf{I}_m & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0}_{n \times m} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{pmatrix} \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{0}_{m \times n} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{I}_n \end{pmatrix}$,

we first premultiply the last *n* equations by \mathbf{X}^{-1} to get

$$\begin{pmatrix} \mathbf{I}_m & \mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{pmatrix} \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{0}_{m \times n} \\ -\mathbf{X}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{X}^{-1} \end{pmatrix}$$

Next, we subtract $\mathbf{A}^{-1}\mathbf{B}$ times the last *n* equations from the first *m* equations to obtain

$$\begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{pmatrix} \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\mathbf{X}^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\mathbf{X}^{-1} \\ -\mathbf{X}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{X}^{-1} \end{pmatrix}$$

Final Exercises

Exercise

1. Assume that \mathbf{A}^{-1} and $\mathbf{X}^{-1} = (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}$ exist.

Given
$$Z := \begin{pmatrix} A^{-1} + A^{-1}BX^{-1}CA^{-1} & -A^{-1}BX^{-1} \\ -X^{-1}CA^{-1} & X^{-1} \end{pmatrix}$$

use direct multiplication twice in order to verify that

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} \mathbf{Z} = \mathbf{Z} \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{pmatrix}$$

2. Let **A** be any invertible $m \times m$ matrix.

Show that the bordered $(m + 1) \times (m + 1)$ matrix $\begin{pmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^{\top} & d \end{pmatrix}$ is invertible provided that $d \neq \mathbf{c}^{\top} \mathbf{A}^{-1} \mathbf{b}$, and find its inverse in this case.

Partitioned Matrices: Extension

Exercise

Suppose that the two partitioned matrices

$$\mathbf{A} = (\mathbf{A}_{ij})^{k imes \ell}$$
 and $\mathbf{B} = (\mathbf{B}_{ij})^{k imes \ell}$

are both $k \times \ell$ arrays of respective $m_i \times n_j$ matrices $\mathbf{A}_{ij}, \mathbf{B}_{ij}$, for i = 1, 2, ..., k and $j = 1, 2, ..., \ell$.

- 1. Under what conditions can the product **AB** be defined as a $k \times \ell$ array of matrices?
- 2. Under what conditions can the product **BA** be defined as a *k* × ℓ array of matrices?
- 3. When either **AB** or **BA** can be so defined, give a formula for its product, using summation notation.
- 4. Express \mathbf{A}^{\top} as a partitioned matrix.
- 5. Under what conditions is the matrix **A** symmetric?

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs Permutations

Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Permutations

Definition

- Given $\mathbb{N}_n = \{1, \ldots, n\}$ for any $n \in \mathbb{N}$ with $n \geq 2$,
- a permutation of \mathbb{N}_n is a bijective mapping $\mathbb{N}_n \ni i \mapsto \pi(i) \in \mathbb{N}_n$.

That is, the mapping $\mathbb{N}_n \ni i \mapsto \pi(i) \in \mathbb{N}_n$ is both:

- 1. a surjection, or mapping of \mathbb{N}_n onto \mathbb{N}_n , in the sense that the range set satisfies $\pi(\mathbb{N}_n) := \{j \in \mathbb{N}_n \mid \exists i \in \mathbb{N}_n : j = \pi(i)\} = \mathbb{N}_n;$
- 2. an injection, or a one to one mapping, in the sense that $\pi(i) = \pi(j) \Longrightarrow i = j$ or, equivalently, $i \neq j \Longrightarrow \pi(i) \neq \pi(j)$.

Exercise

Prove that the mapping $\mathbb{N}_n \ni i \mapsto f(i) \in \mathbb{N}_n$ is a bijection, and so a permutation, if and only if its range set $f(\mathbb{N}_n) := \{j \in \mathbb{N}_n \mid \exists i \in \mathbb{N}_n : j = f(i)\}$ has cardinality $\#f(\mathbb{N}_n) = \#\mathbb{N}_n = n$.

University of Warwick, EC9A0 Maths for Economists

Products of Permutations

Definition

The product $\pi \circ \rho$ of two permutations $\pi, \rho \in \Pi_n$

is the composition mapping $\mathbb{N}_n \ni i \mapsto (\pi \circ \rho)(i) := \pi[\rho(i)] \in \mathbb{N}_n$.

Exercise

Prove that the product $\pi \circ \rho$ of any two permutations $\pi, \rho \in \Pi_n$ is a permutation.

Hint: Show that $\#(\pi \circ \rho)(\mathbb{N}_n) = \#\rho(\mathbb{N}_n) = \#\mathbb{N}_n = n$.

Example

- 1. If you shuffle a pack of 52 playing cards once, without dropping any on the floor, the result will be a permutation π of the cards.
- 2. If you shuffle the same pack a second time, the result will be a new permutation ρ of the shuffled cards.
- 3. Overall, the result of shuffling the cards twice will be the single permutation $\rho \circ \pi$.

Finite Permutation Groups

Definition

Given any $n \in \mathbb{N}$, the family Π_n of all permutations of \mathbb{N}_n includes:

- ▶ the identity permutation ι defined by $\iota(h) = h$ for all $h \in \mathbb{N}_n$;
- ▶ because the mapping $\mathbb{N}_n \ni i \mapsto f(i) \in \mathbb{N}_n$ is bijective, for each $\pi \in \Pi_n$, a unique inverse permutation $\pi^{-1} \in \Pi_n$ satisfying $\pi^{-1} \circ \pi = \pi \circ \pi^{-1} = \iota$.

Definition

The associative law for functions says that,

given any three functions $h: X \to Y$, $g: Y \to Z$ and $f: Z \to W$, the composite function $f \circ g \circ h: X \to W$ satisfies

$$(f \circ g \circ h)(x) \equiv f(g(h(x))) \equiv [(f \circ g) \circ h](x) \equiv [f \circ (g \circ h)](x)$$

Exercise

Given any $n \in \mathbb{N}$, show that (Π_n, π, ι) is an algebraic group — i.e., the group operation $(\pi, \rho) \mapsto \pi \circ \rho$ is well-defined, associative, with ι as the unit, and an inverse π^{-1} for every $\pi \in \Pi_n$. University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 32 of 87

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations

Transpositions

Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Transpositions

Definition

For each disjoint pair $k, \ell \in \{1, 2, ..., n\}$, the transposition mapping $i \mapsto \tau_{k\ell}(i)$ on $\{1, 2, ..., n\}$ is the permutation defined by

$$\tau_{k\ell}(i) := \begin{cases} \ell & \text{if } i = k; \\ k & \text{if } i = \ell; \\ i & \text{otherwise}; \end{cases}$$

That is, $\tau_{k\ell}$ transposes the order of k and ℓ , leaving all $i \notin \{k, \ell\}$ unchanged.

Evidently $\tau_{k\ell} = \tau_{\ell k}$ and $\tau_{k\ell} \circ \tau_{\ell k} = \iota$, the identity permutation, and so $\tau \circ \tau = \iota$ for every transposition τ .

Transposition is Not Commutative

Any $(j_1, j_2, \ldots, j_n) \in \mathbb{N}_n^n$ whose components are all different corresponds to a unique permutation, denoted by $\pi^{j_1 j_2 \cdots j_n} \in \Pi_n$, that satisfies $\pi(i) = j_i$ for all $i \in \mathbb{N}_n^n$.

Example

Two transpositions defined on a set containing more than two elements may not commute because, for example,

$$\tau_{12} \circ \tau_{23} = \pi^{231} \neq \tau_{23} \circ \tau_{12} = \pi^{312}$$

Permutations are Products of Transpositions

Theorem

Any permutation $\pi \in \Pi_n$ on $\mathbb{N}_n := \{1, 2, \dots, n\}$

is the product of at most n-1 transpositions.

We will prove the result by induction on n.

As the induction hypothesis,

suppose the result holds for permutations on \mathbb{N}_{n-1} .

Any permutation π on $\mathbb{N}_2 := \{1, 2\}$ is either the identity, or the transposition τ_{12} , so the result holds for n = 2.
Proof of Induction Step

For general *n*, let $j := \pi^{-1}(n)$ denote the element that π moves to the end.

By construction, the permutation $\pi \circ \tau_{jn}$ must satisfy $\pi \circ \tau_{jn}(n) = \pi(\tau_{jn}(n)) = \pi(j) = n$.

So the restriction $\tilde{\pi}$ of $\pi \circ \tau_{in}$ to \mathbb{N}_{n-1} is a permutation on \mathbb{N}_{n-1} . By the induction hypothesis, for all $k \in \mathbb{N}_{n-1}$, there exist transpositions $\tau^1, \tau^2, \ldots, \tau^q$ such that $\tilde{\pi}(k) = (\pi \circ \tau_{in})(k) = (\tau^1 \circ \tau^2 \circ \ldots \circ \tau^q)(k)$ where q < n-2 is the number of transpositions in the product. For p = 1, ..., q, because τ^p interchanges only elements of \mathbb{N}_{n-1} , one can extend its domain to include *n* by letting $\tau^{p}(n) = n$. Then $(\pi \circ \tau_{jn})(k) = (\tau^1 \circ \tau^2 \circ \ldots \circ \tau^q)(k)$ for k = n as well, so $\pi = (\pi \circ \tau_{in}) \circ \tau_{in}^{-1} = \tau^1 \circ \tau^2 \circ \ldots \circ \tau^q \circ \tau_{in}^{-1}$. Hence π is the product of at most $q + 1 \le n - 1$ transpositions. This completes the proof by induction on *n*.

Adjacency Transpositions and Their Products, I

Definition

For each $k \in \{1, 2, ..., n-1\}$, the transposition $\tau_{k,k+1}$ of element k with its successor is an adjacency transposition.

Definition

For each pair $k, \ell \in \mathbb{N}_n$ with $k < \ell$, define:

successive adjacency transpositions in reverse order.

Adjacency Transpositions and Their Products, II

Exercise

For each pair $k, \ell \in \mathbb{N}_n$ with $k < \ell$, prove that:

$$\pi^{k \nearrow \ell}(i) := \begin{cases} i & \text{if } i < k \text{ or } i > \ell; \\ i - 1 & \text{if } k < i \le \ell; \\ \ell & \text{if } i = k. \end{cases}$$

$$\pi^{k \nearrow k} = \pi^{k \searrow k} = \iota$$

$$\pi^{k \nearrow \ell} \text{ and } \pi^{\ell \searrow k} \text{ are inverses}$$

$$\pi^{k \nearrow \ell} = \pi^{1,2,\dots,k-1,k+1,\dots,\ell-1,\ell,k,\ell+1,\dots,n}$$

$$\pi^{\ell \searrow k} = \pi^{1,2,\dots,k-1,\ell,k,k+1,\dots,\ell-2,\ell-1,\ell+1,\dots,n}$$

- 1. Note that $\pi^{k \nearrow \ell}$ moves k up to the ℓ th position, while moving each element between k + 1 and ℓ down by one.
- 2. By contrast, $\pi^{\ell \searrow k}$ moves ℓ down to the *k*th position, while moving each element between *k* and $\ell 1$ up by one.

Reduction to the Product of Adjacency Transpositions

Lemma

For each pair $k, \ell \in \mathbb{N}_n$ with $k < \ell$, the transposition $\tau_{k\ell}$ equals both $\pi^{\ell-1 \searrow k} \circ \pi^{k \nearrow \ell}$ and $\pi^{k+1 \nearrow \ell} \circ \pi^{\ell \searrow k}$, the compositions of $2(\ell - k) - 1$ adjacency transpositions.

Proof.

1. As noted, $\pi^{k \nearrow \ell}$ moves k up to the ℓ th position. while moving each element between k + 1 and ℓ down by one. Then $\pi^{\ell-1} \mathbf{k}$ moves ℓ , which $\pi^{k \mathbf{k}} \ell$ left in position $\ell - 1$. down to the k position, and moves $k + 1, k + 2, \ldots, \ell - 1$ up by one, back to their original positions. This proves that $\pi^{\ell-1 \searrow k} \circ \pi^{k \nearrow \ell} = \tau_{k\ell}$. It also expresses $\tau_{k\ell}$ as the composition of $(\ell - k) + (\ell - 1 - k) = 2(\ell - k) - 1$ adjacency transpositions. 2. The proof that $\pi^{k+1} \wedge e^{-\pi \ell \sum k} = \tau_{k\ell}$ is similar: details are left as an exercise.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

The Inversions of a Permutation

Definition

- 1. Let $\mathbb{N}_{n,2} = \{S \subseteq \mathbb{N}_n \mid \#S = 2\}$ denote the set of all (unordered) pair subsets of \mathbb{N}_n .
- 2. Obviously, if $\{i, j\} \in \mathbb{N}_{n,2}$, then $i \neq j$.
- 3. Given any pair $\{i, j\} \in \mathbb{N}_{n,2}$, define

 $i \lor j := \max\{i, j\}$ and $i \land j := \min\{i, j\}$

For all $\{i, j\} \in \mathbb{N}_{n,2}$, because $i \neq j$, one has $i \lor j > i \land j$.

- Given any permutation π ∈ Π_n, the pair {i,j} ∈ N_{n,2} is an inversion of π just in case π "reorders" {i,j} in the sense that π(i ∨ j) < π(i ∧ j).
- 5. Denote the set of inversions of π by

$$\mathfrak{N}(\pi) := \{\{i, j\} \in \mathbb{N}_{n, 2} \mid \pi(i \lor j) < \pi(i \land j)\}$$

The Sign of a Permutation

Definition

- 1. Given any permutation $\pi : \mathbb{N}_n \to \mathbb{N}_n$, let $\mathfrak{n}(\pi) := \#\mathfrak{N}(\pi) \in \mathbb{N} \cup \{0\}$ denote the number of its inversions.
- A permutation π : N_n → N_n is either even or odd according as n(π) is an even or odd number.
- The sign or signature of a permutation π, is defined as sgn(π) := (-1)^{n(π)}, which is:
 (i) +1 if π is even; (ii) -1 if π is odd.

The Sign of an Adjacency Transposition

Theorem

For each $k \in \mathbb{N}_{n-1}$, if π is the adjacency transposition $\tau_{k,k+1}$, then $\mathfrak{N}(\pi) = \{\{k, k+1\}\}$, so $\mathfrak{n}(\pi) = 1$ and $\operatorname{sgn}(\pi) = -1$.

Proof.

If π is the adjacency transposition $\tau_{k,k+1}$, then

$$\pi(i) = \begin{cases} i & \text{if } i \notin \{k, k+1\} \\ k+1 & \text{if } i = k \\ k & \text{if } i = k+1 \end{cases}$$

It is evident that $\{k, k+1\}$ is an inversion.

Also $\pi(i) \leq i$ for all $i \neq k$, and $\pi(j) \geq j$ for all $j \neq k + 1$. So if i < j, then $\pi(i) \leq i < j \leq \pi(j)$ unless i = k and j = k + 1, and so $\pi(i) > \pi(j)$ only if (i,j) = (k, k + 1). Hence $\mathfrak{N}(\pi) = \{\{k, k + 1\}\}$, implying that $\mathfrak{n}(\pi) = 1$.

A Multi-Part Exercise

Exercise

Show that:

1. For each permutation $\pi \in \Pi_n$, one has

$$\begin{aligned} \mathfrak{N}(\pi) &:= \left\{ \{i, j\} \in \mathbb{N}_{n, 2} \mid (i - j)[\pi(i) - \pi(j)] < 0 \right\} \\ &= \left\{ \{i, j\} \in \mathbb{N}_{n, 2} \mid \frac{\pi(i) - \pi(j)}{i - j} < 0 \right\} \end{aligned}$$

2. $\mathfrak{n}(\pi) = 0 \iff \pi = \iota$, the identity permutation; 3. $\mathfrak{n}(\pi) \leq \frac{1}{2}n(n-1)$, with equality if and only if π is the reversal permutation defined by $\pi(i) = n - i + 1$ for all $i \in \mathbb{N}_n$ — i.e.,

$$(\pi(1), \pi(2), \ldots, \pi(n-1), \pi(n)) = (n, n-1, \ldots, 2, 1)$$

Hint: Consider the number of ordered pairs $(i, j) \in \mathbb{N}_n \times \mathbb{N}_n$ that satisfy i < j.

University of Warwick, EC9A0 Maths for Economists

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Double Products

Let $\mathbf{X} = \langle x_{ij} \rangle_{(i,j) \in \mathbb{N}_n \times \mathbb{N}_n}$ denote an $n \times n$ matrix. We introduce the notation

$$\prod_{i>j}^{n} x_{ij} := \prod_{i=1}^{n} \prod_{j=1}^{n-1} x_{ij} := \prod_{j=1}^{n} \prod_{i=j+1}^{n} x_{ij}$$

for the product of all the elements in the lower triangular matrix **L** with elements $\ell_{ij} := \begin{cases} x_{ij} & \text{if } i > j \\ 0 & \text{if } i \leq j \end{cases}$

In case the matrix **X** is symmetric, one has

$$\prod_{i>j}^{n} x_{ij} = \prod_{i>j}^{n} x_{ji} = \prod_{i$$

This can be rewritten as $\prod_{i>j}^{n} x_{ij} = \prod_{\{i,j\} \in \mathbb{N}_{n,2}} x_{ij}$, which is the product over all unordered pairs of elements in \mathbb{N}_{n} .

Preliminary Example and Definition

Example

For every $n \in \mathbb{N}$, define the double product

$$\mathbb{P}_{n,2} := \prod_{\{i,j\} \in \mathbb{N}_{n,2}} |i-j| = \prod_{i>j}^{n} |i-j| = \prod_{i$$

Then one has

$$\mathbb{P}_{n,2} = (n-1)(n-2)^2(n-3)^3 \cdots 3^{n-3} 2^{n-2} 1^{n-1} = \prod_{k=1}^{n-1} k^{n-k} = (n-1)!(n-2)!(n-3)! \cdots 3! 2! = \prod_{k=1}^{n-1} k!$$

Definition

For every permutation $\pi \in \Pi_n$, define the symmetric matrix \mathbf{X}^{π}

so that
$$x_{ij}^{\pi} := \begin{cases} rac{\pi(i) - \pi(j)}{i - j} & ext{if } i \neq j \\ 1 & ext{if } i = j \end{cases}$$

Basic Lemma

Lemma

For every permutation $\pi \in \Pi_n$, one has $sgn(\pi) = \prod_{\{i,j\} \in \mathbb{N}_{n,2}} x_{ij}^{\pi}$.

Proof.

• Because π is a permutation, the mapping $\mathbb{N}_{n,2} \ni \{i,j\} \mapsto \{\pi(i), \pi(j)\} \in \mathbb{N}_{n,2}$ has inverse $\mathbb{N}_{n,2} \ni \{i,j\} \mapsto \{\pi^{-1}(i), \pi^{-1}(j)\} \in \mathbb{N}_{n,2}$. In fact it is a bijection between $\mathbb{N}_{n,2}$ and itself.

► Hence
$$\mathbb{P}_{n,2} := \prod_{\{i,j\} \in \mathbb{N}_{n,2}} |i - j| = \prod_{\{i,j\} \in \mathbb{N}_{n,2}} |\pi(i) - \pi(j)|$$
.
► So $\prod_{\{i,j\} \in \mathbb{N}_{n,2}} \frac{|\pi(i) - \pi(j)|}{|i - j|} = \prod_{\{i,j\} \in \mathbb{N}_{n,2}} |x_{ij}^{\pi}| = 1.$

Also $x_{ij}^{\pi} = \mp 1$ according as $\{i, j\}$ is or is not a reversal of π .

► It follows that

$$\prod_{\{i,j\}\in\mathbb{N}_{n,2}} x_{ij}^{\pi} = (-1)^{\mathfrak{n}(\pi)} \prod_{\{i,j\}\in\mathbb{N}_{n,2}} |x_{ij}^{\pi}| = (-1)^{\mathfrak{n}(\pi)} = \operatorname{sgn}(\pi)$$

The Product Rule for Signs of Permutations

Theorem

For all permutations $\rho, \pi \in \Pi_n$ one has $\operatorname{sgn}(\rho \circ \pi) = \operatorname{sgn}(\rho) \operatorname{sgn}(\pi)$.

Proof.

The basic lemma implies that

$$\frac{\operatorname{sgn}(\rho \circ \pi)}{\operatorname{sgn}(\pi)} = \prod_{\substack{\{i,j\} \in \mathbb{N}_{n,2} \\ \{i,j\} \in \mathbb{N}_{n,2}}} \frac{\rho(\pi(i)) - \rho(\pi(j))}{i - j} \prod_{\substack{\{k,\ell\} \in \mathbb{N}_{n,2} \\ \{i,j\} \in \mathbb{N}_{n,2}}} \frac{k - \ell}{\pi(k) - \pi(\ell)}$$
$$= \prod_{\substack{\{i,j\} \in \mathbb{N}_{n,2} \\ i - j}} \frac{\rho(\pi(i)) - \rho(\pi(j))}{i - j} \prod_{\substack{\{i,j\} \in \mathbb{N}_{n,2} \\ \{i,j\} \in \mathbb{N}_{n,2}}} \frac{i - j}{\pi(i) - \pi(j)}$$

After cancelling the product $\prod_{\{i,j\}\in\mathbb{N}_{n,2}}(i-j)$ and then replacing $\pi(i)$ by k and $\pi(j)$ by ℓ , because π and ρ are permutations, one obtains

$$\frac{\operatorname{sgn}(\rho \circ \pi)}{\operatorname{sgn}(\pi)} = \prod_{\{k,\ell\} \in \mathbb{N}_{n,2}} \frac{\rho(k) - \rho(\ell)}{k - \ell} = \operatorname{sgn}(\rho) \qquad \Box$$

University of Warwick, EC9A0 Maths for Economists

The Sign of the Inverse Permutations

Corollary

Given any permutation $\pi \in \Pi_n$, one has $sgn(\pi^{-1}) = sgn(\pi)$.

Proof.

Because the identity permutation satisfies $\iota = \pi \circ \pi^{-1}$, the product rule implies that

$$1 = \operatorname{sgn}(\iota) = \operatorname{sgn}(\pi \circ \pi^{-1}) = \operatorname{sgn}(\pi) \operatorname{sgn}(\pi^{-1})$$

Because $sgn(\pi), sgn(\pi^{-1}) \in \{-1, 1\}$, they must both have the same sign, and the result follows.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2

Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Determinants of Order 2: Definition

Consider again the pair of linear equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{12}x_2 = b_2$

with its associated coefficient matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Let us define the number $D := a_{11}a_{22} - a_{21}a_{12}$.

We saw earlier that, provided that $D \neq 0$, the two simultaneous equations have a unique solution given by

$$x_1 = rac{1}{D}(b_1a_{22} - b_2a_{12}), \quad x_2 = rac{1}{D}(b_2a_{11} - b_1a_{21})$$

The number D is called the determinant of the matrix A.

It is denoted by either $det(\mathbf{A})$, or more concisely, by $|\mathbf{A}|$. University of Warwick, EC9A0 Maths for Economists Peter J. Hammond

Determinants of Order 2: Simple Rule

Thus, for any 2×2 matrix **A**, its determinant D is

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

For this special case of order 2 determinants, a simple rule is:

- 1. multiply the diagonal elements together;
- 2. multiply the off-diagonal elements together;
- 3. subtract the product of the off-diagonal elements from the product of the diagonal elements.

Exercise

Show that the determinant satisfies

$$|\mathbf{A}| = a_{11}a_{22}\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + a_{21}a_{12}\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$$

Transposing the Rows or Columns

Example

Consider the two 2 × 2 matrices $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\mathbf{T} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Note that \mathbf{T} is orthogonal.

Also, one has
$$\mathbf{AT} = \begin{pmatrix} b & a \\ d & c \end{pmatrix}$$
 and $\mathbf{TA} = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$.

Here **T** is a transposition matrix which interchanges: (i) the columns of **A** in **AT**; (ii) the rows of **A** in **TA**. Evidently $|\mathbf{T}| = -1$ and $|\mathbf{TA}| = |\mathbf{AT}| = (bc - ad) = -|\mathbf{A}|$. So interchanging the two rows or columns of **A** changes the sign of $|\mathbf{A}|$.

Sign Adjusted Transpositions

Example

Next, consider the following three 2×2 matrices:

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{\hat{T}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Note that, like $\boldsymbol{\mathsf{T}},$ the matrix $\boldsymbol{\hat{\mathsf{T}}}$ is orthogonal.

Here one has
$$\mathbf{A}\hat{\mathbf{T}} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}$$
 and $\hat{\mathbf{T}}\mathbf{A} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}$.
Evidently $|\hat{\mathbf{T}}| = 1$ and $|\hat{\mathbf{T}}\mathbf{A}| = |\mathbf{A}\hat{\mathbf{T}}| = (ad - bc) = |\mathbf{A}|$.

The same is true of its transpose (and inverse) $\mathbf{\hat{T}}^{\top} = \begin{pmatrix} \mathbf{v} & \mathbf{i} \\ -1 & \mathbf{0} \end{pmatrix}$.

This key property makes both $\hat{\mathbf{T}}$ and $\hat{\mathbf{T}}^{\top}$ sign adjusted versions of the transposition matrix \mathbf{T} .

Cramer's Rule in the 2×2 Case

Using determinant notation, the solution to the equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{12}x_2 = b_2$

can be written in the alternative form

$$x_1 = rac{1}{D} egin{pmatrix} b_1 & a_{12} \ b_2 & a_{22} \end{bmatrix}, \qquad x_2 = rac{1}{D} egin{pmatrix} a_{11} & b_1 \ a_{21} & b_2 \end{bmatrix}$$

This accords with Cramer's rule,

which says that the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is the vector $\mathbf{x} = (x_i)_{i=1}^n$ each of whose components x_i is the fraction with:

- 1. denominator equal to the determinant Dof the coefficient matrix **A** (provided, of course, that $D \neq 0$);
- 2. numerator equal to the determinant of the matrix $[\mathbf{A}_{-i}/\mathbf{b}]$ formed from **A** by excluding its *i*th column, then replacing it with the **b** vector of right-hand side elements, while keeping all the columns in their original order.

University of Warwick, EC9A0 Maths for Economists

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2

Determinants of Order 3

The Determinant Function Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Determinants of Order 3: Definition

Determinants of order 3 can be calculated from those of order 2 according to the formula

$$egin{aligned} |\mathbf{A}| &= a_{11} egin{pmatrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{bmatrix} - a_{12} egin{pmatrix} a_{21} & a_{23} \ a_{31} & a_{33} \end{bmatrix} + a_{13} egin{pmatrix} a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} \ &= \sum_{j=1}^3 (-1)^{1+j} a_{1j} |\mathbf{C}_{1j}| \end{aligned}$$

where, for j = 1, 2, 3, the 2 × 2 matrix C_{1j} is the (1, j)-cofactor obtained by removing both row 1 and column j from the matrix **A**.

The result is the following sum

$$|\mathbf{A}| = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

of 3! = 6 terms, each the product of 3 elements chosen so that each row and each column is represented just once.

University of Warwick, EC9A0 Maths for Economists

Determinants of Order 3: Cofactor Expansion

The determinant expansion

$$\begin{aligned} |\mathbf{A}| &= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} \\ &- a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{aligned}$$

is very symmetric, suggesting (correctly) that the cofactor expansion along the first row (a_{11}, a_{12}, a_{13})

$$|\mathsf{A}| = \sum_{j=1}^3 (-1)^{1+j} \mathsf{a}_{1j} |\mathsf{C}_{1j}|$$

gives the same answer as the other cofactor expansions

$$|\mathsf{A}| = \sum_{j=1}^{3} (-1)^{r+j} a_{rj} |\mathsf{C}_{rj}| = \sum_{i=1}^{3} (-1)^{i+s} a_{is} |\mathsf{C}_{is}|$$

along, respectively:

University of Warwick, EC9A0 Maths for Economists

Determinants of Order 3: Alternative Expressions

One way of condensing the notation

$$\begin{aligned} |\mathbf{A}| &= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} \\ &- a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{aligned}$$

is to reduce it to $|\mathbf{A}| = \sum_{\pi \in \Pi_3} \operatorname{sgn}(\pi) \prod_{i=1}^3 a_{i\pi(i)}$ for the sign function $\Pi_3 \ni \pi \mapsto \operatorname{sgn}(\pi) \in \{-1, +1\}.$

The six values of $sgn(\pi)$ can be read off as

$$sgn(\pi^{123}) = +1;$$
 $sgn(\pi^{132}) = -1;$ $sgn(\pi^{231}) = +1;$
 $sgn(\pi^{213}) = -1;$ $sgn(\pi^{312}) = +1;$ $sgn(\pi^{321}) = -1.$

Exercise

Verify these values for each of the six $\pi \in \Pi_3$ by:

- 1. calculating the number of inversions directly;
- 2. expressing each π as the product of transpositions, and then counting these.

Sarrus's Rule: Diagram

An alternative way to evaluate determinants only of order 3 is to add two new columns that repeat the first and second columns:

a_{11}	a ₁₂	a ₁₃	a_{11}	a ₁₂
a 21	a 22	a ₂₃	a ₂₁	a ₂₂
a 31	a 32	a 33	a ₃₁	a ₃₂

Then add lines/arrows going up to the right or down to the right, as shown below

Note that some pairs of arrows in the middle cross each other.

Sarrus's Rule Defined

Now:

1. multiply along the three lines falling to the right, then sum these three products, to obtain

 $a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32}$

 multiply along the three lines rising to the right, then sum these three products, giving the sum a minus sign, to obtain

$$-a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}$$

The sum of all six terms exactly equals the earlier formula for $|\mathbf{A}|$. Note that this method, known as Sarrus's rule, does not generalize to determinants of order higher than 3.

University of Warwick, EC9A0 Maths for Economists

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3

The Determinant Function

Permutation and Transposition Matrices Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

The Determinant Mapping

Let \mathcal{D}_n denote the domain $\mathbb{R}^{n \times n}$ of $n \times n$ matrices.

Definition

For all $n \in \mathbb{N}$, the determinant mapping

$$\mathcal{D}_n \ni \mathbf{A} \mapsto |\mathbf{A}| := \sum_{\pi \in \Pi_n} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i\pi(i)} \in \mathbb{R}$$

specifies the determinant $|\mathbf{A}|$ of each $n \times n$ matrix \mathbf{A} as a function of its n row vectors $(\mathbf{a}_i^{\top})_{i=1}^n$.

Here the multiplier $sgn(\pi)$ attached to each product of *n* terms can be regarded as the sign adjustment associated with the permutation $\pi \in \Pi_n$.

Row Mappings

For a general natural number $n \in \mathbb{N}$, consider any row mapping

$$\mathcal{D}_n
i \mathbf{A} \mapsto D(\mathbf{A}) = D\left(\langle \mathbf{a}_i^\top \rangle_{i=1}^n\right) \in \mathbb{R}$$

defined on the domain \mathcal{D}_n of $n \times n$ matrices **A** with row vectors $\langle \mathbf{a}_i^\top \rangle_{i=1}^n$.

Notation: For each fixed $r \in \mathbb{N}_n$, let $D(\mathbf{A}/\mathbf{b}_r^{\top})$ denote the new value $D(\mathbf{a}_1^{\top}, \dots, \mathbf{a}_{r-1}^{\top}, \mathbf{b}_r^{\top}, \mathbf{a}_{r+1}^{\top}, \dots, \mathbf{a}_n^{\top})$ of the row mapping D after the rth row \mathbf{a}_r^{\top} of the matrix \mathbf{A} has been replaced by the new row vector $\mathbf{b}_r^{\top} \in \mathbb{R}^n$.

Row Multilinearity

Definition

The function $\mathcal{D}_n \ni \mathbf{A} \mapsto D(\mathbf{A})$ of the *n* rows $\langle \mathbf{a}_i^\top \rangle_{i=1}^n$ of \mathbf{A} is (row) multilinear just in case, for each row number $i \in \{1, 2, ..., n\}$, each pair $\mathbf{b}_i^\top, \mathbf{c}_i^\top \in \mathbb{R}^n$ of new versions of row *i*, and each pair of scalars $\lambda, \mu \in \mathbb{R}$, one has

$$D(\mathbf{A}_{-i}/\lambda \mathbf{b}_{i}^{\top} + \mu \mathbf{c}_{i}^{\top}) = \lambda D(\mathbf{A}_{-i}/\mathbf{b}_{i}^{\top}) + \mu D(\mathbf{A}_{-i}/\mathbf{c}_{i}^{\top}) \quad \Box$$

Formally, the mapping $\mathbb{R}^n \ni \mathbf{a}_i^\top \mapsto D(\mathbf{A}_{-i}/\mathbf{a}_i^\top) \in \mathbb{R}$ is required to be linear, for fixed each row $i \in \mathbb{N}_n$.

That is, *D* is a linear function of the *i*th row vector \mathbf{a}_i^{\top} on its own, when all the other rows \mathbf{a}_h^{\top} ($h \neq i$) are fixed.

Determinants are Row Multilinear

Theorem For all $n \in \mathbb{N}$, the determinant mapping

$$\mathcal{D}_n \ni \mathbf{A} \mapsto |\mathbf{A}| := \sum_{\pi \in \Pi_n} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i\pi(i)} \in \mathbb{R}$$

is a row multilinear function of its n row vectors $(\mathbf{a}_i^{\top})_{i=1}^n$.

Proof.

For each fixed row $r \in \mathbb{N}$, we have

$$det(\mathbf{A}_{-i}/\lambda \mathbf{b}_{r}^{\top} + \mu \mathbf{c}_{r}^{\top})$$

$$= \sum_{\pi \in \Pi_{n}} sgn(\pi) \left(\lambda b_{r\pi(r)} + \mu c_{r\pi(r)}\right) \prod_{i \neq r} \mathbf{a}_{i\pi(i)}$$

$$= \sum_{\pi \in \Pi_{n}} sgn(\pi) \left[\lambda b_{r\pi(r)} \prod_{i \neq r} \mathbf{a}_{i\pi(i)} + \mu c_{r\pi(r)} \prod_{i \neq r} \mathbf{a}_{i\pi(i)}\right]$$

$$= \lambda det(\mathbf{A}_{-i}/\mathbf{b}_{r}^{\top}) + \mu det(\mathbf{A}_{-i}/\mathbf{c}_{r}^{\top})$$

as required for multilinearity.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function

Permutation and Transposition Matrices

Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Permutation Matrices: Definition

Definition

Given any permutation $\pi \in \Pi_n$ on $\{1, 2, ..., n\}$, define \mathbf{P}^{π} as the $n \times n$ permutation matrix whose elements satisfy $p_{\pi(i),j}^{\pi} = \delta_{i,j}$ or equivalently $p_{i,j}^{\pi} = \delta_{\pi^{-1}(i),j}$.

That is, the rows of the identity matrix I_n are permuted so that for each i = 1, 2, ..., n, its ith row vector is moved to become row $\pi(i)$ of $\mathbf{D}\pi$.

its *i*th row vector is moved to become row $\pi(i)$ of \mathbf{P}^{π} .

Lemma

For each permutation matrix \mathbf{P}^{π} one has $(\mathbf{P}^{\pi})^{\top} = \mathbf{P}^{\pi^{-1}}$.

Proof.

Because π is a permutation, $i = \pi(j) \iff j = \pi^{-1}(i)$.

Then the definitions imply that for all $(i,j) \in \mathbb{N}_n^2$ one has

$$(\mathbf{P}^{\pi})_{i,j}^{\top} = p_{j,i}^{\pi} = \delta_{\pi(j),i} = \delta_{\pi^{-1}(i),j} = p^{\pi^{-1}}(i,j)$$

Permutation Matrices: Examples

Example

There are two 2×2 permutation matrices, which are given by:

$$\mathbf{P}^{12} = \mathbf{I}_2; \quad \mathbf{P}^{21} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Their signs are respectively +1 and -1.

There are 3! = 6 permutation matrices in 3 dimensions given by:

$$\begin{split} \mathbf{P}^{123} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad \mathbf{P}^{132} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \quad \mathbf{P}^{213} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \\ \mathbf{P}^{231} &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}; \quad \mathbf{P}^{312} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \quad \mathbf{P}^{321} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \\ \text{Their signs are respectively +1, -1, -1, +1, +1 and -1.} \end{split}$$

University of Warwick, EC9A0 Maths for Economists

Multiplying a Matrix by a Permutation Matrix

Lemma

Given any $n \times n$ matrix **A**, for each permutation $\pi \in \prod_n$ the corresponding permutation matrix \mathbf{P}^{π} satisfies

$$(\mathbf{P}^{\pi}\mathbf{A})_{\pi(i),j} = a_{ij} = (\mathbf{A}\mathbf{P}^{\pi})_{i,\pi(j)}$$

Proof.

For each pair $(i, j) \in \mathbb{N}_n^2$, one has

$$(\mathbf{P}^{\pi}\mathbf{A})_{\pi(i),j} = \sum_{k=1}^{n} p_{\pi(i),k}^{\pi} a_{kj} = \sum_{k=1}^{n} \delta_{ik} a_{kj} = a_{ij}$$

and also

$$(\mathbf{AP}^{\pi})_{i,\pi(j)} = \sum_{k=1}^{n} a_{ik} p_{k,\pi(j)}^{\pi} = \sum_{k=1}^{n} a_{ik} \delta_{kj} = a_{ij}$$

So
$$\begin{cases} \text{premultiplying} \\ \text{postmultiplying} \end{cases}$$
 A by \mathbf{P}^{π} applies π to **A**'s $\begin{cases} \text{rows} \\ \text{columns} \end{cases}$.
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 72 of 87
Multiplying Permutation Matrices

Theorem

Given the composition $\pi \circ \rho$ of two permutations $\pi, \rho \in \Pi_n$, the associated permutation matrices satisfy $\mathbf{P}^{\pi} \mathbf{P}^{\rho} = \mathbf{P}^{\pi \circ \rho}$.

Proof.

For each pair $(i,j) \in \mathbb{N}_n^2$, one has

$$(\mathbf{P}^{\pi} \mathbf{P}^{\rho})_{ij} = \sum_{k=1}^{n} p_{ik}^{\pi} p_{kj}^{\rho} = \sum_{k=1}^{n} \delta_{\pi^{-1}(i),k} \, \delta_{\rho^{-1}(k),j}$$

= $\sum_{k=1}^{n} \delta_{(\rho^{-1} \circ \pi^{-1})(i),\rho^{-1}(k)} \, \delta_{\rho^{-1}(k),j}$
= $\sum_{\ell=1}^{n} \delta_{(\pi \circ \rho)^{-1}(i),\ell} \, \delta_{\ell,j} = \delta_{(\pi \circ \rho)^{-1}(i),j} = p_{ij}^{\pi \circ \rho} \square$

Corollary

If
$$\pi = \pi^1 \circ \pi^2 \circ \cdots \circ \pi^q$$
, then $\mathbf{P}^{\pi} = \mathbf{P}^{\pi^1} \mathbf{P}^{\pi^2} \cdots \mathbf{P}^{\pi^q}$.

Proof.

By induction on q, using the result of the Theorem.

University of Warwick, EC9A0 Maths for Economists

Any Permutation Matrix Is Orthogonal

Proposition

Any permutation matrix \mathbf{P}^{π} satisfies $\mathbf{P}^{\pi}(\mathbf{P}^{\pi})^{\top} = (\mathbf{P}^{\pi})^{\top}\mathbf{P}^{\pi} = \mathbf{I}_{n}$, so is orthogonal.

Proof.

For each pair $(i,j) \in \mathbb{N}_n^2$, one has

$$[\mathbf{P}^{\pi} (\mathbf{P}^{\pi})^{\top}]_{ij} = \sum_{k=1}^{n} p_{ik}^{\pi} p_{jk}^{\pi} = \sum_{k=1}^{n} \delta_{\pi^{-1}(i),k} \, \delta_{\pi^{-1}(j),k} \\ = \delta_{\pi^{-1}(i),\pi^{-1}(j)} = \delta_{ij}$$

and also

$$\begin{aligned} [(\mathbf{P}^{\pi})^{\top} \mathbf{P}^{\pi}]_{ij} &= \sum_{k=1}^{n} p_{ki}^{\pi} p_{kj}^{\pi} = \sum_{k=1}^{n} \delta_{\pi^{-1}(k),i} \, \delta_{\pi^{-1}(k),j} \\ &= \sum_{\ell=1}^{n} \delta_{\ell,i} \, \delta_{\ell,j} = \delta_{ij} \end{aligned}$$

Transposition Matrices

A special case of a permutation matrix is a transposition T_{rs} of rows r and s.

As the matrix I with rows r and s transposed, it satisfies

$$(\mathbf{T}_{rs})_{ij} = \begin{cases} \delta_{ij} & \text{if } i \notin \{r, s\} \\ \delta_{sj} & \text{if } i = r \\ \delta_{rj} & \text{if } i = s \end{cases}$$

Exercise

Let **A** be any $n \times n$ matrix. Prove that: 1) any transposition matrix \mathbf{T}_{rs} is symmetric and orthogonal; 2) $\mathbf{T}_{rs} = \mathbf{T}_{sr}$; 3) $\mathbf{T}_{rs}\mathbf{T}_{sr} = \mathbf{T}_{sr}\mathbf{T}_{rs} = \mathbf{I}$; 4) $\mathbf{T}_{rs}\mathbf{A}$ is **A** with rows r and s interchanged; 5) \mathbf{AT}_{rs} is **A** with columns r and s interchanged.

Determinants with Permuted Rows: Theorem

Theorem

Given any $n \times n$ matrix **A** and any permutation $\pi \in \mathbb{N}_n$, one has $|\mathbf{P}^{\pi}\mathbf{A}| = |\mathbf{A}\mathbf{P}^{\pi}| = \operatorname{sgn}(\pi) |\mathbf{A}|$.

University of Warwick, EC9A0 Maths for Economists

Determinants with Permuted Rows: Proof

Proof.

The expansion formula for determinants gives

$$|\mathbf{P}^{\pi}\mathbf{A}| = \sum_{\rho \in \Pi_n} \operatorname{sgn}(\rho) \prod_{i=1}^n (\mathbf{P}^{\pi}\mathbf{A})_{i,\rho(i)}$$

But for each $i \in \mathbb{N}_n$, $\rho \in \Pi_n$, one has $(\mathbf{P}^{\pi}\mathbf{A})_{i,\rho(i)} = a_{\pi^{-1}(i),\rho(i)}$, so

$$\begin{aligned} |\mathbf{P}^{\pi}\mathbf{A}| &= \sum_{\rho \in \Pi_n} \operatorname{sgn}(\rho) \prod_{i=1}^n a_{\pi^{-1}(i),\rho(i)} \\ &= [1/\operatorname{sgn}(\pi)] \sum_{\pi \circ \rho \in \Pi_n} \operatorname{sgn}(\pi \circ \rho) \prod_{i=1}^n a_{i,(\pi \circ \rho)(i)} \\ &= \operatorname{sgn}(\pi) \sum_{\sigma \in \Pi_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} = \operatorname{sgn}(\pi) |\mathbf{A}| \end{aligned}$$

because $\operatorname{sgn}(\pi \circ \rho) = \operatorname{sgn}(\pi) \operatorname{sgn}(\rho)$ and $1/\operatorname{sgn}(\pi) = \operatorname{sgn}(\pi)$, whereas there is an obvious bijection $\Pi_n \ni \rho \leftrightarrow \pi \circ \rho = \sigma \in \Pi_n$ on the set of permutations Π_n .

The proof that $|\mathbf{AP}^{\pi}| = \operatorname{sgn}(\pi) |\mathbf{A}|$ is sufficiently similar to be left as an exercise.

University of Warwick, EC9A0 Maths for Economists

The Alternation Rule for Determinants

Corollary

Given any $n \times n$ matrix **A** and any transposition τ_{rs} with associated transposition matrix \mathbf{T}_{rs} , one has $|\mathbf{T}_{rs}\mathbf{A}| = |\mathbf{AT}_{rs}| = -|\mathbf{A}|$.

Proof.

Apply the previous theorem in the special case when $\pi = \tau_{rs}$ and so $\mathbf{P}^{\pi} = \mathbf{T}_{rs}$.

Then, because $sgn(\pi) = sgn(\tau_{rs}) = -1$, the equality $|\mathbf{P}^{\pi}\mathbf{A}| = sgn(\pi) |\mathbf{A}|$ implies that $|\mathbf{T}_{rs}\mathbf{A}| = -|\mathbf{A}|$. We have shown that, for any $n \times n$ matrix \mathbf{A} , given any:

- 1. permutation $\pi \in \mathbb{N}_n$, one has $|\mathbf{P}^{\pi}\mathbf{A}| = |\mathbf{A}\mathbf{P}^{\pi}| = \operatorname{sgn}(\pi) |\mathbf{A}|$;
- 2. transposition τ_{rs} , one has $|\mathbf{T}_{rs}\mathbf{A}| = |\mathbf{AT}_{rs}| = -|\mathbf{A}|$.

Sign Adjusted Transpositions

We define the sign adjusted transposition matrix $\hat{\mathbf{T}}_{rs}$ as either one of the two matrices that: (i) swaps rows or columns r and s; (ii) then multiplies one, but only one, of the two swapped rows or columns by -1.

As the matrix I with rows r and s transposed, and then one sign changed, it satisfies

$$(\mathbf{T}_{rs})_{ij} = \begin{cases} \delta_{ij} & \text{if } i \notin \{r, s\} \\ \alpha_s \delta_{sj} & \text{if } i = r \\ \alpha_r \delta_{rj} & \text{if } i = s \end{cases}$$

where $\alpha_r, \alpha_s \in \{-1, +1\}$ with $\alpha_r = -\alpha_s$. It evidently satisfies $|\mathbf{\hat{T}}_{rs}\mathbf{A}| = |\mathbf{A}\mathbf{\hat{T}}_{rs}| = |\mathbf{A}|$.

Sign Adjusted Permutations

Given any permutation matrix \mathbf{P} ,

there is a unique permutation π such that $\mathbf{P} = \mathbf{P}^{\pi}$.

Suppose that $\pi = \tau_{r_1 s_1} \circ \cdots \circ \tau_{r_\ell s_\ell}$ is any one of the several ways in which the permutation π can be decomposed into a composition of transpositions.

Then
$$\mathbf{P} = \prod_{k=1}^{\ell} \mathbf{T}_{r_k s_k}$$
 and $|\mathbf{PA}| = (-1)^{\ell} |\mathbf{A}|$ for any \mathbf{A} .

Definition

Say that $\hat{\mathbf{P}}$ is a sign adjusted version of $\mathbf{P} = \mathbf{P}^{\pi}$ just in case it can be expressed as the product $\hat{\mathbf{P}} = \prod_{k=1}^{\ell} \hat{\mathbf{T}}_{r_k s_k}$ of sign adjusted transpositions satisfying $\mathbf{P} = \prod_{k=1}^{\ell} \mathbf{T}_{r_k s_k}$.

Then it is easy to prove by induction on ℓ that for every $n \times n$ matrix **A** one has $|\hat{\mathbf{P}}\mathbf{A}| = |\mathbf{A}\hat{\mathbf{P}}| = |\mathbf{A}|$. Recall that all the elements of a permutation matrix **P** are 0 or 1. A sign adjustment of **P** involves changing some of the 1 elements into -1 elements, while leaving all the 0 elements unchanged.

Outline

Special Matrices

Square, Symmetric, and Diagonal Matrices The Identity Matrix The Inverse Matrix Partitioned Matrices

Permutations and Their Signs

Permutations Transpositions Signs of Permutations The Product Rule for the Signs of Permutations

Determinants: Introduction

Determinants of Order 2 Determinants of Order 3 The Determinant Function Permutation and Transposition Matrices Triangular Matrices

Triangular Matrices

University of Warwick, EC9A0 Maths for Economists

Triangular Matrices: Definition

Definition

A square matrix is upper (resp. lower) triangular

if all its non-zero off diagonal elements are above and to the right

(resp. below and to the left) of the diagonal

— i.e., in the upper (resp. lower) triangle

bounded by the principal diagonal.

- The elements of an upper triangular matrix U satisfy (U)_{ij} = 0 whenever i > j.
- The elements of a lower triangular matrix L satisfy (L)_{ij} = 0 whenever i < j.</p>

Products of Upper Triangular Matrices

Theorem

The product $\mathbf{W} = \mathbf{U}\mathbf{V}$ of any two upper triangular matrices \mathbf{U}, \mathbf{V} is upper triangular,

with diagonal elements $w_{ii} = u_{ii}v_{ii}$ (i = 1, ..., n) equal to the product of the corresponding diagonal elements of **U**, **V**.

Proof.

Given any two upper triangular $n \times n$ matrices **U** and **V**, one has $u_{ik}v_{kj} = 0$ unless both $i \leq k$ and $k \leq j$.

So the elements $(w_{ij})^{n \times n}$ of their product $\mathbf{W} = \mathbf{U}\mathbf{V}$ satisfy

$$w_{ij} = \begin{cases} \sum_{k=i}^{j} u_{ik} v_{kj} & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}$$

Hence $\mathbf{W} = \mathbf{U}\mathbf{V}$ is upper triangular.

Finally, when j = i the above sum collapses to just one term, and $w_{ii} = u_{ii}v_{ii}$ for i = 1, ..., n.

University of Warwick, EC9A0 Maths for Economists

Peter J. Hammond

83 of 87

Triangular Matrices: Exercises

Exercise

Prove that the transpose:

- 1. \mathbf{U}^{\top} of any upper triangular matrix \mathbf{U} is lower triangular;
- 2. \mathbf{L}^{\top} of any lower triangular matrix \mathbf{L} is upper triangular.

Exercise Consider the matrix $\mathbf{E}_{r+\alpha q}$ that represents the elementary row operation of adding a multiple of α times row q to row r, with $r \neq q$. Under what conditions is $\mathbf{E}_{r+\alpha q}$ (i) upper triangular? (ii) lower triangular?

Hint: Apply the row operation to the identity matrix I.

Answer: (i) iff q < r; (ii) iff q > r.

Products of Lower Triangular Matrices

Theorem

The product of any two lower triangular matrices is lower triangular.

Proof.

Given any two lower triangular matrices $\boldsymbol{L}, \boldsymbol{M},$ taking transposes shows that $(\boldsymbol{L}\boldsymbol{M})^{\top} = \boldsymbol{M}^{\top}\boldsymbol{L}^{\top} = \boldsymbol{U},$ where the product \boldsymbol{U} is upper triangular, as the product of upper triangular matrices.

Hence $\mathbf{L}\mathbf{M} = \mathbf{U}^{\top}$ is lower triangular, as the transpose of an upper triangular matrix.

Determinants of Triangular Matrices

Theorem

The determinant of any $n \times n$ upper triangular matrix **U** equals the product of all the elements on its principal diagonal.

Proof.

Recall the expansion formula $|\mathbf{U}| = \sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} u_{i\pi(i)}$ where Π denotes the set of permutations on $\{1, 2, \ldots, n\}$. Because \mathbf{U} is upper triangular, one has $u_{i\pi(i)} = 0$ unless $i \leq \pi(i)$. So $\prod_{i=1}^{n} u_{i\pi(i)} = 0$ unless $i \leq \pi(i)$ for all $i = 1, 2, \ldots, n$. But the identity ι is the only permutation $\pi \in \Pi$ that satisfies $i \leq \pi(i)$ for all $i \in \mathbb{N}_n$.

Because $\operatorname{sgn}(\iota) = +1$, the expansion reduces to the single term

$$|\mathbf{U}| = \operatorname{sgn}(\iota) \prod_{i=1}^{n} u_{i\iota(i)} = \prod_{i=1}^{n} u_{ii}$$

This is the product of the n diagonal elements, as claimed.

Similarly $|\mathbf{L}| = \prod_{i=1}^{n} \ell_{ii}$ for any lower triangular matrix \mathbf{L} . Evidently:

Corollary

A triangular matrix (upper or lower) is invertible if and only if no element on its principal diagonal is 0.